SPACES OF CONSTANT RANK MATRICES OVER $G F(2)^{*}$

NIGEL BOSTON ${ }^{\dagger}$

Abstract

For each n, we consider whether there exists an $(n+1)$-dimensional space of n by n matrices over $G F(2)$ in which each nonzero matrix has rank $n-1$. Examples are given for $n=3,4$, and 5 , together with evidence for the conjecture that none exist for $n>8$.

Key words. Constant rank, Matrices, Heuristics.

AMS subject classifications. 15A03, 15-04.

1. Introduction. There has been much interest [5], [7, Chapter 16D] in spaces of matrices in which every nonzero matrix has the same rank. We call this a space of matrices of constant rank. Often there is some algebraic construction behind the examples - for instance, taking a basis for $G F\left(q^{n}\right)$ over $G F(q)$ yields an n-dimensional space of n by n matrices over $G F(q)$ of constant rank n.

We focus on spaces of n by n matrices of constant rank $n-1$, and ask how large their dimensions can be. In [5], it was shown that for real matrices, the maximal dimension is $\max \{\rho(n-1), \rho(n), \rho(n+1)\}$, where ρ is the Hurwitz-Radon function, except for $n=3$ and 7 when the maximal dimension is 3 and 7 , respectively. As regards matrices over a general field F, it was shown in [2] that if $|F| \geq n$, then this maximal dimension is at most n. The question then arises as to whether for smaller fields F there can be such spaces of larger dimension, $n+1$.

As noted below, $G F(2)$ has the unusual property that there are about twice as many n by n matrices of rank $n-1$ over it as there are matrices of rank n, and so interest has focused on this case. By the above, if $n<3$, then the maximal dimension is at most n. In [1], Beasley found a couple of spaces of n by n matrices of constant rank $n-1$ and dimension $n+1$ for $n=3$. He conjectured that no examples exist for $n>3$, but this author found, by search using the computer algebra system MAGMA [3], examples for $n=4$ and $n=5$. The temptation now is to conjecture that examples exist for all n, but as we shall see, heuristics do not support such a claim.

[^0]2. Low dimensional examples. This section exhibits spaces of n by n matrices of constant rank $n-1$ and dimension $n+1$ for $n=3,4$, and 5 . For $n=3$, Beasley [1] found some examples. An exhaustive MAGMA search shows that there are exactly 1176 such spaces. Under conjugation by $G L(3,2)$, these fall into 12 orbits. A basis for a representative of each orbit is given:

Orbit length 168: $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$.
Orbit length 168: $\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$.
Orbit length 168: $\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right]$.
Orbit length 168: $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1\end{array}\right]$.
Orbit length 84: $\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]$.
Orbit length 84: $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1\end{array}\right]$.
Orbit length 84: $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$.
Orbit length 84: $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right]$.
Orbit length 56: $\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$.
Orbit length 42: $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right]$.

Orbit length 42: $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$.
Orbit length 28: $\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$.
An example of a 5 -dimensional space of 4 by 4 matrices of constant rank 3 is given by the span of the following matrices:

$$
\begin{aligned}
& {\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right],} \\
& {\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0
\end{array}\right] .}
\end{aligned}
$$

An example of a 6 -dimensional space of 5 by 5 matrices of constant rank 4 is given by the span of the following matrices:

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right],\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{lllll}
0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right],} \\
& {\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1
\end{array}\right] .}
\end{aligned}
$$

These were discovered by careful search using the computer algebra system, MAGMA [3].
3. Heuristics. Let $C(n, r, q)$ denote the number of n by n matrices of rank r over $G F(q)$. Landsberg [6] (later refined by Buckheister [4] to count matrices with a given rank and trace) showed that

$$
C(n, r, q)=q^{r(r-1) / 2} \prod_{i=1}^{r}\left(q^{n-i+1}-1\right)^{2} /\left(q^{i}-1\right)
$$

As $n \rightarrow \infty$, the probability that an n by n matrix over $G F(q)$ has rank $n-r$, i.e., the ratio of $C(n, n-r, q)$ to the total number of matrices $q^{n^{2}}$, tends to a limit $K(r, q)$, where for instance $K(0,2)=0.2888, K(1,2)=0.5776$, (which is the basis for the statement above that an n by n matrix over $G F(2)$ is twice as likely to have rank $n-1$ as rank n), $K(2,2)=0.1284, K(3,2)=0.0052, \ldots$ Since we will make great use of $K(1,2)$ in this paper, note that to 20 decimal places $K(1,2)=$ 0.57757619017320484256 .

