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TREES WITH MAXIMUM SUM OF THE TWO LARGEST

LAPLACIAN EIGENVALUES∗

YIRONG ZHENG† , JIANXI LI‡ , AND SARULA CHANG§

Abstract. Let T be a tree of order n and S2(T ) be the sum of the two largest Laplacian eigenvalues of T . Fritscher et

al. proved that for any tree T of order n, S2(T ) ≤ n + 2 − 2
n
. Guan et al. determined the tree with maximum S2(T ) among

all trees of order n. In this paper, we characterize the trees with S2(T ) ≥ n+ 1 among all trees of order n except some trees.

Moreover, among all trees of order n, we also determine the first ⌊n−2
2

⌋ trees according to their S2(T ). This extends the result

of Guan et al.
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1. Introduction. Let G = (V (G), E(G)) be a simple connected graph with vertex set V (G) =

{v1, v2, . . . , vn} and edge set E(G). The order and size of G are |V (G)| = n(G) and |E(G)| = m(G)

(or n and m for short), respectively. The set of vertices adjacent to vi ∈ V (G), denoted by N(vi), refers to

the neighborhood of vi. The degree of vi, denoted by d(vi), is the cardinality of N(vi). The maximum and

minimum degrees of G are denoted by ∆(G) and δ(G), respectively. The Laplacian matrix of G is defined

as L(G) = D(G)−A(G), where A(G) is the adjacency matrix of G and D(G) = diag(d(v1), d(v2), . . . , d(vn))

is the diagonal matrix of vertex degrees of G. It is well known that L(G) is positive semidefinite, and its

eigenvalues are non-negative real number. Moreover, note that each row sum of L(G) is 0, and there-

fore, µn(G) = 0. The eigenvalues of L(G) are called the Laplacian eigenvalues of G and denoted by

µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) = 0 (or µ1 ≥ µ2 ≥ · · · ≥ µn = 0 for short), which are always enumer-

ated in non-increasing order and repeated according to their multiplicities. Let Sk(G) =
k∑

i=1

µi be the sum

of the k largest Laplacian eigenvalues of G. Clearly,
n∑

i=1

µi =
n−1∑
i=1

µi = 2m(G) since µn = 0. Brouwer [3]

conjectured that Sk(G) ≤ m+
(
k+1
2

)
for k = 1, 2, . . . , n. This conjecture is interesting and still open. Up to

now, for fixed k (k = 1, 2, n− 1, n) or some given graph classes (trees, regular graphs, etc.), this conjecture

has been proved (see [3, 7, 5, 4, 11, 14, 19, 10, 20]). In particular, for k = 2, Haemers et al. [14] proved

that S2(G) ≤ m + 3 holds for any graph G of order n with m edges. When G is a tree, Fritscher et al.[9]

improved this bound by showing S2(T ) ≤ m + 3 − 2
n (or n + 2 − 2

n since m = n − 1), which indicates that

Haemers’ bound is always not attainable for trees. Therefore, it is interesting to know which tree has the

maximum value of S2(T ) among all trees of order n. Guan et al. [11] determined the tree with maximum
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Figure 1. Ta,1,c with a ≥ 1, c ≥ 2 and a+ c+ 4 = n.

S2(T ) among all trees of order n ≥ 4 by proving that S2(T ) ≤ S2

(
S1
⌈n−2

2 ⌉,⌊n−2
2 ⌋

)
, and the equality holds if

and only if T ∼= S1
⌈n−2

2 ⌉,⌊n−2
2 ⌋, where S

k
a,b is the tree of order n obtained from two stars Sa+1, Sb+1 by joining

a path of length k between their central vertices. Let Tn be the set of trees of order n and Ta,1,c be the

tree shown in Fig. 1, where a ≥ 1, c ≥ 2 and a+ c+ 4 = n. Let T ∗
n = {T ∈ Tn|T ̸= Ta,1,c}. In this paper,

we further study the maximum values of S2(T ) for trees and characterize trees with S2(T ) ≥ n + 1 among

all trees in T ∗
n . Moreover, among all trees in Tn, we also determine the first ⌊n−2

2 ⌋ trees according to their

S2(T ). This extends the result of Guan et al.

