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GROUP INVERSES OF MATRICES OF DIRECTED TREES∗

R. NANDI† AND K.C. SIVAKUMAR†

Abstract. A new class of directed trees is introduced. A formula for the group inverse of the matrices associated with any

tree belonging to this class is obtained. This answers affirmatively, a conjecture of Catral et al., for this new class.
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1. Introduction. Let us start by recalling the definition of the group inverse of a matrix, the object

of primary importance in this article. For a real n×n matrix A, the group inverse, if it exists, is the unique

matrix X that satisfies the equations AXA = A,XAX = X, and AX = XA. Such an X is denoted by A#.

Any matrixX that satisfies the first equation is called an inner inverse of A, while any matrixX that satisfies

the second equation will be called an outer inverse. For a symmetric matrix A, always A# exists and it is

easy to show (and as was observed in [13]) that, if a symmetric matrix X satisfies the equations AXA = A

and AX = XA, then X = A#. Let us recall that for a real rectangular matrix A, the Moore–Penrose inverse

of A is the unique matrix A† that satisfies the equations AA†A = A, A†AA† = A†, (AA†)T = AA†, and

(A†A)T = A†A. We refer the reader to [4] for more details on these notions of generalized inverses and

Moore–Penrose inverses.

Let us recall some notation from [8]. Let A = (aij) be an n × n matrix with real entries. The digraph

D(A) = (V,E) corresponding to A is the directed graph whose vertex set is V = {1, 2, . . . , n} and whose edge

set E is described by the requirement that, (i, j) ∈ E iff aij ̸= 0. For m ≥ 1, a sequence (i1, i2, . . . , im, im+1)

of distinct vertices with edges (i1, i2), (i2, i3), . . . , (im, im+1) in E is called a path of length m from i1
to im+1 in D(A). For m ≥ 2, a sequence (i1, i2, . . . , im, i1) with distinct vertices i1, i2, . . . , im, where

(i1, i2), (i2, i3), . . . , (im, i1) ∈ E, is called an m-cycle (a cycle of length m) in D(A). Digraph D(A) cor-

responding to a matrix A is called a tree graph if it is strongly connected, and all of its cycles have length 2.

For r even, a set of r
2 disjoint 2-cycles in D(A) given by {(i1, i2, i1), (i3, i4, i3), . . . , (ir−1, ir, ir−1)} is called

a matching of size r, and the product ai1,i2ai2,i1ai3,i4ai4,i3 . . . air−1,irair,ir−1
is called a matching product. If

this set of 2-cycles has a maximum cardinality, then the matching is referred to as a maximum matching

and the matching product is then called a maximum matching product. The sum of all maximum matching

products in D(A) is denoted by ∆A. Let us now recall a characterization for the existence of the group

inverse.

Theorem 1.1 ([8, Proposition 1.1]). Let A be an n×n matrix with a tree graph D(A). Then, the group

inverse A# exists if and only if ∆A ̸= 0.

This result is interesting from the perspective of determining if the group inverse of a matrix exists,

purely based on the structure of the digraph D(A). Further, a formula for the entries of the group inverse
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of a matrix A with a path graph D(A) was derived, in terms of path length, sum of all maximal matchings,

and the number ∆A [8, Theorem 3.7].

Reverting back to the general discussion, a matching is said to be a perfect matching if it covers all the

vertices of D(A). For a path (i1, i2, . . . , im, im+1), the product ai1,i2ai2,i3ai3,i4 . . . aim−1,imaim,im+1
is said to

be the path product, denoted by P (i1, im+1). For a cycle (i, j, i) in D(A), the product aijaji is called the

cycle product. A sequence of m 2-cycles ((i1, i2, i1), (i2, i3, i2), . . . , (im, im+1, im)) with m+1 distinct vertices

i1, i2, . . . , im+1 in D(A) is called a cycle chain from i1 to im+1 of length m and denoted by Cm(i1, im+1).

Suppose, D(A) is a tree graph. For any two vertices i and j in D(A), there is a unique cycle chain Cl(i, j)

for some nonnegative integer l. A cycle chain Cl(i, j) is said to be an alternating cycle chain with respect

to a maximum matching M if cycles of Cl(i, j) alternatively belong to M and M c, with the condition that

both the first and the last cycles of Cl(i, j) belong to M .

A cycle (i, j, i) is said to be incident to i as well as j in D(A). A vertex i is called a pendant vertex if

it is incident to only one 2-cycle and non-pendant vertex if it is incident to more than one 2-cycle in D(A).

A cycle (i, j, i) will be called a pendant cycle if at least one vertex i or j is pendant in D(A), while a cycle

which is not pendant will be called a non-pendant cycle. A pair of vertices i, j is said to be adjacent to each

other if there is a cycle (i, j, i) in D(A).

Before we define a new class of directed trees, we recall some more terminology for a tree graph D(A).

For arbitrary vertices, i and j in D(A) denote M(i, j) to be the set of all maximum matchings M in D(A)

such that Cm(i, j) is an alternating cycle chain with respect to M . Clearly, M(i, j) = M(j, i). A necessary

condition for the set M(i, j) to be non-empty is that the length of the path from i to j be odd. If (i, j, i) is a

2-cycle of some maximum matching, then M(i, j) is non-empty. Two distinct vertices i and j will be called

maximally matchable if M(i, j) ̸= ϕ.

