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SPECTRA OF EXPANSION GRAPHS�

SHMUEL FRIEDLANDy AND HANS SCHNEIDERz

Abstract. Replace certain edges of a directed graph by chains and consider the e�ect on
the spectrum of the graph. It is shown that the spectral radius decreases monotonically with the
expansion and that, for a strongly connected graph that is not a single cycle, the spectral radius
decreases strictly monotonically with the expansion. A limiting formula is given for the spectral
radius of the expanded graph when the lengths of some chains replacing the original edges tend to
in�nity. The proofs depend on the construction of auxiliary nonnegative matrices of the same size
and with the same support as the original adjacency matrix.
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1. Introduction. In [2] one of us considered the expansion graph of a (directed)
graph, that is a (directed) graph obtained from a given graph by replacing certain
edges by a chain. In this note we consider the e�ect of graph expansion on the
spectrum (of the adjacency matrix) of the graph.

We show that the spectral radius decreases monotonically with the expansion
and that, for a strongly connected graph that is not a single cycle, the spectral
radius decreases strictly monotonically with the expansion. Moreover, if all edges are
expanded to chains of the same length, there is a simple formula relating the spectral
radius of the original and expanded graphs. The property that the spectral radius of
the graph decreases with expansion may also be deduced from [1, Lemma 3], where an
expansion of a di�erent kind is considered for nonnegative matrices. The advantage
of our approach lies in the construction of auxiliary nonnegative matrices of the same
size and with the same support as the original (0; 1) adjacency matrix such that for
each nonzero eigenvalue of the expanded graph there is an auxiliary matrix which has
the same eigenvalue. We also give a limiting formula for the spectral radius of the
expanded graph when the lengths of some chains replacing the original edges tend to
in�nity.

In this note we consider only directed graphs. Let � be a graph with the set of
vertices < n >:= f1; ::::; ng and a set of edges E �< n > � < n >. We denote the
adjacency matrix of � by Adj(�). As usual, the spectrum of a matrix is the set of
its eigenvalues and the spectral radius of a matrix is the largest absolute value of an
eigenvalue. The spectrum and spectral radius of a matrix A 2 C

nn are denoted by
spec(A) and �(A) respectively, and we write spec(Adj(�)) as spec(�) and �(Adj(�))
as �(�).
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Let � be a graph. If � contains a cycle, Adj(�) � Adj(~�) elementwise, where ~� is
the graph obtained from � by removing all arcs except those on the cycle, and hence,
by a result of Perron-Frobenius theory which we use repeatedly, e.g., [3, Theorem
8.1.18], we have �(�) � �(~�) = 1. If � doesn't contain a cycle, then Adj(�) is per-
mutationally similar to a strictly triangular matrix and hence �(�) = 0. In this case,
we call � an acyclic graph, otherwise the graph will be called nonacyclic. Expansion
graphs of acyclic graphs are acyclic and our results are trivial for such graphs. Thus
we con�ne our exposition to nonacyclic graphs �.

2. Auxiliary Matrices. Let w be a function w : E ! Z+ of the edge set into
the nonnegative integers. The expansion graph �w of � is obtained by replacing the
edge (i; j) by a chain from i to j with w(i; j) + 1 edges by inserting w(i; j) additional
vertices. (If w(i; j) = 0 then the edge (i; j) is not changed. In particular, �0 = �.)

Definition 2.1. Let � be a graph with the set of vertices < n > and edge set
E �< n > � < n >. Let w : E ! Z+. Let 0 6= t 2 C . Then an auxiliary matrix

Aw(t) 2 C
nn is de�ned by

aij(t) = t�w(i;j); (i; j) 2 E;(1)

aij(t) = 0; (i; j) 2< n > � < n > nE:

Note that for all functions w of the type considered the matrix Aw(1) is the adjacency
matrix Adj(�). Further, for all t 6= 0, A0(t) = Adj(�).