The rest of this paper is organized as follows: in Section 2, we present some useful lemmas. In Section 3,

we characterize trees with S2(T ) ≥ n+ 1 among all trees in T ∗
n . In Section 4, we determine the first ⌊n−2

2 ⌋
trees according to their S2(T ) among all trees in Tn.

2. Preliminaries. In this section, we give notations and collect known results on Laplacian eigenvalues

of a graph. A vertex with degree one in G is called a pendent vertex of G. Particularly, denote by ∆(G) (or

∆ for short) the maximum degree of G. Let Sn and Pn be the star and path of order n, respectively. Let

Sk
a,b be the tree of order n obtained from two stars Sa+1, Sb+1 by joining a path of length k between their

central vertices. For all other definitions and notations, not given here, see [6].

We denote by Φ(L(G)) = ϕ(G, x) = det(xIn−L(G)) the Laplacian characteristic polynomial of G, where

In is the identity matrix of order n. For the Laplacian characteristic polynomials of graphs, Guo et al. [13]

gave the reduction procedures for computing them respectively.

For U ⊆ V (G), let LU (G) be the principal submatrix of L(G) formed by deleting the rows and columns

corresponding to all vertices in U . If U = {v} or U = {v, u} when uv ∈ E(G), then we simply write LU (G)

as Lv(G) or Lvu(G). The following result displays the relations between the characteristic polynomials of

L(G) and Lv(G).

Lemma 2.1 ([13]). Let G be a graph of order n. For v ∈ V (G), let φ(v) be the collection of cycles

containing v. Then, the Laplacian characteristic polynomial of G satisfies

Φ(L(G)) = (x− d(v))Φ(Lv(G))−
∑
w

Φ(Lvw(G))− 2
∑

Z∈φ(v)

(−1)|Z|Φ(LZ(G)),

where the first summation extends over those vertices w adjacent to v, and the second summation extends

over all Z ∈ φ(v), |Z| denotes the length of Z.

The following is the special case of Lemma 2.1 when d(v) = 1.

Corollary 2.2 ([13]). Let v be a vertex of a graph G with d(v) = 1 and uv ∈ E(G). Then,

Φ(L(G)) = (x− 1)Φ(L(G− v))− xΦ(Luv(G)).
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Figure 2. Graphs G and G′.

The next result displays the relation between the Laplacian characteristic polynomials of G and G− e,

where e ∈ E(G).

Lemma 2.3 ([13]). Let G be a graph of order n. For e ∈ E(G), let CG(e) be the set of all cycles

containing e in G. Then, the Laplacian characteristic polynomial of G satisfies

Φ(L(G)) = Φ(L(G− e))− Φ(Lu(G− e))− Φ(Lv(G− e))− 2
∑
Z

(−1)|Z|Φ(LZ(G)),

where the summation extends over all Z ∈ CG(e).

Lemma 2.4 ([2]). Let G be a connected graph of order n with degree sequence d1 ≥ d2 ≥ · · · ≥ dn and

Laplacian eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µn = 0. Then,

µk(G) ≥ dk + 2− k.

Specially, µ1(G) ≥ ∆(G) + 1 and µ2(G) ≥ d2.

We now list some known and useful results on µ1.

Lemma 2.5 ([1, 17, 16]). Let G be a graph of order n with m edges. Then,

(1) µ1(G) ≤ n, with equality if and only if the complement of G is disconnected;

(2) µ1(G) ≤ max{d(v) + π(v)|v ∈ V (G)}, where π(v) =
∑

u∈N(v)

d(u)
d(v) ;

(3) µ1(G) < max
{
△(G),m− n−1

2

}
+ 2.

For an eigenvalue x of L(G), let mG(x) be the multiplicity of it. It is well known that mG(1) =

n− r(In − L(G)), where r(In − L(G)) is the rank of In − L(G).

Lemma 2.6. Let G be a graph of order n. For v ∈ V (G) with d(v) = 1 and uv ∈ E(G), let G′ be the

graph obtained from G by adding a new vertex v′ and a new edge uv′ (see Fig. 2). Then,

mG′(1) = mG(1) + 1.

Proof. Let L(G) and L(G′) be the Laplacian matrices of G and G′, respectively. It is not difficult to check

that r(In−L(G)) = r(In+1−L(G′)). Thus, the result follows from the facts that mG(1) = n− r(In−L(G))

and mG′(1) = (n+ 1)− r(In+1 − L(G′)).

