A NOTE ON BOUNDS FOR EIGENVALUES OF NONSINGULAR H-TENSORS*

JUN HE^{\dagger} and GUANJUN XU^{\ddagger}

Abstract. A counterexample to a theorem in the paper ELA 29:3-16, (2015) is provided, and an upper bound on the H-spectral radius of H-tensors is given.

Key words. M-tensor; H-tensor; Z-spectral radius; Minimum H-eigenvalue.

AMS subject classifications. 15A18, 15A69, 65F15, 65F10

1. Introduction. Let $\mathcal{A} = (a_{i_1 i_2 \cdots i_m})$ be an *m*th order *n*-dimensional real square tensor, and let $x = (x_i)$. Then, we define the following real *n*-vector:

$$\mathcal{A}x^{m-1} = \left(\sum_{i_2, \cdots, i_m=1}^n a_{ii_2\dots i_m} x_{i_2}\dots x_{i_m}\right)_{1 \le i \le n}, \ x^{[m-1]} = (x_i^{m-1})_{1 \le i \le n}.$$

If there exists a real nonzero vector x and a real number λ such that

$$\mathcal{A}x^{m-1} = \lambda x^{[m-1]}.$$

then λ is called an H-eigenvalue of \mathcal{A} and x is called an eigenvector of \mathcal{A} associated with λ [1]. If there exists a real nonzero vector x and a real number λ such that

$$\mathcal{A}x^{m-1} = \lambda x, \quad x^T x = 1,$$

then λ is called a Z-eigenvalue of \mathcal{A} and x is called an eigenvector of \mathcal{A} associated with λ . Let $\sigma_Z(\mathcal{A})$ be the set of all Z-eigenvalues of \mathcal{A} and $\sigma_H(\mathcal{A})$ be the set of all H-eigenvalues of \mathcal{A} . Assume that $\sigma_Z(\mathcal{A}) \neq \emptyset$, $\sigma_H(\mathcal{A}) \neq \emptyset$. Then, $\rho_Z(\mathcal{A}) = \max\{|\lambda| : \lambda \in \sigma_Z(\mathcal{A})\}$ is called the Z-spectral radius of \mathcal{A} , $\rho_H(\mathcal{A}) = \max\{|\lambda| : \lambda \in \sigma_H(\mathcal{A})\}$ the H-spectral radius of \mathcal{A} .

Recently, in [2], some bounds for the Z-spectral radius have been presented for the case when \mathcal{A} is a nonsingular H-tensor. One of these upper bounds is given in the next theorem.

THEOREM 1.1 ([2, Theorem 3.3]). Let \mathcal{A} be an *m*th order and *n*-dimensional nonsingular H-tensor with $\sigma_Z(\mathcal{A}) \neq \emptyset$. Then,

$$\rho_Z(\mathcal{A}) \le 2 \max_{1 \le i \le n} |a_{ii\dots i}|.$$

The following example is also given in [2] to illustrate Theorem 1.1.

^{*}Received by the editors on April 26, 2022. Accepted for publication on July 28, 2022. Handling Editor: Froilán Dopico. Corresponding Author: Jun He

[†]School of Mathematics, Zunyi Normal College, Zunyi, Guizhou, 563006, P.R. China (hejunfan1@163.com). Jun He is supported by Guizhou Province Natural Science Foundation in China (Qian Jiao He KY [2020]094, [2022]017), Science and Technology Foundation of Guizhou Province, China (Qian Ke He Ji Chu ZK[2021]Yi Ban 014).

[‡]School of Mathematics, Zunyi Normal College, Zunyi, Guizhou, 563006, P.R. China (2840713568@qq.com).

J. He and G. Xu

Example 1.2. Let $\mathcal{A} = (a_{ijk})$ be an third-order 2-dimension tensor with the form,

$$a_{111} = 1.1, \ a_{112} = -1, \ a_{121} = -1, \ a_{122} = 1,$$

 $a_{211} = -1, \ a_{221} = 1, \ a_{212} = 1, \ a_{222} = 1.1.$

And from Theorem 1.1, it is further claimed in [2] that:

$$\rho_Z(\mathcal{A}) \le 2 \max_{1 \le i \le n} |a_{ii\dots i}| = 2.2.$$

But in fact, by the command "zeig" in the TenEig MATLAB toolbox[5], we obtain, $\rho_Z(\mathcal{A}) = 2.3667$ in this example. That is to say, the bound in Theorem 1.1 is not true in general.