Further, for any maximally matchable vertices i, j and a maximum matching M ∈ M(i, j), let βi,j(M)

denote the product of all cycle product, ranging over all the cycles of M that are not contained in the

unique cycle chain Cm(i, j) in D(A) (product over an empty set is considered to be equal to 1). Since

M(i, j) = M(j, i), note that βi,j(M) = βj,i(M). For a maximum matching M in D(A), η(M) denote the

maximum matching product. Set

βij =

{
(−1)

m−1
2 P (i, j) if i, j are maximally matchable,

0 if i, j are not maximally matchable.

and

µij = βij ·
∑

M∈M(i,j)

βi,j(M).

It follows µij = 0 if i, j are not maximally matchable. This includes the case i = j.

Let us now introduce a new class of graphs.

Definition 1.2. Let D denote the set of all directed trees D such that each non-pendant vertex of D is

adjacent to at least one pendant vertex of D.

Example 1.3. It is clear that the tree digraph D1 ∈ D, (Fig. 1), while D2 /∈ D (Fig. 2). The non-

pendant vertex 3 (in D2) is not adjacent to any pendant vertex.
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Figure 1. D1.
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Figure 2. D2.

Here is the main result of this article:

Theorem 1.4. Let A be an n×n real matrix with a tree graph D(A) ∈ D and assume that ∆A ̸= 0. Let

A# = (αij) and let µij be defined as above. Then, αij =
µij

∆A
.

An interesting problem in matrix theory is to provide a formula for the inverse or the group inverse of

a matrix, based on its graph structure. We refer the reader to the following articles, on determining the

inverse [1, 2, 3, 12] and the group inverse [5, 7, 8, 9, 10, 13].

In [8], a formula for the group inverse of a 2×2 block matrix with bipartite digraph as well as a graphical

description of the group inverse of a matrix A with path digraph D(A) are presented. In the work [9], a

necessary and sufficient condition for the existence of the group inverse of a special bipartite matrix is given

and a formula is obtained for the group inverse in terms of block submatrices. A graphical description for

the entries of the group inverse of a matrix A with directed broom tree D(A) is presented.

In a recent work, the authors of [13] derived a formula for the entries of the group inverse of the adjacency

matrix of an undirected weighted tree. The entries are given in terms of alternating paths and maximum
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matchings. A group inverse formula for the adjacency matrix of singular undirected cycle appeared in [11];

it can be obtained from [10, Theorem 5.5], too.

Let us present a brief overview of the main results of this article. In [8], the authors proposed a conjecture

for the entries of the group inverse of a matrix with tree graph. We show that the conjecture is true for the

class of trees D, introduced here. This is presented in Theorem 2.11, achieved via a formula for the group

inverse of matrices whose digraphs belong to D proved in Theorem 1.4. Extending another result of [8],

we show the zero–nonzero pattern of the group inverse (when it exists) and the Moore–Penrose inverse of

matrices A, for which D(A) ∈ D.

2. Proof of the main result. Let us recall that a real square matrix A = (aij) is called combinatorially

symmetric if aij = 0 iff aji = 0. Trivially, any symmetric matrix is combinatorially symmetric. Let A be an

n × n matrix with real entries such that D(A) is a directed tree. Let aij ̸= 0. If aji = 0, then there is no

path from j to i in D(A), a contradiction, since D(A) is strongly connected. Thus, A is a combinatorially

symmetric matrix. It also follows that if (i, j) is an edge in D(A), then there is a 2-cycle (i, j, i) in D(A).

Further, since D(A) has only 2-cycles, the diagonals of A are zero.

The first result identifies a matrix that commutes with A (for which D(A) is a tree); later, this is shown

to satisfy further properties, under an additional assumption. It is pertinent to point to the fact that the

proof of this result is a modification of the proof of [13, Proposition 2], which considers the case when A is

symmetric.

Theorem 2.1. Let A = (aij) be an n × n real matrix such that D(A) is a tree. Let ∆A ̸= 0. Let

B = (bij) be the matrix given by bij =
µij

∆A
, 1 ≤ i, j ≤ n. Then, AB = BA.

Proof. Let A = (aij). Then, AB = BA has following equivalent form:

(2.1)

n∑
k=1

aikµkj =

n∑
l=1

µilalj for every i, j ∈ {1, 2, . . . n}.

Note that (2.1) is vacuously true if the length of the path from i to j is odd. Now, we discuss the case i = j.

Let {i1, i2, . . . , ir} ∈ {1, 2, . . . , n} be such that for any s ∈ {1, 2, . . . , r}, ai,is ̸= 0 and the cycle (i, is, i) belongs

to some maximum matching inD(A). SinceM(i, j) = M(j, i) and βi,j(M) = βj,i(M), the expressions on both

the sides of equation (2.1) are equal, and they equal the common value
∑r

s=1

(
aiisaisi

∑
M∈M(is,i)

βis,i
(M)

)
.