Lemma 2.7 ([18]). Let G be a graph of order n. For v ∈ V (G) with d(v) = 1, we have

µn−1(G) ≤ µn−2(G− v).

Let T(n,d) be the set of trees of order n with diameter d and T(n,d)(i) be the tree of order n with

diameter d obtained from a path Pd+1 = v1v2 · · · vdvd+1 (of length d) by attaching n − d − 1 new pendant

edges vd+2vi, . . . , vnvi to the vertex vi (shown in Fig. 3).
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Figure 3. T(n,d)(i).

Guo [12] determined the first ⌊d
2⌋ trees among trees in T(n,d) according to their Laplacian spectral radii

as follows.

Theorem 2.8 ([12]). For n ≥ d + 3 and d ≥ 3, the first ⌊d
2⌋ trees in the set T(n,d) according to their

Laplacian spectral radii are as follows:

T(n,d)

(⌊
d

2

⌋
+ 1

)
, T(n,d)

(⌊
d

2

⌋)
, . . . , T(n,d)(3), T(n,d)(2).

From above, we immediately have the following lemma.

Lemma 2.9. For T ∈ T(n,d) with d ≥ 4, we have µ1(T ) < n− 1.3.

Proof. For T ∈ T(n,d) with d ≥ 4, if d ≥ 5, then ∆(T ) ≤ n − 4. Thus, Lemma 2.5 implies that

µ1(T ) ≤ ∆(T ) + 2 ≤ n− 2; if d = 4, by Theorem 2.8 and Lemma 2.5, we then have µ1(T ) ≤ µ1(T(n,4)(3)) ≤
(n − 3) + n−1

n−3 ≤ (n − 2) + 2
n−3 < n − 1.3 when n ≥ 6. And for n = 5, a direct calculation shows that

µ1(P5) = 3.618 < 5− 1.3, as desired.

Guan et al. [11] gave the following upper bound for S2(T ) for trees in T(n,d) with d ≥ 4.

Lemma 2.10 ([11]). For T ∈ T(n,d) with d ≥ 4, we have S2(T ) < n+ 1.5.

This upper bound is slightly improved by Zheng et al. for T ∈ T(n,d) with d ≥ 5 as follows.

Lemma 2.11 ([21]). For T ∈ T(n,d) with d ≥ 5, we have S2(T ) < n+ 1.

Let M be a real symmetric matrix of order n. Then, all eigenvalues of M are real and can be denoted

by λ1(M) ≥ λ2(M) ≥ · · · ≥ λn(M) in non-increasing order. The following result in matrix theory plays a

key role in our proofs.

Lemma 2.12 ([8]). Let A and B be two real symmetric matrices of order n. Then for any 1 ≤ k ≤ n,

k∑
i=1

λi(A+B) ≤
k∑

i=1

λi(A) +

k∑
i=1

λi(B).

The next results follows from Lemma 2.12 immediately.

Lemma 2.13. Suppose that G1, . . . , Gr are edge disjoint graphs on the same vertex set. Then for any k,

Sk(G1 ∪ · · · ∪Gr) ≤
r∑

i=1

Sk(Gi).

The following results can be found in [10], and Lemma 2.14 is known as the Interlacing Theorem for

Laplacian eigenvalues.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 357-366, July 2022.

361 Trees with maximum sum of the two largest Laplacian eigenvalues

Figure 4. T(a1,a2,...,as;t).

Lemma 2.14 ([10]). Let G be a graph of order n. For e ∈ E(G), let G′ = G− e be the graph obtained

by deleting e from G. Then, the Laplacian eigenvalues of G and G′ interlace, that is,

µ1(G) ≥ µ1(G
′) ≥ µ2(G) ≥ · · · ≥ µn−1(G

′) ≥ µn(G) ≥ µn(G
′) = 0.

Lemma 2.15 ([10]). Let A be a real symmetric matrix of order n with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn

and B be a principal submatrix of A of order m with eigenvalues λ′
1 ≥ λ′

2 ≥ · · · ≥ λ′
m. Then, the eigenvalues

of B interlace the eigenvalues of A, that is λi ≥ λ′
i ≥ λn−m+i for i = 1, . . . ,m. Specially, for v ∈ V (G), the

eigenvalues of Lv(G) interlace the eigenvalues of L(G).