2. Upper bound for the H-spectral radius of H-tensors. Let \mathcal{A} and \mathcal{B} be two *m*th order and *n*dimensional tensors. Suppose that there exists an invertible diagonal matrix D such that $\mathcal{B} = D^{-(m-1)}\mathcal{A}D$, then \mathcal{A} and \mathcal{B} are similar. In [2], it is claimed that since \mathcal{A} and \mathcal{B} are similar, they have the same Z-spectrum. The similarity relation of tensors is also studied in [3, 4], and it is proved that \mathcal{A} and \mathcal{B} share the same Hspectrum if they are similar. It should be noted that \mathcal{A} and \mathcal{B} may have different Z-spectra even if they are similar, which can be seen in the following example.

Example 2.1. Let $\mathcal{A} = (a_{ijk})$ and $\mathcal{B} = (b_{ijk})$ be third-order 2-dimension tensors with the form,

$$a_{111} = 1, a_{222} = 1, a_{122} = 1, a_{211} = 1,$$

 $b_{111} = 1, b_{222} = 1, b_{122} = 4, b_{211} = 0.25.$

If D = diag(1,2) is an invertible diagonal matrix, then we have $\mathcal{B} = D^{-2}\mathcal{A}D$. Thus, \mathcal{A} and \mathcal{B} are similar. But in fact, by the commands "zeig" and "heig" in the TenEig MATLAB toolbox[5], we obtain $\sigma_Z(\mathcal{A}) = \{-1.4142, 1.4142\}, \sigma_Z(\mathcal{B}) = \{-1.2127, 1.2127\}, \sigma_H(\mathcal{A}) = \sigma_H(\mathcal{B}) = \{2\}.$

In the proof of Theorem 1.1([2, Theorem 3.3]), let X be an invertible diagonal matrix, then, the authors claim, $\rho_Z(\mathcal{A}) = \rho_Z(X^{-(m-1)}\mathcal{A}X)$, from the analysis above, we find that the result $\rho_Z(\mathcal{A}) = \rho_Z(X^{-(m-1)}\mathcal{A}X)$ does not hold in general. Therefore, the result of Theorem 1.1([2, Theorem 3.3]) is not true in general. Since we have $\rho_H(\mathcal{A}) = \rho_H(X^{-(m-1)}\mathcal{A}X)$ by similar arguments, as in the proof of Theorem 1.1, we can get the following upper bounds for the H-spectral radius of H-tensors.

THEOREM 2.2. Let \mathcal{A} be an *m*th order and *n*-dimensional nonsingular H-tensor with $\sigma_H(\mathcal{A}) \neq \emptyset$. Then,

$$\rho_H(\mathcal{A}) \le 2 \max_{1 \le i \le n} |a_{ii\dots i}|.$$

COROLLARY 2.3. Let \mathcal{A} be an *m*th order and *n*-dimensional nonsingular H-tensor with $\sigma_H(\mathcal{A}) \neq \emptyset$. Then,

$$\rho_H(\mathcal{A}) \le 2\min\left\{R_i(\mathcal{A}), \max_{1\le i\le n} |a_{ii\dots i}|\right\}.$$

REFERENCES

^[1] L. Qi. Eigenvalues of a real supersymmetric tensor. J. Symbolic Comput., 40:1302–1324, 2005.

^[2] X. Wang and Y. Wei. Bounds for eigenvalues of nonsingular H-tensor. Electron. J. Linear Algebra, 29:3–16, 2015.

485

A note on bounds for eigenvalues of nonsingular H-tensors

- [3] P. Yuan and L. You. On the similarity of tensors. Linear Algebra Appl., 458:534-541, 2014.
- Y. Yang and Q. Yang. Further results for Perron-Frobenius theorem for nonnegative tensors II. SIAM. J. Matrix Anal. Appl., 32:1236–1250, 2011.
- [5] L. Chen, L. Han, T. Li, and L. Zhou. TenEig-Tensor eigenpairs solver. https://users.math.msu.edu/users/chenlipi/TenEig. html