Let M(i) be the set of all maximum matchings where i is matched. Then, this common value is equal to∑
M∈M(i) η(M).

Assume therefore, that the length of the path from i to j in D(A) is even (say m). Let (i, p, . . . , q, j)

be the unique path from i to j in D(A). Let M(i, j̃) be the set of maximum matchings M ∈ M(i, q) not

containing j, so that

(2.2) M(i, q) = ∪t∈N(j)\{q}M(i, t) ∪M(i, j̃).

By using (2.1), (2.2), and the definition of µij , we obtain

µiqaqj = aqj

βiq

∑
M∈M(i,q)

βi,q(M)


= aqjβiq

 ∑
t∈N(j)\{q}

ajtatj
∑

M∈M(i,t)

βi,t(M) +
∑

M∈M(i,j̃)

βi,q(M)
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= −
∑

t∈N(j)\{q}

atj

βit

∑
M∈M(i,t)

βi,t(M)

+ aqjβiq

∑
M∈M(i,j̃)

βi,q(M)

= −
∑

t∈N(j)\{q}

atjµit + aqjβiq

∑
M∈M(i,j̃)

βi,q(M).

The above calculation implies that

(2.3)

n∑
l=1

µilalj = µiqaqj +
∑

l∈N(j)\{q}

µilalj = aqjβiq

∑
M∈M(i,j̃)

βi,q(M).

In an entirely similar manner, by interchanging the roles of i and j (as well as p and q), and letting M(j, ĩ)

denote the set of all M ∈ M(j, p) not containing i, one obtains

(2.4)

n∑
k=1

aikµkj = aipβpj

∑
M∈M(j,̃i)

βj,p(M).

Since aqjβiq = aipβpj , (2.3) and (2.4) imply that (2.1) holds if and only if

(2.5)
∑

M∈M(i,j̃)

βi,q(M) =
∑

M∈M(j,̃i)

βj,p(M).

Note that, there is a bijection f : M(i, j̃) → M(j, ĩ) which transforms every maximum matching M ∈ M(i, j̃)

of D(A) to a maximum matching Mf ∈ M(j, ĩ) by trading the matched cycles on the unique cycle chain

Cm(i, j) of D(A) with the unmatched cycles. By its very definition, it is clear that this bijection satisfies

βi,q(M) = βj,p(M
f ). This completes the proof of the validity of (2.1).

Recall that an undirected corona tree is a tree obtained by attaching a new pendant vertex to each vertex

of a given undirected tree. Let {i1, i2, . . . , is} ⊆ V (D(A)). Then, D(A)\{i1, i2, . . . , is} is the forest obtained

from D(A) by deleting the vertices {i1, i2, . . . , is} together with their incident 2-cycles.

In the next result, we identify a certain property that is satisfied by all the members of D. This will be
useful in further discussions.

Proposition 2.2. Let D ∈ D. Then, no non-pendant cycle can belong to a maximum matching of D.

Proof. If the underlying graph of D is a corona tree, then it has a perfect matching and each matching

cycle is a pendant cycle. Now, we consider the case where the underlying graph of D is not a corona tree.

In that case, there is at least one non-pendant vertex which is adjacent to at least two pendant vertices in

D. We prove the assertion by induction on the number of vertices in D.

The smallest tree in D is directed star K1,2, and every maximum matching has only pendant cycles. Let

D ∈ D with n vertices. Let the statement be true for any D ∈ D having less than n vertices. Let i be a

non-pendant vertex adjacent to s pendant vertices {i1, i2, . . . , is} in D. Let C be an arbitrary non-pendant

cycle contained in a maximum matching M in D. Then, we show that this leads to a contradiction.

Case (i): C is incident to i. Then, none of 2-cycles (i, ip, i), p ∈ {1, 2, . . . , s} belongs to M . So, M will

also be a maximum matching of the tree D\{i1} ∈ D. This contradicts the fact that a non-pendant cycle

belongs to a maximum matching in D\{i1}.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 617-631, September 2022.

R. Nandi and K.C. Sivakumar 622

Case (ii): C is not incident to vertex i. Then, one of the 2-cycles (i, ip, i), p ∈ {1, 2, . . . , s} belongs to

M ; otherwise, M will not be maximum. Let (i, ip, i) belong to M for some p ∈ {1, 2, . . . , s}. Then, M will

also be a maximum matching of the tree D\{iq} for some q ̸= p, which again contradicts the fact that a

non-pendant cycle belongs to a maximum matching in D\{iq}.

The proof is complete.

Corollary 2.3. Let D ∈ D. Then, the length of any alternating cycle chain is at most three.

Proof. Suppose D has an alternating cycle chain C of length at least five. Then, C must have at least

one non-pendant maximum matching cycle, a contradiction to Proposition 2.2.

Remark 2.4. Let D ∈ D have k non-pendant vertices. Then, a maximum matching of D has a set of

k pendant cycles incident to k non-pendant vertices. So, the number of edges in a maximum matching is

always k. Note that, every non-pendant vertex is matched in any maximum matching of D.

Remark 2.5. Let D ∈ D. Then, both the end points of a length three alternating cycle chain are pendant

vertices and a length one alternating cycle chain is nothing but a pendant cycle.

