

## SPACES OF CONSTANT RANK MATRICES OVER $GF(2)^*$

## NIGEL BOSTON†

**Abstract.** For each n, we consider whether there exists an (n+1)-dimensional space of n by n matrices over GF(2) in which each nonzero matrix has rank n-1. Examples are given for n=3,4, and 5, together with evidence for the conjecture that none exist for n>8.

Key words. Constant rank, Matrices, Heuristics.

AMS subject classifications. 15A03, 15-04.

1. Introduction. There has been much interest [5], [7, Chapter 16D] in spaces of matrices in which every nonzero matrix has the same rank. We call this a space of matrices of constant rank. Often there is some algebraic construction behind the examples - for instance, taking a basis for  $GF(q^n)$  over GF(q) yields an n-dimensional space of n by n matrices over GF(q) of constant rank n.

We focus on spaces of n by n matrices of constant rank n-1, and ask how large their dimensions can be. In [5], it was shown that for real matrices, the maximal dimension is  $\max\{\rho(n-1),\rho(n),\rho(n+1)\}$ , where  $\rho$  is the Hurwitz-Radon function, except for n=3 and 7 when the maximal dimension is 3 and 7, respectively. As regards matrices over a general field F, it was shown in [2] that if  $|F| \geq n$ , then this maximal dimension is at most n. The question then arises as to whether for smaller fields F there can be such spaces of larger dimension, n+1.

As noted below, GF(2) has the unusual property that there are about twice as many n by n matrices of rank n-1 over it as there are matrices of rank n, and so interest has focused on this case. By the above, if n < 3, then the maximal dimension is at most n. In [1], Beasley found a couple of spaces of n by n matrices of constant rank n-1 and dimension n+1 for n=3. He conjectured that no examples exist for n>3, but this author found, by search using the computer algebra system MAGMA [3], examples for n=4 and n=5. The temptation now is to conjecture that examples exist for all n, but as we shall see, heuristics do not support such a claim.

<sup>\*</sup>Received by the editors September 11, 2009. Accepted for publication December 8, 2009. Handling Editor: Bryan L. Shader.

<sup>&</sup>lt;sup>†</sup>Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA (boston@math.wisc.edu). Supported by the Claude Shannon Institute, Science Foundation Ireland Grant 06/MI/006 and Stokes Professorship award, Science Foundation Ireland Grant 07/SK/I1252b.

N. Boston

**2.** Low dimensional examples. This section exhibits spaces of n by n matrices of constant rank n-1 and dimension n+1 for n=3,4, and 5. For n=3, Beasley [1] found some examples. An exhaustive MAGMA search shows that there are exactly 1176 such spaces. Under conjugation by GL(3,2), these fall into 12 orbits. A basis for a representative of each orbit is given:

$$\begin{array}{c} \text{Orbit length 168:} & \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}. \\ \text{Orbit length 168:} & \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}. \\ \text{Orbit length 168:} & \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}. \\ \text{Orbit length 84:} & \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}. \\ \text{Orbit length 84:} & \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}. \\ \text{Orbit length 84:} & \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}. \\ \text{Orbit length 56:} & \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}. \\ \text{Orbit length 42:} & \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}. \\ \text{Orbit length 42:} & \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0$$



Constant Rank Matrices

$$\begin{aligned} & \text{Orbit length 42: } \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}. \\ & \text{Orbit length 28: } \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}. \end{aligned}$$

An example of a 5-dimensional space of 4 by 4 matrices of constant rank 3 is given by the span of the following matrices:

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}.$$

An example of a 6-dimensional space of 5 by 5 matrices of constant rank 4 is given by the span of the following matrices:

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}.$$

These were discovered by careful search using the computer algebra system, MAGMA [3].

**3. Heuristics.** Let C(n, r, q) denote the number of n by n matrices of rank r over GF(q). Landsberg [6] (later refined by Buckheister [4] to count matrices with a given rank and trace) showed that

$$C(n,r,q) = q^{r(r-1)/2} \prod_{i=1}^{r} (q^{n-i+1} - 1)^2 / (q^i - 1).$$

3

4 N. Boston

As  $n \to \infty$ , the probability that an n by n matrix over GF(q) has rank n-r, i.e., the ratio of C(n, n-r, q) to the total number of matrices  $q^{n^2}$ , tends to a limit K(r,q), where for instance K(0,2)=0.2888, K(1,2)=0.5776, (which is the basis for the statement above that an n by n matrix over GF(2) is twice as likely to have rank n-1 as rank n), K(2,2)=0.1284, K(3,2)=0.0052,... Since we will make great use of K(1,2) in this paper, note that to 20 decimal places K(1,2)=0.57757619017320484256.