3. Trees with S2(T ) ≥ n(T )+1. In this section, we study the sum of two largest Laplacian eigenvalues

of trees and characterize the trees with S2(T ) ≥ n + 1 among all trees in T ∗
n . First, we consider S2(T ) for

T ∈ T(n,4). Note that T ∼= T(a1,a2,...,as;t) (shown in Fig. 4) for T ∈ T(n,4), where a1 ≥ a2 ≥ · · · ≥ as ≥ 1,

s ≥ 2, t ≥ 0 and a1 + a2 + · · ·+ as + s+ t+ 1 = n.

Theorem 3.1. Let T(a1,a2,...,as;t) be the tree as shown in Fig. 4. If s ≥ 3, then S2(T(a1,a2,...,as;t)) < n+1.

Proof. Let T1 and T2 be the two components of T(a1,a2,...,as;t) −uv1, where T1 (T2) contains v1(u). Note

that d(T2) = 4 since s ≥ 3. Hence, Lemma 2.9 implies that µ1(T2) < n(T2) − 1.3 and Lemma 2.10 implies

that S2(T2) < n(T2) + 1.5. We now consider the following two cases.

Case 1 a1 ≥ 2.

If S2(T1∪T2) = S2(T2), then Lemma 2.13 implies that S2(T(a1,a2,...,as;t)) ≤ S2(T1∪T2)+2 = S2(T2)+

2 < (n(T2) + 1.5) + 2 ≤ n(T(a1,a2,...,as;t)) + 0.5︸ ︷︷ ︸
since n(T1)≥3

< n+1, as desired; if S2(T1 ∪T2) = µ1(T1)+µ1(T2),

then Lemma 2.13 implies that S2(T(a1,a2,...,as;t)) ≤ S2(T1 ∪ T2) + 2 = µ1(T1) +µ1(T2) + 2 < n(T1) +

(n(T2)− 1.3) + 2 = n(T(a1,a2,...,as;t)) + 0.7 < n+ 1, as desired.

Case 2 a1 = 1.

Note that the eigenvalues of Lu(T(1,1,...,1;t)) are

3 +
√
5

2
, . . . ,

3 +
√
5

2︸ ︷︷ ︸
s

, 1, . . . , 1︸ ︷︷ ︸
t

,
3−

√
5

2
, . . . ,

3−
√
5

2︸ ︷︷ ︸
s

by a direct computation. Then, Lemma 2.15 im-

plies that 3+
√
5

2 ≤ µ2(T(1,1,...,1;t)) ≤ 3+
√
5

2 since s ≥ 3. That is µ2(T(1,1,...,1;t)) = 3+
√
5

2

.
= 2.618.

Moreover, Lemma 2.5(3) implies that µ1(T(1,1,...,1;t)) < ∆(T(1,1,...,1;t)) + 2 ≤ n(T(1,1,...,1;t))− 2 since

∆(T(1,1,...,1;t)) ≤ n−4. Thus, we have S2(T(1,1,...,1;t)) < n(T(1,1,...,1;t))−2+2.618 < n+1, as desired.

The proof is completed.
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Figure 5. Ta,b,c.

For s = 2, for convenience, we use Ta,b,c (shown in Fig. 5) instead of T(a1,a2;t), where a ≥ b ≥ 1 and

c ≥ 0. In particular, Ta,b,0
∼= S2

a,b.

Theorem 3.2. For Ta,b,c with a ≥ b ≥ 1 and c ≥ 0,

(1) if c = 0, then S2(Ta,b,0) > n(Ta,b,0) + 1;

(2) if c = 1, then S2(Ta,b,1) < n(Ta,b,1) + 1;

(3) if c ≥ 2 and b ≥ 2, then S2(Ta,b,c) < n(Ta,b,c) + 1.