In the next result, we present a graph theoretic interpretation to the product AB, where A and B are

as defined in Theorem 2.1, with D(A) ∈ D.

Theorem 2.6. Let A and B satisfy the hypotheses of Theorem 2.1. Let D(A) ∈ D and let M(i) be the

set of all maximum matchings, where the vertex i is matched. Then,

(AB)ii =

{
1 if i is a non-pendant vertex,∑

M∈M(i) η(M)

∆A
if i is a pendant vertex

while for i ̸= j,

(AB)ij =


aqjµiq

∆A
if i, j are pendant vertices and

have a common neighbor q,

0 otherwise.

Proof. By Theorem 2.1, it is clear that

(AB)ii =
1

∆A

∑
M∈M(i)

η(M).

By Remark 2.4, a non-pendant vertex is matched in every maximum matching, and so for a non-pendant

vertex i, (AB)ii =
1

∆A
·∆A = 1.

Now, let i ̸= j. Let (i, p, . . . , q, j) be the unique path from i to j in D(A). If the length of this path is

odd, then (AB)ij = 0. If the length is even, then, again from Theorem 2.1,

(AB)ij =
1

∆A
· aqjβiq

∑
M∈M(i,j̃)

βi,q(M),

where M(i, j̃) is the set of all maximum matchings M ∈ M(i, q) not containing j. We consider four mutually

exclusive and collective exhaustive cases.

Case (i): i is a non-pendant vertex. Then, q is a non-pendant vertex, irrespective of whether j is a pendant

or a non-pendant vertex. By Remark 2.5, there is no alternating path between any two non-pendant vertex

in D(A) and so βiq = 0. So, (AB)ij = 0.
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Case (ii): i is pendant and j is non-pendant. Again, by Remark 2.4, since each non-pendant vertex is

matched in every maximum matching of D(A), M(i, j̃) = ϕ. So, (AB)ij = 0.

Case (iii): i, j are pendant vertices having no common neighbor. Note that, to get a nonzero (AB)ij , the

length of the path from i to j should be at least 4. Since the last cycle of the cycle chain Cm(i, q) for some

odd m ≥ 3 is always a non-pendant cycle, by Remark 2.5, Cm(i, q) is not an alternating cycle chain with

respect to any maximum matching in D(A). So, βiq = 0, which in turn, implies that (AB)ij = 0.

Case (iv): i, j are pendant vertices having a common neighbor. Let q be such a common neighbor. Then,

(i, q, i) and (j, q, j) cannot simultaneously be present in a maximum matching. So, M(i, j̃) = M(i, q) and

(AB)ij =
1

∆A
· aqjβiq

∑
M∈M(i,q) βi,q(M) =

aqjµiq

∆A
.

Next, we show that B is an outer inverse of A.

Theorem 2.7. Let A and B satisfy the hypotheses of Theorem 2.6. Then, BAB = B.

Proof. By Theorem 2.1, if we prove ABB = B, then we are done. This is equivalent to proving that,

(2.6)

n∑
k=1

(
1

∆A

n∑
l=1

ailµlk

)
µkj =

{
µij , if i, j are maximally matchable,

0, otherwise.

Fix j and let b be the left hand side of (2.6). Then, b can be written in the form b = bi + b̃i, where

bi =

(
1

∆A

n∑
l=1

ailµli

)
µij and b̃i =

n∑
k=1
k ̸=i

(
1

∆A

n∑
l=1

ailµlk

)
µkj .

First assume that i, j are maximally matchable. Then, by Corollary 2.3, the length of the path from i to j

is at most three.

Case (i): The length of the path from i to j is one.

Subcase (i) : i is a non-pendant vertex. Then, by Corollary 2.6, the term in the parenthesis in bi is 1 and

the term in the parenthesis in b̃i is zero. So, b = µij .

Subcase (ii): i is a pendant vertex. Now, since the length of the path from i to j is 1, j must be a

non-pendant vertex. Let M be the set of all maximum matchings and M(i) denote the set of all maximum

matchings in which the vertex i is matched. Let {i1, i2, . . . , is} be the set of all pendant vertices other than

i which have a common neighbor j. Then, M = M(i) ∪s
m=1 M(im), and they are mutually disjoint sets of

maximum matchings. By Corollary 2.6, for i ̸= k, (AB)ik can be nonzero only when i and k are pendant

vertices and have a common neighbor. So, bi =
∑

M∈M(i) η(M)

∆A
µij and

b̃i =

s∑
m=1

(
1

∆A

n∑
l=1

ailµlim

)
µimj

=

s∑
m=1

(
ajimµij

∆A

)
µimj

=
µij

∆A

s∑
m=1

ajim

βimj

∑
M∈M(im,j)

βim,j(M)
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=
µij

∆A

s∑
m=1

ajimaimj

∑
M∈M(im,j)

βim,j(M)


=

µij

∆A

s∑
m=1

∑
M∈M(im)

η(M).

Thus, b =
µij

∆A

(∑
M∈M(i) η(M) +

∑s
m=1

∑
M∈M(im) η(M)

)
=

µij

∆A
·∆A = µij .

