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CENTERED PSD MATRICES WITH THIN SPECTRUM ARE M-MATRICES∗

KAREL DEVRIENDT†

Abstract. We show that real, symmetric, centered (zero row sum) positive semidefinite matrices of order n and rank n−1

with eigenvalue ratio λmax/λmin ≤ n/(n−2) between the largest and smallest nonzero eigenvalue have nonpositive off-diagonal

entries, and that this eigenvalue criterion is tight. The result is relevant in the context of matrix theory and inverse eigenvalue

problems, and we discuss an application to Laplacian matrices.
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1. Introduction. A central theme in linear algebra and matrix theory is to understand how certain

structures of matrices are reflected in their spectra and vice versa. This is perhaps most clearly manifested

in the multitude of inverse eigenvalue problems (IEPs) [3, 5] which ask to specify the conditions that a list

σ of real numbers with possible repeats (i.e. a multiset) must satisfy such that they can be the spectrum of

a matrix with some given structure X – both necessary and sufficient conditions are widely studied. Here, X

can for instance prescribe a specific pattern for the matrix entries (e.g. Toeplitz, circulant, or tridiagonal),

restrict the sign of the entries (e.g. everywhere nonnegative, positive diagonal or nonpositive off-diagonal),

or be a combination of such requirements.

As the main result of this article, we show that if a centered positive semidefinite real, symmetric, centered

(zero row sum), and positive semidefinite matrix satisfies a spectral property which we will call “thin spec-

trum”, then this guarantees that the matrix has nonpositive off-diagonal entries; in other words, that it is an

M-matrix. We furthermore show how to interpret our result in the context of Laplacian matrices of graphs,

where the sign property has a natural meaning as positive edge weights.

The article is organized as follows: Section 2 introduces the relevant class of matrices, states the main

result, Theorem 2.2, and provides a brief discussion of the implications. Section 3 describes an application

to Laplacian matrices and an application to the inverse singular M -matrix problem. Section 4 finally proves

the main result, and Section 5 concludes the article with a brief summary.

2. Main result and discussion. We fix an integer n ≥ 3 throughout the article and consider real

symmetric n× n (order n) matrices A which are

• positive semidefinite (PSD): all eigenvalues of A are real and nonnegative

• centered: the row and column sums of A equal zero

• have rank n− 1: all but one eigenvalues are zero

We remark that positive semidefinite also implies that A is symmetric. To be concise, we will call a matrix
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with these properties “a centered PSDn−1
n matrix,” where the sub and superscript indicate the order and

rank of the matrix and where we leave the real entries and symmetry implicit. Alternatively, one might use

“centered corank 1 PSD matrix.”

Since A is PSD, it has nonnegative real eigenvalues {λi}ni=1 and can be diagonalized by an orthonormal

set of eigenvectors. Being centered furthermore means that Au = 0 with all-one vector u = (1, . . . , 1)T

and thus that A has at least one zero eigenvalue and that u is in the zero eigenspace. Moreover, since

rank(A) = n − 1 this is the only zero eigenvalue and u spans the kernel of A. We may thus order the

eigenvalues as 0 = λ1 < λ2 ≤ · · · ≤ λn and introduce

λmin := λ2 = min{λi : 1 ≤ i ≤ n, λi ̸= 0}, λmax := λn = max{λi : i ≤ 1 ≤ n}.

Since n ≥ 3, both λmin and λmax are positive, and we can consider the ratio λmax/λmin which can be thought

of as the condition number of A for pseudoinversion (i.e. inversion in ker(A)⊥). We define the following

eigenvalue property:

Definition 2.1 (Thin spectrum). A centered PSD n−1
n matrix has a thin spectrum (is spectrally thin)

if λmax/λmin ≤ n/(n− 2).

Roughly speaking, the thin spectrum condition says that the eigenvalues of a matrix must be of the same

order. For n large, we find that the ratio tends to n/(n− 2) ≈ 1 + 2
n . λmax/λmin ≈ 1 + 2

n .

We are now ready to state the main result of this article which will be proven in Section 4 after a brief

discussion of the Theorem in the remainder of this section.