Proof. (1) For c = 0, by Lemma 2.1 and some elementary calculations, we get that the Laplacian

characteristic polynomial of Ta,b,0 is that ϕ(Ta,b,0, x) = (x− 1)n−5g(x) where g(x) = (x− 2)(x2 − (a+2)x+

1)(x2− (b+2)x+1)− (x−1)(x2− (b+2)x+1)− (x−1)(x2− (a+2)x+1). Let x1 ≥ x2 ≥ x3 ≥ x4 > x5 = 0

be the roots of g(x) = 0. If a ≥ b+1, then Lemma 2.4 implies that x1 ≥ ∆+1 = a+2. Moreover, note that

g(a+ 2) = −(a− b+ 1)(a+ 2) < 0 and g(b+ 2) = (a− b− 1)(b+ 2) ≥ 0 since a ≥ b+ 1. Thus, x1 > a+ 2

and x2 ≥ b+ 2. That is S2(Ta,b,0) = x1 + x2 > (a+ 2) + (b+ 2) = n+ 1; if a = b, then by some elementary

calculations, we have ϕ(Ta,b,0, x) = x(x−1)n−5h(x), where h(x) = (x2−(a+2)x+1)(x2−(a+4)x+(2a+3)).

Then the largest two roots of h(x) = 0 are (a+2)+
√
a2+4a

2 and (a+4)+
√
a2+4

2 . Hence, we have S2(Ta,b,0) =
(a+2)+

√
a2+4a

2 + (a+4)+
√
a2+4

2 > 2a+ 4 = n+ 1 since 2a+ 3 = n, as desired.

In what follows, we assume that c ≥ 1. Note that Lemma 2.6 implies that mTa,b,c
(1) ≥ n − 6. Then,

the Laplacian characteristic polynomial of Ta,b,c can be written as ϕ(Ta,b,c, x) = (x − 1)n−6k(x). Let x1 ≥
x2 ≥ x3 ≥ x4 ≥ x5 > x6 = 0 be the six roots of k(x) = 0. Note that x1 + x2 + x3 + x4 + x5 = n + 4 since
n∑

i=1

µi = 2m = 2n− 2. So, in order to prove S2(Ta,b,c) = x1 + x2 < n+1, we only need to prove that x3 ≥ 3.

(2) c = 1.

If b = 1, note that the eigenvalues of Lu(Ta,1,1) are 3.9563, 2.2091, 1, . . . 1︸ ︷︷ ︸
n−5

, 0.6717 and 0.1729 by a direct

calculation. Then, Lemma 2.15 implies that x2 ≤ λ1(Lu(Ta,1,1))
.
= 3.9563 < 3.96. Moreover, Lemma 2.5

implies that x1 ≤ max{d(v) + π(v)} = (n− 4) + n−2
n−4 . Hence, x1 + x2 < (n− 4) + n−2

n−4 + 3.96 ≤ n+ 1 when

n ≥ 54. Moreover, with the aid of the newGRAPH software, we can check that S2(Ta,1,1) < n+ 1 holds for

n < 54.

If b = 2, then n ≥ 8. For n = 8, by a direct calculation, we have x1 + x2 = µ1(T2,2,1) + µ2(T2,2,1)
.
=

4.8136 + 3.7321 = 8.5457 < 8 + 1. For n ≥ 9, note that the eigenvalues of Lu(Ta,2,1) are 4.4458, 2.7968,

1, . . . 1︸ ︷︷ ︸
n−5

, 0.6297 and 0.1277 by a direct calculation. Then, Lemma 2.15 implies that x2 ≤ λ1(Lu(Ta,2,1))
.
=

4.4458 < 4.5. Moreover, Lemma 2.5 implies that x1 ≤ max{d(v) + π(v)} = (n − 5) + n−3
n−5 . Hence,

x1 + x2 < (n− 5) + n−3
n−5 + 4.5 < n+ 1 for n ≥ 9.
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S

Figure 6. Sn, S1
a,b and S2

a,b.

If b = 3, note that Ta,b,1 contains T8,3,1 as a subgraph for n ≥ 15. Then, Lemma 2.14 implies that

x3 ≥ µ3(T8,3,1) = 3.0. Hence, it follows that S2(Ta,3,1) < n(Ta,3,1) + 1 for n ≥ 15. Moreover, for n < 15, we

check that S2(Ta,3,1) < n(Ta,3,1) + 1 by the aid of the newGRAPH software.

If b ≥ 4, note that Ta,b,1 contains T4,4,1 as a subgraph. Then, Lemma 2.14 implies that x3 ≥ µ3(T4,4,1) =

3.0. Hence, it follows that S2(Ta,b,1) < n+ 1.

(3) For a ≥ b ≥ 2, note that Ta,b,c contains T2,2,2 as a subgraph. Then, Lemma 2.14 implies that

x3 ≥ µ3(T2,2,2) = 3.0. Hence, it follows that S2(Ta,b,c) < n+ 1.