Case (ii): The length of the path from i to j is three. Since i and j are maximally matchable, i and j

must be pendant vertices. Let q be the non-pendant vertex adjacent to i and {i1, i2, . . . , is} be the set of

all pendant vertices adjacent to q, other than i. Since {i, i1, i2, . . . , is} have common neighbor q, for all

m ∈ {1, 2, . . . , s},

(2.7)
∑

M∈M(i,q)

βi,q(M) =
∑

M∈M(im,q)

βim,q(M)

and

(2.8)
∑

M∈M(i,j)

βi,j(M) =
∑

M∈M(im,j)

βim,j(M).

Let (i, q, z, j) be the unique path from i to j. Now, by (2.7), (2.8), Corollary 2.6 and using the mutual

disjointness of the maximum matchings M(i),M(i1), . . . ,M(is), we obtain bi =
∑

M∈M(i) η(M)

∆A
µij and

b̃i =

s∑
m=1

(
1

∆A

n∑
l=1

ailµlim

)
µimj

=

s∑
m=1

(
aqimµiq

∆A

)
µimj

=
1

∆A

s∑
m=1

aqim

βiq

∑
M∈M(i,q)

βi,q(M)

βimj

∑
M∈M(im,j)

βim,j(M)


=

1

∆A

s∑
m=1

aqim

aiq
∑

M∈M(im,q)

βim,q(M)

−aimqaqzazj
∑

M∈M(i,j)

βi,j(M)


=

1

∆A

s∑
m=1

aimqaqim
∑

M∈M(im,q)

βim,q(M)

−aiqaqzazj
∑

M∈M(i,j)

βi,j(M)


=

1

∆A

s∑
m=1

 ∑
M∈M(im)

η(M)

βij

∑
M∈M(i,j)

βi,j(M)


=

µij

∆A

s∑
m=1

∑
M∈M(im)

η(M).

So, b = bi + b̃i =
µij

∆A
·∆A = µij .

Next, we discuss the case when i and j are not maximally matchable. If the length of the path from i

to j is even, then in (2.6), either the lengths of the paths from i to k as well as length of the path from k to
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j are both even or both odd. In the case of the former, µkj is zero and in the latter case, the term in the

parenthesis is zero. So, (2.6) is vacuously true when the length of the path from i to j is even. Since i, j are

not maximally matchable, µij = 0. So, b = b̃i. Now, we consider the case when the length of the path from

i to j is odd.

Case (i): i is a non-pendant vertex. By Corollary 2.6, the term in the parenthesis in b̃i is 0. Thus, b = 0.

Case (ii): i is a pendant vertex. Let q be the non-pendant vertex adjacent to i and {i1, i2, . . . , is} be the

set of all pendant vertices that are adjacent to q other than i. As argued earlier,

b̃i =

s∑
m=1

(
1

∆A

n∑
l=1

ailµlim

)
µimj .

Since i, j are not maximally matchable, for all m ∈ {1, 2, . . . , s}, im and j are also not maximally matchable.

Thus, b = b̃i = 0, completing the proof.

The next result shows that B is an inner inverse of A.

Theorem 2.8. Let A and B satisfy the hypotheses of Theorem 2.6. Then, ABA = A.

Proof. To show that ABA = A, we show

(2.9)

n∑
k=1

(
1

∆A

n∑
l=1

ailµlk

)
akj =

{
aij , when (i, j) is an edge

0, when (i, j) is not an edge.

Let c be the left-hand side of (2.9). Then, c can be written in the form c = ci + c̃i, where

ci =

(
1

∆A

n∑
l=1

ailµli

)
aij and c̃i =

n∑
k=1
k ̸=i

(
1

∆A

n∑
l=1

ailµlk

)
akj .

First, we assume that (i, j) is an edge. Then, we are in two cases.

Case (i): i is a non-pendant vertex. Then, by Corollary 2.6, the terms in the parenthesis in ci and c̃i are 1

and 0, respectively. So, c = aij .

Case (ii): i is a pendant vertex. Since (i, j) is an edge and D(A) ∈ D, j must be a non-pendant vertex. Let

M and M(i) be the set of all maximum matchings in D(A), and the set of all maximum matchings in which

vertex i is matched, respectively. Let {i1, i2, . . . , is} be the set of all pendant vertices other than i, which

have a common neighbor j. Then, M = M(i) ∪s
m=1 M(im), a mutually disjoint union. Again, by Corollary

2.6 and (2.7), ci =
∑

M∈M(i) η(M)

∆A
aij and

c̃i =

s∑
m=1

(
1

∆A

n∑
l=1

ailµlim

)
aimj

=

s∑
m=1

(
ajimµij

∆A

)
aimj

=
1

∆A

s∑
m=1

ajimaimj

βij

∑
M∈M(i,j)

βi,j(M)


=

1

∆A

s∑
m=1

ajimaimj

aij
∑

M∈M(im,j)

βim,j(M)
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=
aij
∆A

s∑
m=1

ajimaimj

∑
M∈M(im,j)

βim,j(M)


=

aij
∆A

s∑
m=1

∑
M∈M(im)

η(M).