Theorem 2.2. All real, symmetric, centered, positive semidefinite matrices of order n and rank n − 1

and λmax/λmin ≤ n/(n− 2) have nonpositive off-diagonal entries. The eigenvalue ratio criterion is tight.

A matrix with nonpositive off-diagonal entries is also called a Z-matrix and a Z-matrix with nonnegative

eigenvalues (or nonnegative real parts of eigenvalues) is called an M-matrix [2]. Theorem 2.2 can be thus

be summarized more succinctly as “centered PSDn−1
n matrices with thin spectrum are M-matrices.” The

eigenvalue criterion being tight means that there exists at least one centered PSDn−1
n matrix with eigenvalue

ratio λmax/λmin > n/(n−2) which has positive off-diagonal entries. In the proof of Theorem 2.2, we explicitly

construct such an example.

While not necessarily formulated as such, Theorem 2.2 gives a “spectral recipe” to construct a subclass of

M-matrices: the matrix

n−1∑
k=1

λkzkz
T
k with {zk}n−1

k=1 an orthonormal basis for span(u)⊥, and λk > 0 and λmax/λmin ≤ n/(n− 2),

has nonpositive off-diagonal entries. A second construction starts from a given centered PSDn−1
n matrix A

with thin spectrum. In this case, the matrix OAOT with O any orthogonal matrix (OTO = I) that satisfies

Ou = u (u-invariant) is again a centered PSDn−1
n matrix with thin spectrum and thus an M-matrix. In terms

of the spectral decomposition above, this corresponds to the orthogonal transformation of the eigenvectors

{zk}nk=1 of A by O. We note two further observations.

Remark 2.3. If λmax/λmin ≤ n/(n− 2), then also (1/λ)max/(1/λ)min = (1/λmin)/(1/λmax) = λmax/λmin

≤ n/(n − 2). Consequently, the Moore–Penrose pseudoinverse – which is obtained by inverting all nonzero

eigenvalues – of a centered PSDn−1
n matrix with thin spectrum is again a centered PSDn−1

n matrix with thin
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spectrum, and thus an M-matrix. In other words, this is a class of matrices where the M-matrix property is

invariant under Moore–Penrose pseudoinversion. We note that the Moore–Penrose pseudoinverse of a real

symmetric matrix corresponds to the group inverse of the matrix [11, Sec. 2.4].

Remark 2.4. Let f(A) be a function of a centered PSDn−1
n matrix determined by a function f : R+ → R+

acting on its nonzero eigenvalues. If this function satisfies f(a)/f(b) < a/b for all a > b, then the matrix

sequence A, f(A), f2(A), . . . will have a decreasing eigenvalue ratio which eventually will result in a thin

spectrum. By Theorem 2.2, this means that the matrix sequence (fk(A))k∈N will eventually have all off-

diagonal entries nonpositive. An example is the function f : x 7→ xα for α ∈ (0, 1) or α ∈ (−1,−∞).

Remark 2.5. As n grows large, the matrices with a thin spectrum make up a vanishingly small fraction

of all centered PSDn−1
n matrices. Let λn = 1 be fixed, then the centered PSDn−1

n matrices are determined

by sequences of eigenvalues 0 < λ2 ≤ · · · ≤ λn−1 ≤ 1, while the eigenvalues of the centered PSDn−1
n matrices

are determined by 1− 2
n ≤ λ2 ≤ · · · ≤ λn−1 ≤ 1. These sets of possible eigenvalues form (n− 2)-dimensional

simplices1 in Rn, with vertices (0, 0, . . . , 0, 1), (0, 0, . . . , 1, 1), . . . , (0, 1, . . . , 1, 1) in the general case and vertices

(0, 1− 2
n , . . . , 1−

2
n , 1), (0, 1−

2
n , . . . , 1, 1), . . . , (0, 1, . . . , 1, 1) in the thin spectrum case. In particular, these

two simplices are congruent with scale factor 2/n. As a result, the volume ratio between the two (n − 2)-

dimensional simplices, which equals the fraction of centered PSDn−1
n matrices that have a thin spectrum, is(

2
n

)n−2
. The fraction of spectrally thin matrices thus tends to zero exponentially fast with increasing order.