The proof is completed.

Remark 3.3. From the argument in Theorem 3.2, for Ta,b,c with a ≥ b ≥ 1 and c ≥ 0, the remaining

case is a ≥ b = 1 and c ≥ 2. That is Ta,1,c with a ≥ 1, c ≥ 2 and a + c + 4 = n (shown in Fig. 1). We

now have the following observations for S2(Ta,1,c). Firstly, by Lemma 2.3, it follows that the Laplacian

characteristic polynomial of Ta,1,c is ϕ(Ta,1,c, x) = x(x − 1)n−6g(x), where a + c + 4 = n and g(x) =

x5 − (a+ c+8)x4 + (ac+6a+5c+23)x3 − (3ac+11a+8c+30)x2 + (ac+7a+5c+18)x− (a+ c+4). Let

x1 ≥ x2 ≥ · · · ≥ x5 > 0 be the roots of g(x) = 0.

(1) Let Ta,1,c − uv = T1 ∪ T2, where T1 (T2) contains u (v) and n(T1) = n1 and n(T2) = n2. Then,

Lemma 2.5 implies that µ1(T1) = n1 and µ1(T2) ≤ (n2− 2)+ n2−1
n2−2 = (n2− 1)+ 1

n2−2 . Moreover, by

Lemma 2.13, we have S2(Ta,1,c) ≤ S2(T1∪T2)+2 = µ1(T1)+µ1(T2)+2 ≤ n1+(n2−1)+ 1
n2−2 +2 =

n+ 1 + 1
n2−2 → n+ 1 (n2 → ∞).

(2) For a = c + 1 = n−3
2 and n ≥ 7 is even, note that the Laplacian characteristic polynomial of

Tn−3
2 ,1,n−5

2
− ww1 is ϕ(Tn−3

2 ,1,n−5
2

− ww1, x) = x2(x − 1)n−5h(x), where h(x) = x3 − (n + 1)x2 +(
(n−3)2

4 + 2n− 1
)
x − (n − 1). Let y1 ≥ y2 ≥ y3 > 0 be the roots of h(x) = 0. Then, Lemma 2.4

implies that µ1(Tn−3
2 ,1,n−5

2
− ww1) = y1 and µ2(Tn−3

2 ,1,n−5
2

− ww1) = y2 > 1. Moreover, note

that h( 4n ) = 64
n3 − 16

n2 − 11
n + 3 > 0 for n ≥ 7. It follows that y3 < 4

n . That is S2(Tn−3
2 ,1,n−5

2
−

ww1) = y1 + y2 = (n + 1) − y3 > (n + 1) − 4
n . Then, Lemma 2.14 implies that S2(Tn−3

2 ,1,n−5
2

) ≥
S2(Tn−3

2 ,1,n−5
2

− ww1) > n+ 1− 4
n → n+ 1 (n → ∞).

(3) With the aid of the computer programming, we check that S2(Ta,1,c) = x1+x2 < n+1 for n ≤ 1000.

But it seems difficult to give a standard mathematical proof for n > 1000.

Now we give the main result of this section.

Theorem 3.4. For any T ∈ T ∗
n , if S2(T ) ≥ n + 1, then if and only if T ∈ {Sn, S

1
a,b, S

2
a,b}, where Sn,

S1
a,b and S2

a,b are shown in Fig. 6, respectively.

Proof. For T ∈ Tn, we will discuss according to its diameter d.

(1) If d = 1, then T = K2. Hence, S2(K2) = 2 < n+ 1.
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(2) If d = 2, then T ∼= Sn and it is known that S2(Sn) = n+ 1.

(3) If d = 3, then T ∼= S1
a,b (see Fig. 6), where S1

a,b is a tree of order n obtained from an edge uv by

attaching a and b pendent edges to u and v, respectively, here a and b are positive integers and

a + b + 2 = n. By Lemma 2.3 and a direct calculation, the Laplacian characteristic polynomial of

S1
a,b is

ϕ(S1
a,b, x) = x(x− 1)n−4fa,b(x),

where

fa,b(x) = x3 − (n+ 2)x2 + (ab+ 2n+ 1)x− n.(3.1)