Thus, c =
aij

∆A
(
∑

M∈M(i) η(M) +
∑s

m=1

∑
M∈M(im) η(M)) =

aij

∆A
·∆A = aij .

Next, let (i, j) be not an edge. Then, aij = 0. One has (AB)ik = 0 when the length of the path from i

to k is odd and so, (2.9) is vacuously true when the length of the path from i to j is even. So, c = c̃i.

Case (i): i is a non-pendant vertex. Once again, by Corollary 2.6, the term in the parenthesis in c̃i is 0.

Thus, c = 0.

Case (ii): i is a pendant vertex. Let q be the non-pendant vertex adjacent to i and {i1, i2, . . . , is} be the

set of all pendant vertices that are adjacent to q other than the vertex i. Using Corollary 2.6, we obtain

c̃i =

s∑
m=1

(
1

∆A

n∑
l=1

ailµlim

)
aimj .

Since (i, j) is not an edge, q ̸= j. So, for all m ∈ {1, 2, . . . , s}, aimj = 0. Thus, c = c̃i = 0, completing the

proof.

Proof of Theorem 1.4:

Follows from the conclusions of Theorems 2.1, 2.7, and 2.8.

Here is an illustration.

Example 2.9. Consider the matrix

A =



0 1 0 0 0 0 0 0 0

−1 0 2 0 0 0 0 0 0

0 −1 0 1 2 −2 0 0 0

0 0 1 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0

0 0 1 0 0 0 1 −1 2

0 0 0 0 0 −1 0 0 0

0 0 0 0 0 −2 0 0 0

0 0 0 0 0 −1 0 0 0


.

Then, D(A) is the digraph D1 in Fig. 1. Here, all the maximum matchings of D(A) are given by:

M1 = {(1, 2, 1), (3, 4, 3), (6, 7, 6)}

M2 = {(1, 2, 1), (3, 4, 3), (6, 9, 6)}

M3 = {(1, 2, 1), (3, 4, 3), (6, 8, 6)}

M4 = {(1, 2, 1), (3, 5, 3), (6, 7, 6)}

M5 = {(1, 2, 1), (3, 5, 3), (6, 7, 9)}

M6 = {(1, 2, 1), (3, 5, 3), (6, 7, 8)}.
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So, ∆A = 1+2+(−2)+4+8+(−8) = 5. Let A# = (αij). Let us compute α15. First, P (1, 5) = 1 ·2 ·2 = 4.

Note that C3(1, 5) cycle chain is alternating with respect to the maximum matchings M4, M5, and M6. Thus,

β15 = (−1) · 4 = −4, β1,5(M4) = 1 · (−1) = −1, β1,5(M5) = 2 · (−1) = −2 and β1,5(M6) = (−1) · (−2) = 2.

So,

µ15 = (−4) · (−1− 2 + 2) = 4.

Therefore, α15 = 4
5 .

An n× n real matrix A = (aij) is said to be an irreducible matrix if the corresponding directed graph D(A)

is strongly connected. An irreducible matrix is nearly reducible if it is reducible whenever any nonzero entry

is set to zero [6, Section 3.3].

Consider a tree graph D(A), for an n × n real matrix A = (aij). Then, the term rank of A is twice of

the number of 2-cycles in a maximum matching in D(A). For a tree graph D(A), the matrix A is nearly

reducible, so the term rank of A is equal to the rank of A [5, Theorem 4.5].

A path graph, denoted by p(i1, in) (which is nothing but a cycle chain from i1 to in) on n vertices

i1, i2, · · · , in which consists of the path p = (i1, i2, · · · , in) from i1 to in and its reversal (i.e., the path

obtained by reversing all of the arcs in p). Let γ(i1, in) denote the sum of all maximum matchings not on

the path subgraph p(i1, in) of D(A). Consider the following conjecture, stated in [8]. This was proposed

after proving that it holds for the special class of matrices A with the property that D(A) are path graphs.

Conjecture 2.10. [8, Conjecture 5.1] Let A be a singular matrix with a tree graph D(A). Let r be the

term rank of A and ∆A ̸= 0. Then, A# = (αij) exists and

αij =


1

∆A
(−1)sP (i, j)γ(i, j) if the path in D(A) from i to j is of length 2s+ 1, s ≥ 0

and the matrix associated with D(A)\p(i, j) has
term rank r − 2(s+ 1),

0 otherwise.

The second main result of this article shows that the above conjecture holds for matrices A for which

D(A) ∈ D with ∆A ̸= 0. Thus, the given conjecture is true for more classes of graphs than path graphs.

Theorem 2.11. Let A be a real square matrix of order n such that D(A) ∈ D with ∆A ̸= 0. Then,

A# = (αij) exists, where αij is as given above.

Proof. By Theorem 1.4,

αij =


1

∆A
(−1)sP (i, j)

∑
M∈M(i,j) βi,j(M) if i, j are maximally matchable and 2s+ 1

is the length of the path from i to j,

0 otherwise.

We show that the description for αij as in Conjecture 2.10, and the one given above are equivalent. The

proof of the theorem then follows.