Lemma 2.2. Let � be a nonacyclic graph with set of vertices < n > and edge set

E �< n > � < n >. Let w : E ! Z+. Then

(i) �(Aw(t)=t) is a strictly monotonically decreasing function of t in [1;1).
(ii) There exists a unique � � 1 such that �(Aw(�)=�) = 1.
Proof. (i) Let 1 � t0 < t. Since �w is nonacyclic and Aw(t) � 0 (elementwise), it

follows that 0 � Aw(t) � Aw(t
0). By a well-known result (e.g., [3, Theorem 8.1.18])

it follows that �(Aw(t)) � �(Aw(t
0)) and hence �(Aw(t)=t) < �(Aw(t

0)=t0) .
(ii) We note that �(Aw(t)=t) is a continuous function of t in [1;1). Since

�(Aw(1)) = �(�) � 1, and limt!1 Aw(t)=t = 0, we deduce that limt!1 �(Aw(t)=t) =
0. Thus (ii) now follows from (i).

3. Spectra. Theorem 3.1. Let � be a nonacyclic graph with set of vertices

< n > and edge set E �< n > � < n >. Let w : E ! Z+. Let 0 6= � 2 C . Then � is

an eigenvalue of Adj(�w) if and only if 1 is an eigenvalue of Aw(�)=� .
Proof. Let V be the vertex set of �w. Then the elements of V will be indexed by

the triples (i; j; k); k = 0; : : : ; w(i; j) + 1; for (i; j) 2 E. We identify all (i; j; 0) 2 V
with i 2< n > and all (i; j; w(i; j) + 1) 2 V with j 2< n >. Furthermore the chain
from i 2< n > to j 2< n > in �w is given by

(i; j; 0) = i! (i; j; 1)! � � � ! (i; j; w(i; j))! (i; j; w(i; j) + 1) = j; (i; j) 2 E:

With each vertex v 2 V we associate a variable xv . Thus for i; j 2< n > the variable
xi is identi�ed with x(i;j;0) for all (i; j) 2 E and the variable xj is identi�ed with
x(i;j;w(i;j)+1) for all (i; j) 2 E. Denote by jV j the cardinality of V .
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Let B = Adj(�w). Suppose that � 2 spec(B); � 6= 0 and let �x = Bx; x 6= 0,

where x := (xv)v2V 2 C
jV j. If w(i; j) � 1, the equation (�x)v = (Bx)v ; v 2 V , yields

�x(i;j;k) = x(i;j;k+1); k = 1; :::; w(i; j); (i; j) 2 E:(2)

Hence

x(i;j;k) = ��w(i;j)+k�1xj ; k = 1; : : : ; w(i; j);(3)

and, in particular,

x(i;j;1) = ��w(i;j)xj ; (i; j) 2 E:(4)

Let z 2 C
n be given by

zj = xj ; j = 1; : : : ; n:(5)

Since x 6= 0, we deduce from (3), that z 6= 0.
We observe that the system (�x)i = (Bx)i; i 2< n > may be written as

�xi =
X

j;(i;j)2E

x(i;j;1); i = 1; :::; n;(6)

and we can combine (4) and (6) to obtain

�xi =
X

j;(i;j)2E

��w(i;j)xj ; i = 1; :::; n:(7)

We now compare (7) and (1), and we deduce that

z = (Aw(�)=�)z:(8)

Hence 1 2 spec(Aw(�)=�).
Conversely, assume that z 6= 0 and that z satis�es (8). De�ne x 2 C

n by (5), and
extend x to be conformal with B by (3). Then both (2) and (4) hold. We rewrite
(8) in the equivalent form (7), and we use (4) to obtain (6). But (6) and (2) together
imply that Bx = �x.

Corollary 3.2. Let � be a nonacyclic graph with set of vertices < n > and edge

set E �< n > � < n >. Let w : E ! Z+ satisfy w(i; j) = m; for all (i; j) 2 E. Let

0 6= � 2 C . Then � 2 spec(�w) if and only if �m+1 2 spec(�). In particular,

�(�w) = �(�)
1

m+1 :

Proof. Note that Aw(�) = ��mAw(1) = ��mAdj(�). If � 2 spec(Aw(�)) then
�m+1 2 spec(�), and conversely. Hence Theorem 3.1 implies the �rst part of the
corollary and the second part follows immediately.
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Remark 3.3. It is possible that 0 2 spec(�w) and 0 62 spec(�). (See Example
3.8.)