By Lemma 2.14, we have µ2(S
1
a,b) ≥ µ2(S

1
1,1) = 2. Moreover, it is known that for any tree T , α(T ) ≤

1, with equality if and only if T ∼= Sn. These imply that µ1(S
1
a,b), µ2(S

1
a,b) and α(S1

a,b) are the three

roots of fa,b(x) = 0. As follows from Eq. (3.1), we have µ1(S
1
a,b)+µ2(S

1
a,b)+α(S1

a,b) = n+2. When

n ≥ 6, S1
a,b contains S1

1,3 or S1
2,2 as a subgraph. By Lemma 2.7 and the facts that α(S1

1,3) = 0.486

and α(S1
2,2) = 0.438, we have α(S1

a,b) < 0.5. It follows that µ1(S
1
a,b) + µ2(S

1
a,b) > n + 1.5 when

n ≥ 6. For n = 4 or n = 5, we easy get that µ1(S
1
a,b) + µ2(S

1
a,b) > n+ 1.4 by direct calculation.

(4) If d = 4, then the result follows from Theorems 3.1 and 3.2 since Ta,b,0
∼= S2

a,b (see Fig. 6).

(5) If d ≥ 5, then the result follows from Lemma 2.11.

The proof is completed.

4. Ordering trees according to their S2(T ). Guan et al. [11] determined the tree with maximum

value of S2(T ) among all trees in Tn by proving that for any tree T ∈ Tn, S2(T ) ≤ S2(S
1
⌈n−2

2 ⌉,⌊n−2
2 ⌋) with

equality if and only if T ∼= S1
⌈n−2

2 ⌉,⌊n−2
2 ⌋. In this section, we extend their result by determining the first

⌊n−2
2 ⌋ trees according to their S2(T ).

Theorem 4.1. For T, T ′ ∈ Tn, if d(T
′) = 3 and d(T ) ̸= 3, then we have S2(T ) < S2(T

′).

Proof. Note that for any T ′ ∈ T(n,3), we have T ′ ∼= S1
a,b for some a and b with a + b + 2 = n. For

T ∈ T ∗
n , recall that T ̸= Ta,1,c, where a ≥ 1, c ≥ 2 and a+ c+ 4 = n ≥ 7. If T ∼= S2

a,b, then from the proof

of Theorem 3.4 and Lemma 2.10, we have S2(T
′) = S2(S

1
a,b) > n+1.5 > S2(S

2
a,b) = S2(T ); if T ̸= S2

a,b, then

from the proofs of Theorems 3.4 and 3.2 and Lemma 2.10, we have S2(T
′) = S2(S

1
a,b) > n+1.5 > S2(S

2
a,b) >

n+ 1 = S2(Sn) > S2(T ) for n ≥ 7. Moreover, it is also true by a direct check for n ≤ 6. For T ∼= Ta,1,c, by

the fact of Remark 3.3(1) since n2 ≥ 5, we then have that S2(T
′) = S2(S

1
a,b) > n+1.5 > S2(Ta,1,c) = S2(T ),

as desired.

In what follows, we will compare the values of sum of the two largest Laplacian eigenvalues of two

different trees with d(T ) = 3.

Theorem 4.2. For S1
a,b, S

1
a+1,b−1 ∈ T(n,3), if a ≥ b ≥ 2, then we have S2(S

1
a,b) > S2(S

1
a+1,b−1).

Proof. Recall that the Laplacain characteristic polynomial of S1
a,b is ϕ(S1

a,b, x) = x(x − 1)n−4fa,b(x),

where

fa,b(x) = x3 − (n+ 2)x2 + (ab+ 2n+ 1)x− n.

Similarly, the Laplacian characteristic polynomial of S1
a+1,b−1 is

ϕ(S1
a+1,b−1, x) = x(x− 1)n−4fa+1,b−1(x),
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where

fa+1,b−1(x) = x3 − (n+ 2)x2 + (ab− (a− b)− 1 + 2n+ 1)x− n.

Let x1 ≥ x2 ≥ x3 > 0 and x′
1 ≥ x′

2 ≥ x′
3 > 0 be three roots of fa,b(x) = 0 and fa+1,b−1(x) = 0,

respectively. Clearly, S2(S
1
a,b) = x1 + x2 and S2(S

1
a+1,b−1) = x′

1 + x′
2.