Suppose that i and j are maximally matchable and 2s+1 is the length of the path from i to j. Then, by

definition, γ(i, j) =
∑

M∈M(i,j) βi,j(M). Suppose A has term rank r, i.e., the number of cycles in a maximum

matching of D(A) is r
2 . The term rank of a matrix associated with the cycle chain C2s+1(i, j) is 2s+ 2 due

to the fact that an alternating cycle chain C2s+1(i, j) contains exactly s + 1 non-pendant vertices. Now,
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D(A)\Cm(i, j) is a forest, wherein each nontrivial component either belongs to D or is just a 2-cycle. So,

the number of cycles in a maximum matching of D(A)\C2s+1(i, j) is
r
2 − (s+ 1). Thus, the term rank of a

matrix associated with D(A)\C2s+1(i, j) is r − 2(s+ 1).

Next, for the converse part let i and j be not maximally matchable. Then, C2s+1(i, j) contains at least

s + 2 non-pendant vertices. Again, since D(A)\C2s+1(i, j) is a forest wherein each nontrivial component

either belongs to D or is just a 2-cycle, the number of cycles in a maximum matching in D(A)\C2s+1(i, j)

is at most r
2 − 2s+4

2 . Thus, the term rank of a matrix associated with D(A)\C2s+1(i, j) will be at most

r − (2s+ 4) which is less than r − (2s+ 2).

Observe that if the matrix associated with D(A)\C2s+1(i, j) does not have rank r − 2(s + 1), then the

two odd distance vertices i and j are not maximally matchable.

Corollary 2.12. Let A = (aij) be an n × n real matrix with tree graph D(A) ∈ D and assume that

∆A ̸= 0. If i and j are maximally matchable and A# = (αij), then
∑

M∈M(i,j) βi,j(M) ̸= 0, so that αij ̸= 0.

Proof. Since D(A) ∈ D, the length of the alternating cycle chain from i to j is at most three. Let M
denote the set of all maximum matchings in D(A). Since the length of a cycle is either 1 or 3, we have the

following two cases:

Case (i): The length of the alternating cycle chain is 1, so that (i, j, i) is a pendant cycle. Without loss

of generality let i be the pendant vertex. Let {i1(= i), i2, . . . , is} be the set of pendant vertices which have

j, the non-pendant vertex, as a common neighbor. Then, M = ∪s
x=1M(ix, j), a disjoint union. Now, using

(2.7),

∆A =

s∑
x=1

∑
M∈M(ix,j)

η(M)

=

s∑
x=1

aixjajix
∑

M∈M(ix,j)

βix,j
(M)

=

s∑
x=1

aixjajix
∑

M∈M(i,j)

βi,j(M)

=

 ∑
M∈M(i,j)

βi,j(M)

 s∑
x=1

aixjajix .

Since ∆A ̸= 0,
∑

M∈M(i,j) βi,j(M) ̸= 0 and so, αij ̸= 0.

Case (ii): The length of the alternating cycle chain is 3. Let (i, q, p, j) be the path from i to j. So, i and j are

pendant, while p and q are non-pendant vertices. Let {i1(= i), i2, . . . , is} and {j1(= j), j2, . . . , jt} be the set

of all pendant vertices having q and p as a common neighbor, respectively. Then, M = ∪s
x=1 ∪t

y=1 M(ix, jy),

again a mutually disjoint union. Now, using (2.8), we obtain

∆A =

s∑
x=1

t∑
y=1

∑
M∈M(ix,jy)

η(M)

=

s∑
x=1

t∑
y=1

(aixqaqix)(ajypapjy )
∑

M∈M(ix,jy)

βix,jy
(M)
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=

s∑
x=1

t∑
y=1

(aixqaqix)(ajypapjy )
∑

M∈M(i,j)

βi,j(M)

=

 ∑
M∈M(i,j)

βi,j(M)

 s∑
x=1

t∑
y=1

(aixqaqix)(ajypapjy ).

Again, since ∆A ̸= 0,
∑

M∈M(i,j) βi,j(M) ̸= 0 and so, αij ̸= 0.

3. Relation between A# and A† for a matrix A with D(A) ∈ D . Now, we will use some notation

from [5]. Let U = {u1, u2, . . . , un} and V = {v1, v2, . . . , vn} be disjoint sets. For an n× n matrix A = (aij),

B(A) is the bipartite graph with vertices U ∪V and edges {{ui, vj} : ui ∈ U, vj ∈ V, aij ̸= 0}. For k ≥ 1 and

any bipartite graph B, let Mk(B) denotes the family of subsets of k distinct edges of B such that no two of

which are adjacent.

Let A be a matrix with acyclic bipartite graph B(A) and rank(A) ≥ 2, and let A† = (αij). Then, the

following is shown [5, Proposition 2.8]. Let {ui, vj} be an edge in B(A). Then, {uj , vi} is an edge in B(A†) if

and only if {ui, vj} belongs to some member in Mr(B(A)). Further, if {ui, vj} is contained in every member

in Mr(B(A)), then αji =
1
aij

.

Interestingly, we have the following analog of the second part of [5, Proposition 2.8], for the class of trees

D.