3. Application to Laplacian matrices. A weighted graph G = (V,E, c) consists of a set of n < ∞
vertices V and a set of edges E which connect (unordered, distinct) pairs of vertices, and positive weights

c : E → R+ defined on the edges; we write {i, j} ∈ E for an edge between i and j, and cij for its weight. One

approach to study graphs is to represent their structure in a matrix and then try to understand properties

of the graphs through the lens of linear algebra or matrix theory; this approach is called algebraic/spectral

graph theory, see for instance [6]. One of the best studied examples is the Laplacian matrix of a graph G,

which is the n× n matrix Q with entries

(3.1) (Q)ij =


ki if j = i

−cij if {i, j} ∈ E

0 otherwise,

where ki =
∑

(i,j)∈E cij is the weighted degree of a vertex i. From its definition, the Laplacian is real,

symmetric, and centered, and it furthermore holds2 that Q is PSD and has rank(Q) = n − 1 if G is

connected [6, 8]. However, as shown in [8], these properties alone are not enough to guarantee that the

off-diagonal entries of Q are nonnegative (corresponding to positive edge weights). Instead, a necessary and

sufficient condition is “centered + PSDn−1
n + nonpositive off-diagonal,” but this characterization involves

both spectral and nonspectral information. Theorem 2.2 implies a new sufficient and exclusively spectral

condition: “centered + PSDn−1
n + thin spectrum ⇒ Laplacian.” Following the introduced terminology, we

can call these Laplacians “spectrally thin.” These spectrally thin Laplacians are similar to the Laplacian of

the complete graph QK = nI −uuT , which has one eigenvalue equal to 0 and all others equal to n, and thus

λmax/λmin = 1.

1For simplicity, we ignore the fact that these should be open sets in the case of general centered PSDn−1
n matrices (where

λ1 > 0 is strict). The inclusion of these faces does not change the volume of the simplex and thus does not affect the ratio we

are interested in.
2A quick proof follows by the decomposition Q =

∑
(i,j)∈E cij(ei − ej)(ei − ej)

T as a sum of PSD matrices which is again

PSD.
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In terms of applications, we may consider spectral perturbations of a Laplacian matrix: assume that the

eigenvalues {λk}n−1
k=1 of a given Laplacian Q are perturbed as {λk + ϵk}n−1

k=1 (i.e. with the zero eigenvalue of

Q unperturbed); this can be for instance due to approximation errors when calculating the eigenvalues, or

finite precision errors when storing or representing the eigenvalues on a computer. From Theorem 2.2, we

then know that if ϵmax/ϵmin ≤ n/(n−2) then the resulting matrix with the same eigenvectors but perturbed

eigenvalues will still have nonpositive off-diagonal entries (and thus will still be Laplacian), while if this ratio

is larger we may have positive off-diagonal entries; indeed this follows from

n−1∑
k=1

(λk + ϵk)zkz
T
k =

n−1∑
k=1

λkzkz
T
k +

n−1∑
k=1

ϵkzkz
T
k = Q+Qϵ,

where Q is the unperturbed Laplacian and Qϵ is a Laplacian following Theorem 2.2. We note one further

observation.

Remark 3.1. Following the observation in Section 2 that the centered, PSDn−1
n and thin spectrum prop-

erties are invariant with respect to u-invariant orthogonal transformations, Theorem 2.2 may be used to

formulate a continuous set of Laplacian matrices: QO = {OQOT : O is orthogonal, u-invariant} where the

“base” Laplacian Q is spectrally thin.

3.1. Application to the inverse singular M-matrix problem. We recall that an M -matrix is

a matrix with nonpositive off-diagonal entries and with eigenvalues with nonnegative real parts. In the

symmetric case, these are PSD matrices with nonpositive off-diagonal entries. One property of nonsingular

M matrices is that their inverse has nonnegative entries [2, Ch. 6]; for singular M matrices, this has raised

the analogous question “when is the Moore–Penrose pseudoinverse of a singular M -matrix again a singular

M -matrix?” [7], [11, Question 3.3.8]. Making use of the fact that the Laplacian matrix of a graph is an

M -matrix, this problem was studied for weighted trees in [10], for distance-regular graphs in [4] and for path

graphs in [1].