Theorem 3.4. Let � be a nonacyclic graph with set of vertices < n > and edge

set E �< n > � < n >. Let w : E ! Z+. Let � be the unique solution in [1;1) of

�(Aw(�)=�) = 1. Then

�(�w) = �(Aw(�)):

Proof. By Perron-Frobenius �(Aw(�)) 2 spec(Aw(�)), and hence, by Theorem 3.1,
� 2 spec(�w). It follows that �

0 := �(�w) � � . By Lemma 2.2 we have �(Aw(�
0)=� 0) �

1. But, � 0 2 spec(�w) also yields � 0 2 spec(Aw(�
0)) by Theorem 3.1. Using Perron-

Frobenius again, we deduce that �(Aw(�
0)=� 0) � 1. It follows that �(Aw(�

0)=� 0) = 1,
and we obtain � 0 = � from Lemma 2.2.

A graph � is strongly connected if there is a path in � from every vertex to every
other vertex. Suppose that � is strongly connected. Then Adj(�) is irreducible. If �
consists of a single loopless vertex then clearly Adj(�) = [0] and �(�) = 0; otherwise
� is nonacyclic and �(�) � 1. Further, �(�) = 1 if and only if � consists of a single
cycle, since for nonnegative matrices A;B with A irreducible, A � B and �(A) = �(B)
imply that A = B, see [3, Theorem 8.4.5].

Theorem 3.5. Let � be a nonacyclic graph with vertex set < n > and edge set

E �< n > � < n > respectively. Let w : E ! Z+. Then

1 � �(�w) � �(�):(9)

Suppose also that � is strongly connected. Then �(�w) = �(�) if and only if either

w = 0 or � is a cycle. Further, 1 = �(�w) if and only if � is a cycle.

Proof. Let t 2 [1;1). Since Aw(t)=t � A0(t)=t, we also have �(Aw(t)=t) �
�(A0(t)=t) and (9) follows from Theorem 3.4 and Lemma 2.2.

Now let � also be strongly connected. If w = 0, obviously �(�w) = �(�). If � is
a cycle, then �(�) = 1, and it follows from (9) that also �(�w) = 1.

Conversely, suppose that w 6= 0 and that � is not a cycle. Then �(Aw(1)) =
�(�) > 1. Note that Adj(�) is irreducible and hence so is Aw(t) for t � 1. Thus for
t > 1 we have �(Aw(t)=t) < �(A0(t)=t) by [3, Theorem 8.4.5], since Aw(t)=t � A0(t)=t
but Aw(t)=t 6= A0(t)=t. It follows from Theorem 3.4 that 1 < �(�w) < �(�).

The last part of the theorem follows from the remarks just preceding it and the
fact that �w is a cycle if and only if � is a cycle.

The inequality (9) in Theorem 3.5 may be also derived from [1, Lemma 3, part
(b)].

Let E �< n > � < n > and let w;w0 : E ! Z+ be nonnegative integer valued
functions on E. Then we write w � w0 if w(i; j) � w0(i; j), for all (i; j) 2 E: We have
the following corollary to Theorem 3.5.

Corollary 3.6. Let � be a nonacyclic graph with vertex set < n > and edge set

E �< n > � < n > respectively. Let w;w0 : E ! Z+. Assume that w0 � w. Then

�(�w) � �(�w0):
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Suppose now that � is also strongly connected. If � is a cycle then �(�w) = �(�w0).
If � is not a cycle and w 6= w0 then �(�w) > �(�w0) > 1.

Proof. The graph �w0 may be obtained from �w by graph expansion. The corol-
lary now follows from Theorem 3.5.