Corollary 3.1. Let A = (aij) be an n × n real matrix with tree graph D(A) ∈ D and assume that

∆A ̸= 0. If (i, j, i) is a cycle that belongs to each maximum matching of D(A) and A# = (αij), then

αij =
1
aji

and αji =
1
aij

.

Proof. Let M be the set of all maximum matching of D(A). Since the cycle (i, j, i) belongs to each

maximum matching of D(A), (i, j, i) is an alternating cycle chain of length one and M = M(i, j) = M(j, i).

Now,

αij =
βij ·

∑
M∈M(i,j) βi,j(M)

∆A
=

∑
M∈M(i,j) ajiaijβi,j(M)

aji∆A
=

∑
M∈M η(M)

aji∆A
=

1

aji

and

αji =
βji ·

∑
M∈M(j,i) βj,i(M)

∆A
=

∑
M∈M(j,i) aijajiβj,i(M)

aij∆A
=

∑
M∈M η(M)

aij∆A
=

1

aij
.

Let A be a square matrix with path graph D(A) and ∆A ̸= 0. Let γ(i, j) be defined as in the paragraph

just before Conjecture 2.10. It is shown in [8, Theorem 4.1 (iii)] that if γ(i, j) ̸= 0, then the zero–nonzero

sign patterns of A# and A† are the same. Observe that, for a maximally matchable pair i, j in D(A) ∈ D,
it follows that γ(i, j) =

∑
M∈M(i,j) βi,j(M). Further, as is shown in Corollary 2.12,

∑
M∈M(i,j) βi,j(M) ̸= 0.

Thus, the next result is an extension of the corresponding result of [8], stated earlier, for any matrix A

satisfying the property that D(A) ∈ D.

Theorem 3.2. Let A = (aij) be an n×n real matrix with tree graph D(A) ∈ D and assume that ∆A ̸= 0.

Let A# = (αij) and A† = (λij). Then, αij ̸= 0 if and only if λij ̸= 0.

Proof. Let G(A) be the underlying graph of D(A). Then, B(A) is a forest with two components and

each component is isomorphic to G(A). Note that, i is a pendant vertex in D(A) iff ui and vi are pendant

vertices in B(A); a similar statement holds for non-pendant vertices. Suppose the term rank of A is r. Then,
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Mr(B(A)) is non-empty and Ml(B(A)) = ϕ, for all l > r. For two distinct vertices i, j let the cycle chain

Cq(i, j) in D(A) be ((i, k2, i), (k2, k3, k2), . . . , (kq, j, kq)). By Corollary 2.12, for i ̸= j, αij ̸= 0 and

(3.1) αij =
1

∆A
(−1)

q−1
2 ai,k2

ak2,k3
ak3,k4

· · · akq−1,kq
akq,j

∑
M∈M(i,j)

βi,j(M),

if and only if i and j are maximally matchable in D(A). From [5, Corollary 2.7], λji ̸= 0 if and only if B(A)

contains a path P from ui to vj

ui → vk2
→ uk3

→ vk4
→ · · · → vkq−1

→ ukq
→ vj

of odd length q and Mr− q+1
2
(B(A)) has at least one element with r − q+1

2 edges none of which is adjacent

to P . Furthermore, if such a path exists, then λji has the same sign as

(3.2) (−1)
q−1
2 ai,k2ak3,k2ak3,k4 · · · akq,kq−1akq,j .

Since A is a matrix with a tree graph D(A), it is combinatorially symmetric. Thus, there is a cycle chain

Cq(i, j) of odd length in D(A) if and only if there is a path from uj to vi of odd length in B(A). Let G1 and

G2 be the two components of B(A) and assume, without loss of generality, that the path Q : uj → vkq
→

ukq−1
→ vkq−2

→ · · · → vk3
→ uk2

→ vi belongs to G1. Using the fact that G1 is isomorphic to G(A), it

follows that G1\Q is isomorphic to the underlying graph of D(A)\Cq(i, j). So, by the discussion in Theorem

2.11, for an odd q, when i and j are maximally matchable in D(A), Mr− q+1
2
(B(A)\Q) ̸= ϕ and when i and

j are not maximally matchable in D(A), Mr− q+1
2
(B(A)\Q) = ϕ.

By Theorem 1.4 and [5, Corollary 2.7], αii = 0 = λii. Also, when q is even, αij = λij = 0. Now, suppose

q is odd and i and j are not maximally matchable so that, αij = 0. Then, since Mr− q+1
2
(B(A)\Q) = ϕ,

λij = 0. If possible, suppose, αij ̸= 0. Then, by Corollary 2.12, i and j should be maximally matchable. In

this case, there exists a path Q from uj to vi of length q and Mr− q+1
2
(B(A)\Q) ̸= ϕ. Now, using (3.1) and

(3.2) and by combinatorial symmetry, λij ̸= 0.

The above result is not true for a matrix A with tree graph D(A) /∈ D. We show this by using the

same example as in [8, Example 4.2]. Consider the 5× 5 matrix A for which D(A) is a path digraph on five

vertices:

A =


0 1 0 0 0

1 0 1 0 0

0 −1 0 1 0

0 0 1 0 1

0 0 0 1 0

 .

Then, λ45 = 2, whereas α45 = 0.
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