Following Following Remark 2.3 in Section 2, we know that the Moore–Penrose pseudoinverse of a spectrally

thin Laplacian matrix is again a Laplacian (i.e. with nonpositive off-diagonal entries). This means that

Theorem 2.2 can be used to construct some examples of singular M matrices whose Moore–Penrose pseu-

doinverse is again an M -matrix, based on some simple graphs with known spectrum; the following examples

were suggested by an anonymous referee:

Example 3.2 (Complete graph). The complete graph is the graph on n vertices, where every pair of

vertices is connected by an edge. The Laplacian spectrum of the complete graph is {0(1), n(n−1)} where

the superscripts indicate multiplicity. Since λmax/λmin = 1 < n/(n − 2) for all n ≥ 2, it follows that the

Moore–Penrose pseudoinverse of the complete graph Laplacian is again a Laplacian matrix (and thus a

singular M -matrix). This result is also easily obtained by noticing that the Moore–Penrose pseudoinverse

of the complete graph Laplacian amounts to rescaling the Laplacian by n−2.

Example 3.3 (Star graph). The star graph consists of a distinguished central vertex which is connected

to all other vertices, and no edges otherwise. The Laplacian spectrum of the star graph on n vertices is

{0(1), 1(n−2), n(1)}. Since λmax/λmin = n, the star graph Laplacian is spectrally thin if and only if n ≤ 3.

Applying Theorem 2.2 thus says that the Moore–Penrose pseudoinverse of the Laplacian of the star graph on

3 vertices is again a Laplacian. In [10], Kirkland and Neumann show that the Moore–Penrose pseudoinverse

Laplacian of a star graph on n vertices is an M -matrix for any n. This illustrates that Theorem 2.2 generally

only provides sufficient criteria.
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Example 3.4 (Path graph). The path graph consists of n vertices that can be labeled 1, 2, . . . , n such

that all consecutive vertices are connected by an edge as E =
⋃n−1

i=1 {i, i + 1}. The Laplacian spectrum of

the path graph is
{
2
(
1− cos

(
kπ
n

))}n−1

k=0
. Since λmax/λmin = (1 + cos(π/n))/(1 − cos(π/n)), the Laplacian

of the path graph is spectrally thin if and only if n ≤ 3. We note that for n ≤ 3, the path graph corresponds

to the star graph, and we thus have the same result as Example 3.3.

4. Proof of main result, Theorem 2.2. We exclude order n = 1, 2 from the Theorem because in

these cases the eigenvalue ratio λmax/λmin is not well defined or the statement is satisfied trivially. For

n = 1, 2, we find that centered PSDn−1
n matrices satisfy the sign property “automatically”: for n = 1, the

only centered PSDn−1
n matrix is A = 0 which has no off-diagonal entries and for n = 2, all centered PSDn−1

n

matrices can be parametrized as:

M =

(
µ −µ

−µ µ

)
with µ ≥ 0,

which has nonpositive off-diagonals −µ.

We now continue with the main result where n ≥ 3. Let A be a centered PSDn−1
n matrix with λmin/λmax ≤

n/(n− 2). We can write the off-diagonal entries of A as (A)ij = eTi Aej for i ̸= j and where ei is the ith unit

vector, with entries (ei)k = 1 if k = i and zeroes otherwise. Since A is centered and thus Au = 0, we can

also write this as:

(A)ij = vTAw with v := (ei − u/n) and w := (ej − u/n),

where v and w are now vectors orthogonal to the constant vector u. Next, we normalize these vectors as:

(A)ij
∥v∥.∥w∥

= ṽTAw̃ with ṽ := v/∥v∥ and w̃ := w/∥w∥,

where the norms equal ∥v∥ = ∥w∥ =
√

1− 1/n. Next, we decompose the vector w̃ into a component parallel

to ṽ and some orthogonal component ṽ⊥, that is, which satisfies ṽT ṽ⊥ = 0 and which is normalized as