Corollary 3.7. Let � be a nonacyclic graph with vertex set < n > and edge set

E �< n > � < n > respectively. Let w : E ! Z+ and suppose that m0 � w(i; j) � m
for all (i; j) 2 E. Then

�(�)
1

m+1 � �(�w) � �(�)
1

m0+1 :

Proof. Immediate by Corollary 3.2 and Corollary 3.6.
Example 3.8. Let � be the graph with vertex set f1; 2g and edge set E =

f(1; 1); (1; 2); (2; 1)g. Let w : E ! Z+ be given by w(1; 1) = 1; w(1; 2) = 0; w(2; 1) =
0, that is, we expand the arc (1; 1) to a chain of length 2 and we leave the other arcs
unchanged. Then

A =

�
1 1
1 0

�

and

Aw(t) =

�
t�1 1
1 0

�
:

Note that
p
2 is an eigenvalue of Aw(

p
2), and �p2 is an eigenvalue of Aw(�

p
2).

But these are precisely the nonzero eigenvalues of

Adj(�w) =

2
4 0 1 1

1 0 0
1 0 0

3
5(10)

in conformity with Theorem 3.1. Note also that �(�w) =
p
2 < (1 +

p
5)=2 = �(�),

as required by Theorem 3.5 since � is strongly connected.

4. Limiting cases. Lemma 4.1. Let � be a nonacyclic graph with the set of

vertices < n > and set of edges E. Let F 0 � E and let �0 be the graph with the set

of vertices < n > and set of edges F 0. Let w be a mapping w : E ! Z+ such that

w(i; j) = 0; (i; j) 2 F 0. Then

max(1; �(�0)) � �(�w) � �(�):

Proof. We have 1 � �(�w) by Theorem 3.5. Since Adj(�0) � Aw(t); t � 1,
we obtain �(�0) � �(Aw(t)) by [3, Theorem 8.1.18], and �(�0) � �(�w) follows by
Theorem 3.4.
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Definition 4.2. Let � be a graph on the set of vertices < n > and the set of
edges E �< n > � < n >. Let wm; m = 1; 2; : : : be an in�nite sequence of mappings
wm : E ! Z+. Let F be a subset of E and let F 0 = EnF .
(i) Let ~w be a mapping: E ! Z+. We say that the sequence wm; m = 1; 2 : : : ;
coincides with ~w on F 0 if

!m(i; j) = ~w(i; j) for all (i; j) 2 F 0 and m = 1; 2; : : : :

(ii) We say that the sequence wm; m = 1; 2 : : :, tends to in�nity on F if

lim
m!1

wm(i; j) =1for all (i; j) 2 F:

In this terminology, the mapping w considered in Lemma 4.1 coincides with 0 on
F 0.

Theorem 4.3. Let � be a nonacyclic graph on the set of vertices < n > and the

set of edges E �< n > � < n >. Let F be a subset of E and let F 0 = EnF . Let

wm; m = 1; 2; : : : be an in�nite sequence of mappings wm : E ! Z+ which coincides

with 0 on F 0 and tends to in�nity on F . Let �0 be the graph with vertex set < n >
and edge set F 0.
(i) If �0 is acyclic then

lim
m!1

�(�wm) = 1:(11)

(ii) If �0 is nonacyclic then

lim
m!1

�(�wm) = �(�0):(12)

Proof. In view of Lemma 4.1, we have

1 � lim sup
m!1

�(�wm) � �(�):

If

lim sup
m!1

�(�wm) = 1;

then it is immediate that equation (11) holds. Since a graph is either acyclic or
nonacyclic, our result will follow if we prove the following claim:

Claim: If

� := lim sup
m!1

�(�wm) > 1;(13)

then equation (12) holds and �0 is nonacyclic.
Thus we now assume that inequality (13) holds. Let �m = �(�wm); m = 1; 2; : : :.

There exists an in�nite increasing sequence of integers m(k); k = 1; 2; : : : such that

lim
k!1

�m(k) = �:(14)
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Let (i; j) 2 F . Then limk!1 wm(k)(i; j) = 1 and, since �m(k) � (1 + �)=2 > 1 for
su�ciently large k, it follows that

lim
k!1

�
�wm(k)(i;j)

m(k) = 0:

Thus

lim
k!1

Awm(k)
(�m(k)) = Adj(�0):

By (14) and Theorem 3.4 we now have

� = lim
k!1

�m(k) = �(�0):(15)

But, for t � 1; Awm(t) � Adj(�0) and hence �m = �(Awm(�wm)) � �(Adj(�0)). Hence
also

lim inf
m!1

�m � �(�0):(16)

We now combine (13), (15), and (16) to obtain (12). By (12) and the assumption
that � > 1 we have �(�0) > 1. Hence �0 is nonacyclic.

