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A NOTE ON BOUNDS FOR EIGENVALUES OF NONSINGULAR H-TENSORS∗

JUN HE† AND GUANJUN XU‡

Abstract. A counterexample to a theorem in the paper ELA 29:3-16, (2015) is provided, and an upper bound on the

H-spectral radius of H-tensors is given.
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1. Introduction. Let A = (ai1i2···im) be an mth order n-dimensional real square tensor, and let

x = (xi). Then, we define the following real n-vector:

Axm−1 =

 n∑
i2,··· ,im=1

aii2...imxi2 . . . xim


1≤i≤n

, x[m−1] = (xm−1
i )1≤i≤n.

If there exists a real nonzero vector x and a real number λ such that

Axm−1 = λx[m−1],

then λ is called an H-eigenvalue of A and x is called an eigenvector of A associated with λ [1]. If there exists

a real nonzero vector x and a real number λ such that

Axm−1 = λx, xTx = 1,

then λ is called a Z-eigenvalue of A and x is called an eigenvector of A associated with λ. Let σZ(A) be the set

of all Z-eigenvalues of A and σH(A) be the set of all H-eigenvalues of A. Assume that σZ(A) 6= ∅, σH(A) 6= ∅.
Then, ρZ(A) = max{|λ| : λ ∈ σZ(A)} is called the Z-spectral radius of A, ρH(A) = max{|λ| : λ ∈ σH(A)}
the H-spectral radius of A.

Recently, in [2], some bounds for the Z-spectral radius have been presented for the case when A is a

nonsingular H-tensor. One of these upper bounds is given in the next theorem.

Theorem 1.1 ([2, Theorem 3.3]). Let A be an mth order and n-dimensional nonsingular H-tensor with

σZ(A) 6= ∅. Then,

ρZ(A) ≤ 2 max
1≤i≤n

|aii...i|.

The following example is also given in [2] to illustrate Theorem 1.1.
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Example 1.2. Let A = (aijk) be an third-order 2-dimension tensor with the form,

a111 = 1.1, a112 = −1, a121 = −1, a122 = 1,

a211 = −1, a221 = 1, a212 = 1, a222 = 1.1.

And from Theorem 1.1, it is further claimed in [2] that:

ρZ(A) ≤ 2 max
1≤i≤n

|aii...i| = 2.2.

But in fact, by the command “zeig” in the TenEig MATLAB toolbox[5], we obtain, ρZ(A) = 2.3667 in this

example. That is to say, the bound in Theorem 1.1 is not true in general.

2. Upper bound for the H-spectral radius of H-tensors. Let A and B be two mth order and n-

dimensional tensors. Suppose that there exists an invertible diagonal matrix D such that B = D−(m−1)AD,

then A and B are similar. In [2], it is claimed that since A and B are similar, they have the same Z-spectrum.

The similarity relation of tensors is also studied in [3, 4], and it is proved that A and B share the same H-

spectrum if they are similar. It should be noted that A and B may have different Z-spectra even if they are

similar, which can be seen in the following example.

Example 2.1. Let A = (aijk) and B = (bijk) be third-order 2-dimension tensors with the form,

a111 = 1, a222 = 1, a122 = 1, a211 = 1,

b111 = 1, b222 = 1, b122 = 4, b211 = 0.25.

If D = diag(1, 2) is an invertible diagonal matrix, then we have B = D−2AD. Thus, A and B are similar.

But in fact, by the commands “zeig” and “heig” in the TenEig MATLAB toolbox[5], we obtain σZ(A) =

{−1.4142, 1.4142}, σZ(B) = {−1.2127, 1.2127}, σH(A) = σH(B) = {2}.

In the proof of Theorem 1.1([2, Theorem 3.3]), let X be an invertible diagonal matrix, then, the authors

claim, ρZ(A) = ρZ(X−(m−1)AX), from the analysis above, we find that the result ρZ(A) = ρZ(X−(m−1)AX)

does not hold in general. Therefore, the result of Theorem 1.1([2, Theorem 3.3]) is not true in general. Since

we have ρH(A) = ρH(X−(m−1)AX) by similar arguments, as in the proof of Theorem 1.1, we can get the

following upper bounds for the H-spectral radius of H-tensors.

Theorem 2.2. Let A be an mth order and n-dimensional nonsingular H-tensor with σH(A) 6= ∅. Then,

ρH(A) ≤ 2 max
1≤i≤n

|aii...i|.

Corollary 2.3. Let A be an mth order and n-dimensional nonsingular H-tensor with σH(A) 6= ∅.
Then,

ρH(A) ≤ 2 min

{
Ri(A), max

1≤i≤n
|aii...i|

}
.
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