Our heuristic claims that, in the absence of any other algebraic structure, the probability that each matrix in a space of n by n matrices has rank $n-r$ should be independently approximated by $K(r, q)$. Let $N(n, r, q, d)$ denote the number of ordered d-tuples of n by n matrices over $G F(q)$ for which all nontrivial linear combinations have rank $n-r$. By the above heuristic, this should be about $K(r, q)^{q^{d}-1}$ multiplied by the total number of ordered d-tuples, namely $q^{d n^{2}}$, i.e.,

$$
N(n, r, q, d) \approx K(r, q)^{q^{d}-1} q^{d n^{2}}
$$

To test our heuristic, let S_{n} be the set of all n by n matrices over $G F(2)$ of rank $n-1$. We seek the probability that, given $M_{1}, M_{2} \in S_{n}, M_{1}+M_{2}$ also lies in S_{n}. Exhaustive computation shows that it equals $(2 / 3)^{2}=0.4444,(85 / 147)^{2}=$ $0.5782,(2722 / 4725)^{2}=0.5761,(174751 / 302715)^{2}=0.5773$ for $n=2,3,4,5$, respectively. This is apparently approaching the limit $K(1,2)$, as proposed.

Likewise, we can test whether, given 3 matrices in S_{n}, the 4 nontrivial linear combinations of these matrices are all in S_{n} with probability approaching $K(1,2)^{4}=$ 0.1113 as the heuristic suggests. For example, $\left|S_{3}\right|=294$ and of the 294^{3} ordered triples, 2709504 or 10.66% satisfy this, which is close to the predicted 11.13%.

Finally, we consider some implications of the heuristic. Let $g(k)$ denote the order of $G L(k, 2)$, i.e., $g(k)=C(k, k, 2)=\left(2^{k}-1\right)\left(2^{k}-2\right) \cdots\left(2^{k}-2^{k-1}\right)$. This counts the number of ordered bases of a k-dimensional vector space over $G F(2)$. If our heuristic holds true, then $N(n, 1,2, n+1) \approx K(1,2)^{2^{n+1}-1} 2^{(n+1) n^{2}}$ implies that the number of $(n+1)$-dimensional spaces of n by n matrices over $G F(2)$ of constant rank $n-1$ is $N(n, 1,2, n+1) / g(n+1) \approx K(1,2)^{2^{n+1}-1} 2^{(n+1) n^{2}} / g(n+1)$. Moreover, if conjugacy by $G L(n, 2)$ acts faithfully on the set of such spaces, then the number of orbits under conjugacy $\approx K(1,2)^{2^{n+1}-1} 2^{(n+1) n^{2}} /(g(n) g(n+1))$. If it is not faithful, then the number will be slightly larger (but not by orders of magnitude - see the examples for $n=3$ in Section 2 where the stabilizers all have order ≤ 6).

For $n=1, \ldots, 10$, this gives (to 4 significant figures) respectively $0.1285,0.08713$, $5.388,244200,6.783 \times 10^{12}, 1.162 \times 10^{21}, 1.868 \times 10^{24}, 1.006 \times 10^{9}, 3.562 \times 10^{-54}, 4.986 \times$ 10^{-223}. It is easy to see that our estimate on the number of orbits is tending to zero very fast. The above data suggests the following:

CONJECTURE 3.1. There exists an $(n+1)$-dimensional space of n by n matrices over $G F(2)$ of constant rank $n-1$ if and only if $3 \leq n \leq 8$.

Our results in Section 2 prove this for $n \leq 5$. Note also that for $n=3$ the heuristic predicts about 5.388 orbits or equivalently about 905 spaces of dimension 4 and constant rank 2 , whereas there are actually 1176 of them.

Acknowledgment. The author thanks Rod Gow for introducing him to these problems and for useful feedback on this work.

REFERENCES

[1] L.B. Beasley. Spaces of rank-2 matrices over GF(2). Electron. J. Linear Algebra, 5:11-18, 1999.
[2] L.B. Beasley and T.J. Laffey. Linear operators on matrices: the invariance of rank- k matrices. Linear Algebra Appl., 133:175-184, 1990.
[3] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24:235-265, 1997.
[4] P.G. Buckheister. The number of n by n matrices of rank r and trace α over a finite field. Duke Math. J., 39:695-699, 1972.
[5] K.Y. Lam and P. Yiu. Linear spaces of real matrices of constant rank. Linear Algebra Appl., 195:69-79, 1993.
[6] G. Landsberg. Ber eine Anzahlbeslimmung und eine damit zusammenhangende Reihe, 1. J. Reine Angew. Math., 111:87-88, 1893.
[7] D.B. Shapiro. Compositions of quadratic forms. De Gruyter Exp. Math., 33, 2000.

[^0]: *Received by the editors September 11, 2009. Accepted for publication December 8, 2009. Handling Editor: Bryan L. Shader.
 ${ }^{\dagger}$ Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA (boston@math.wisc.edu). Supported by the Claude Shannon Institute, Science Foundation Ireland Grant 06/MI/006 and Stokes Professorship award, Science Foundation Ireland Grant 07/SK/I1252b.