ṽT⊥ṽ = 1. We thus write
(A)ij
∥v∥2

= αṽTAṽ + βṽTAṽ⊥ with w̃ = αṽ + βṽ⊥,

for some scalars α, β, which can be calculated as:

w̃T ṽ =
(ei−u/n)T (ej−u/n)

∥v∥.∥w∥

w̃T ṽ = α

 ⇒ α = −1/(n− 1)

w̃T w̃ = 1

w̃T w̃ = α2 + β2

}
⇒ β =

√
n(n− 2)/(n− 1).

We remark that α < 0 and that since we can always swap ṽ⊥ with (−ṽ⊥), we can assume β > 0. Dividing

both sides by |α| = 1/(n− 1) and using ∥v∥2 = (n− 1)/n we then find

(4.2) n(A)ij = −ṽTAṽ + γṽTAṽ⊥ with γ :=
√
n(n− 2).

At this point, we may introduce the eigendecomposition of A – which, we recall, is a centered PSDn−1
n matrix

– as:

A =

n−1∑
k=1

λkzkz
T
k + 0.uuT /n,
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where the (n− 1) eigenvalues λk are positive and where the eigenvectors {zk}n−1
k=1 determine an orthonormal

basis of span(u)⊥. We can rewrite (4.2) using this eigendecomposition as:

n(A)ij =

n−1∑
k=1

λk[−(xk)
2 + γxkyk] where xk := zTk ṽ, yk := zTk ṽ⊥,

In other words, xk and yk are the projections of ṽ and ṽ⊥ onto zk, respectively. As both ṽ and ṽ⊥ are

orthogonal to u, the transformation ṽ → x = (x1, . . . , xn−1)
T and ṽ⊥ → y = (y1, . . . , yn−1)

T is a change of

basis (orthogonal transformation) which retains the vector norms ∥ṽ∥2, ∥ṽ⊥∥2 = 1 ⇒ ∥x∥2, ∥y∥2 = 1, as well

as the angles between vectors, that is, ṽT ṽ⊥ = 0 ⇒ xT y = 0. Next, we split the sum on the right-hand side

in two terms as:

n(A)ij =
∑

k∈K+

λk[−(xk)
2 + γxkyk] +

∑
k∈K−

λk[−(xk)
2 + γxkyk]

where

{
K+ := {k : −(xk)

2 + γxkyk > 0}
K− := {k : −(xk)

2 + γxkyk ≤ 0}.

We remark that the normalization of x and xT y = 0 means that

(4.3)
∑

k∈K+

(xk)
2 +

∑
k∈K−

(xk)
2 = 1 and

∑
k∈K+

xkyk +
∑

k∈K−

xkyk = 0.

Since we now know the sign of each term involving the nonzero eigenvalues, we can upper-bound the right-

hand side using the largest and smallest nonzero eigenvalues λmax, λmin as:

n(A)ij ≤ λmax

∑
k∈K+

[−(xk)
2 + γxkyk] + λmin

∑
k∈K−

[−(xk)
2 + γxkyk]

= (λmax − λmin)
∑

k∈K+

[−(xk)
2 + γxkyk]− λmin (invoking (4.3)).(4.4)

We remark that we can always find a bound of this form because rank(A) ≥ 2. Since (µmax − µmin) ≥ 0, we

can further upper-bound this expression by finding an upper-bound for its associated factor. We consider

the following optimization problem:

max
x,y∈Rn−1

∑
k∈K

[−(xk)
2 + γxkyk](4.5)

subj. to ∥x∥2 = ∥y∥2 = 1 and xT y = 0,

for some subset K ⊆ [1, n] of the vector indices, where we recall that γ =
√
n(n− 2) is some positive number.