Note that fa,b(x)− fa+1,b−1(x) = (a− b+1)x > 0 for x > 0. It follows that x′
3 > x3. This together with

the fact that x1 + x2 + x3 = n+ 2 = x′
1 + x′

2 + x′
3 implies that x1 + x2 > x′

1 + x′
2, as desired.

By Theorems 4.1 and 4.2, we now come to the main result of this section.

Theorem 4.3. Among all trees in Tn, the first ⌊n−2
2 ⌋ trees according to their S2(T ) are as follows:

S1
⌈n−2

2 ⌉,⌊n−2
2 ⌋, S1

⌈n−2
2 ⌉+1,⌊n−2

2 ⌋−1
, S1

⌈n−2
2 ⌉+2,⌊n−2

2 ⌋−2
, . . . , S1

n−4,2, S1
n−3,1.

Remark 4.4. Here we determine the first ⌊n−2
2 ⌋ trees among all trees in Tn according to their S2(T ),

which extend the result of Guan et al., they determined the tree with maximum value of S2(T ). Moreover,

it is known that the Laplacian matrix L(G) and the signless Laplacian matrix Q(G) are similar when G is a

bipartite graph [6]. That is, for any T ∈ Tn, we have qi(T ) = µi(T ) for i = 1, 2, . . . , n. Hence, Theorem 4.3

also holds for the sum of two largest signless Laplacian eigenvalues of trees.
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[6] D. Cvetković, P. Rowlinson, and S.K. Simić. An Introduction to the Theory of Graph Spectra. Cambridge University Press,

Cambridge, 2010.

[7] Z. Du and B. Zhou. Upper bounds for the sum of Laplacian eigenvalues of graphs. Linear Algebra Appl., 436:3672–3683,

2012.

[8] K. Fan. On a theorem of Wely concerning eigenvalues of linear transformations. Proc. Nat. Acad. Sci. USA, 35;652–655,

1949.

[9] E. Fritscher, C. Hoppen, I. Rocha, and V. Trevisan. On the sum of the Laplacian eigenvalues of a tree. Linear Algebra

Appl., 435:371–399, 2011.

[10] C. Godsil and G. Royle. Algebraic Graph Theory. Springer, New York, 2001.

[11] M. Guan, M. Zhai, and Y. Wu. On the sum of the two largest Laplacian eigenvalues of trees. J. Inequal. Appl., 242:1–7,

2014.

[12] J.-M. Guo. On the Laplacian spectral radius of trees with fixed diameter. Linear Algebra Appl., 419:618–629, 2006.

[13] J.-M. Guo, J. Li, and W.C. Shiu. On the Laplacian, signless Laplacian and normalized Laplacian characteristic polynomials

of a graph. Czechoslovak Math. J., 63:701–720, 2013.

[14] W.H. Haemers, A. Mohammadian, and B. Tayfeh-Rezaie. On the sum of Laplacian eigenvalues of graphs. Linear Algebra

Appl., 432:2214–2221, 2010.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 357-366, July 2022.

Y. Zheng, J. Li, and S. Chang 366

[15] J. Li, J.-M. Guo, and W.C. Shiu. On the second largest Laplacian eigenvalues of graphs. Linear Algebra Appl., 438:2438–

2446, 2013.

[16] M. Liu, B. Liu, and B. Cheng. Ordering (signless) Laplacian spectral radii with maximum degrees of graphs. Discrete

Math., 338:159–163, 2015.

[17] R. Merris. A note on Laplacian graph eigenvalues. Linear Algebra Appl., 285:33–35, 1998.

[18] R. Grone, R. Merris, and V.S. Sunder. The Laplacian spectrum of a graph. SIAM J. Matrix Anal. Appl., 11:218–238,

1990.

[19] I. Rocha and V. Trevisan. Bounding the sum of the largest Laplacian eigenvalues of graphs. Discrete Appl. Math., 170:95–

103, 2014.

[20] S. Wang, Y. Huang, and B. Liu. On a conjecture for the sum of Laplacian eigenvalues. Math. Comput. Model., 56:60–68,

2012.

[21] Y. Zheng, A. Chang, and J. Li. On the sum of the two largest Laplacian eigenvalues of unicyclic graphs. J. Inequal. Appl.,

275:1–8, 2015.


	Introduction
	Preliminaries
	Trees with S2(T)n(T)+1
	Ordering trees according to their S2(T)
	References