Our heuristic claims that, in the absence of any other algebraic structure, the probability that each matrix in a space of n by n matrices has rank n-r should be independently approximated by K(r,q). Let N(n,r,q,d) denote the number of ordered d-tuples of n by n matrices over GF(q) for which all nontrivial linear combinations have rank n-r. By the above heuristic, this should be about  $K(r,q)^{q^d-1}$  multiplied by the total number of ordered d-tuples, namely  $q^{dn^2}$ , i.e.,

$$N(n, r, q, d) \approx K(r, q)^{q^d - 1} q^{dn^2}.$$

To test our heuristic, let  $S_n$  be the set of all n by n matrices over GF(2) of rank n-1. We seek the probability that, given  $M_1, M_2 \in S_n$ ,  $M_1 + M_2$  also lies in  $S_n$ . Exhaustive computation shows that it equals  $(2/3)^2 = 0.4444, (85/147)^2 = 0.5782, (2722/4725)^2 = 0.5761, (174751/302715)^2 = 0.5773$  for n = 2, 3, 4, 5, respectively. This is apparently approaching the limit K(1, 2), as proposed.

Likewise, we can test whether, given 3 matrices in  $S_n$ , the 4 nontrivial linear combinations of these matrices are all in  $S_n$  with probability approaching  $K(1,2)^4 = 0.1113$  as the heuristic suggests. For example,  $|S_3| = 294$  and of the  $294^3$  ordered triples, 2709504 or 10.66% satisfy this, which is close to the predicted 11.13%.

Finally, we consider some implications of the heuristic. Let g(k) denote the order of GL(k,2), i.e.,  $g(k)=C(k,k,2)=(2^k-1)(2^k-2)\cdots(2^k-2^{k-1})$ . This counts the number of ordered bases of a k-dimensional vector space over GF(2). If our heuristic holds true, then  $N(n,1,2,n+1)\approx K(1,2)^{2^{n+1}-1}2^{(n+1)n^2}$  implies that the number of (n+1)-dimensional spaces of n by n matrices over GF(2) of constant rank n-1 is  $N(n,1,2,n+1)/g(n+1)\approx K(1,2)^{2^{n+1}-1}2^{(n+1)n^2}/g(n+1)$ . Moreover, if conjugacy by GL(n,2) acts faithfully on the set of such spaces, then the number of orbits under conjugacy  $\approx K(1,2)^{2^{n+1}-1}2^{(n+1)n^2}/(g(n)g(n+1))$ . If it is not faithful, then the number will be slightly larger (but not by orders of magnitude - see the examples for n=3 in Section 2 where the stabilizers all have order  $\leq 6$ ).

For  $n=1,\ldots,10$ , this gives (to 4 significant figures) respectively  $0.1285,0.08713,5.388,244200,6.783\times10^{12},1.162\times10^{21},1.868\times10^{24},1.006\times10^{9},3.562\times10^{-54},4.986\times10^{-223}$ . It is easy to see that our estimate on the number of orbits is tending to zero very fast. The above data suggests the following:



## Constant Rank Matrices

Conjecture 3.1. There exists an (n+1)-dimensional space of n by n matrices over GF(2) of constant rank n-1 if and only if  $3 \le n \le 8$ .

Our results in Section 2 prove this for  $n \leq 5$ . Note also that for n = 3 the heuristic predicts about 5.388 orbits or equivalently about 905 spaces of dimension 4 and constant rank 2, whereas there are actually 1176 of them.

**Acknowledgment.** The author thanks Rod Gow for introducing him to these problems and for useful feedback on this work.

## REFERENCES

- [1] L.B. Beasley. Spaces of rank-2 matrices over GF(2). Electron. J. Linear Algebra, 5:11–18, 1999.
- [2] L.B. Beasley and T.J. Laffey. Linear operators on matrices: the invariance of rank-k matrices. Linear Algebra Appl., 133:175–184, 1990.
- [3] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24:235–265, 1997.
- [4] P.G. Buckheister. The number of n by n matrices of rank r and trace  $\alpha$  over a finite field. Duke Math. J., 39:695–699, 1972.
- [5] K.Y. Lam and P. Yiu. Linear spaces of real matrices of constant rank. *Linear Algebra Appl.*, 195:69–79, 1993.
- [6] G. Landsberg. Ber eine Anzahlbeslimmung und eine damit zusammenhangende Reihe, 1. J. Reine Angew. Math., 111:87–88, 1893.
- [7] D.B. Shapiro. Compositions of quadratic forms. De Gruyter Exp. Math., 33, 2000.

5