Applying Theorem 4.3 to an expanded graph we immediately obtain:
Corollary 4.4. Let � be a nonacyclic graph on the set of vertices < n > and

the set of edges E �< n > � < n >. Let F be a subset of E and let F 0 = EnF . Let

wm; m = 1; 2; : : : be an in�nite sequence of mappings wm : E ! Z+ which coincides

with a mapping w : E ! Z+ on F 0 and tends to in�nity on F . Let �0 be the graph

with vertex set < n > and edge set F 0. (i) If �0 is acyclic then

lim
m!1

�(�wm) = 1:

(ii) If �0 is nonacyclic then

lim
m!1

�(�wm) = �(�0w):

Example 4.5. We use the notation of Corollary 4.4. We let � be the complete
graph on 2 vertices. Thus A := Adj(�) is given by

A =

�
1 1
1 1

�
:

We write the mapping wm in the form of a matrix Wm whose (i; j)-th entry is
wm(i; j); i; j = 1; 2. Let

Wm =

�
1 0
0 m

�
:
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Thus we leave unchanged the arcs (1; 2) and (2; 1), replace the arc (1; 1) by a chain of
length 2 and replace the arc (2; 2) by a sequence of chains of lengthm+1; m = 1; 2; : : :.
The matrix Awm(t) is given by

Awm(t) =

�
t�1 1
1 t�m

�
:

The characteristic polynomial of Awm(t)=t is given by

�2 � (t�2 + t�(m+1))�� t�2 + t�(m+3)(17)

and we shall now prove that

�(Awm(�m)=�m) = 1(18)

for a unique �m in [1;1) and that

lim
m!1

�m =
p
2:(19)

It follows from (17) and (18) that �m is the largest positive solution of

fm(t) := 2t�2 + t�(m+1) � t�(m+3) = 1:(20)

For t � 1;

f 0m(t) = �4t�3 � (m+ 1)t�(m+2) + (m+ 3)t�(m+4) <

�2t�3 � (m+ 1)t�(m+2) + (m+ 3)t�(m+4) �
�2t�(m+2) � (m+ 1)t�(m+2) + (m+ 3)t�(m+4) =

�(m+ 3)t�(m+2)(1� t�2) � 0:

Since fm(
p
2) > 1 while fm(t) < 1 for large positive t it follows that �m is the

unique solution of (20) in (
p
2;1). Clearly fm+1(t) < fm(t) in (1;1), and hence

f�mg is a decreasing sequence in (
p
2;1). It follows that � := limm!1 �m exists.

But by (20), and since �m >
p
2 for all m we have

1 = lim
m!1

fm(�m) = 2��2

and (19) now follows.
Note that �0w is the graph considered in Example 3.8 and that

p
2 is also the

spectral radius of Adj(�0w) , the matrix displayed in (10), as required by Corollary
4.4(ii).

Example 4.6. We choose � as in Example 4.5 and de�ne the expansion mapping
wm by

Wm =

�
m 0
2m m

�
;
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that is we leave the arc (1; 2) unchanged and replace the arcs (1; 1), (2; 2) and (2; 1)
by chains of length m+ 1, m+ 1 and 2m+ 1 respectively. This time we have

Awm(t) =

�
t�m 1
t�2m t�m

�
:

The characteristic polynomial of Awm(t)=t is �
2� 2t�(m+1)�. Hence �(Awm(�m)=�m)

= 1 if and only if �m = 21=(m+1) and it follows that

lim
m!1

�m = 1;

as required by Corollary 4.4(i). But note that

Adj(�0) =

�
0 1
0 0

�
;

and that therefore �(�0) = 0.
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