Writing the vectors in block-form as x = (a, b)T and y = (c, d)T with a, c ∈ R|K| and b, d ∈ Rn−1−|K|

translates the problem to

max
a,b,c,d

{−∥a∥2 + γaT c}(4.6)

subj. to ∥a∥2 + ∥b∥2 = 1

∥c∥2 + ∥d∥2 = 1

aT c+ bT d = 0.
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If we isolate the variable c, we can consider the problem:

max
c

{−∥a∥2 + γaT c}

subj. to ∥c∥2 + ∥d∥2 = 1 and aT c = −bT d.

where a, b, d are then simply fixed constants. From the Lagrangian function

L(c, ℓ1, ℓ2) = −∥a∥2 + γaT c+ ℓ1(∥c∥2 + ∥d∥2 − 1) + ℓ2(a
T c+ bT d),

with Lagrangian multipliers ℓ1, ℓ2, we find the optimality criteria:
dL
dc = 0 ⇔ ℓ1c = (1 + γ)a
dL
dℓ1

= 0 ⇔ ∥c∥2 + ∥d∥2 = 1

dL
dℓ2

= 0 ⇔ aT c = −bT d.

⇔


c = ℓa for some scalar ℓ

ℓ2∥a∥2 + ∥d∥2 = 1

ℓ∥a∥2 = −(bT d)

⇔

{
c = ℓa

∥a∥2(1− ∥d∥2) = (bT d)2.

We may then rewrite the original optimization problem (4.6) using aT c = −bT d to eliminate c from the

objective function and replacing the two equality constraints involving c by their equivalent ∥a∥2(1−∥d∥2) =
(bT d)2 to eliminate c from the constraints. This yields

max
a,b,d

{−∥a∥2 − γbT d}(4.7)

subj. to ∥a∥2 + ∥b∥2 = 1 and ∥a∥2(1− ∥d∥2) = (bT d)2.

Using the same approach, we can isolate variable b and obtain the problem:

max
b

{−∥a∥2 − γbT d}

subj. to ∥a∥2 + ∥b∥2 = 1 and ∥a∥2(1− ∥d∥2) = (bT d)2.

The same approach using Lagrangian multipliers yields that b = θd for some scalar θ which, introduced into

the equality constraints, yields{
∥a∥2 + θ2∥d∥2 = 1

∥a∥2(1− ∥d∥2) = θ2∥d∥4
⇔

{
θ2∥d∥2 = 1− ∥a∥2

θ2∥d∥4 = ∥a∥2(1− ∥d∥2)
⇔ ∥d∥2(1− ∥a∥2) = ∥a∥2(1− ∥d∥2),

which implies that ∥a∥2 = ∥d∥2. To eliminate b from the objective function, we may use the constraint

(bT d)2 = ∥a∥2(1 − ∥d∥2) from which it follows that bT d = ±
√

∥a∥2(1− ∥a∥2) where the + solution will

result in a larger value for the objective function and should thus be chosen. The optimization problem (4.7)

is then rewritten as:

max
a

{−∥a∥2 + γ
√

∥a∥2(1− ∥a∥2)}

subj. to 0 ≤ ∥a∥2 ≤ 1.

This problem only depends on the norm of a and, introducing introducing A := ∥a∥2, we may write the

optimization as:

max
0≤A≤1

{
−A+ γ

√
A(1−A)

}
.
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To solve this optimization problem, we calculate the first and second derivatives of the objective function

f(A) = −A+ γ
√
A(1−A) with respect to the variable A as:

df

dx
= −1 +

γ(1− 2A)

2
√
A(1−A)

and
d2f

dA2
=

−γ(A2 + 2A− 1)

2
√

A(1−A)
.

Since the second derivative is negative on [−1, 1], the objective function f is concave and the optimal value

A⋆ can be calculated from df
dA (A⋆) = 0, which yields

A⋆ =
1

2
− 1

2

√
1

γ2 + 1
with f(A⋆) = −1

2
+

1

2

√
γ2 + 1.

Introducing γ =
√

n(n− 2) we find that the optimum equals f(A⋆) = (n− 2)/2. Returning to the original

optimization problem (4.5), we have thus shown that∑
k∈K+

[−(xk)
2 + γxkyk] ≤ (n− 2)/2.

For the bound (4.4) for the off-diagonal entries of A, this then implies that

n(A)ij ≤ (λmax − λmin)(n− 2)/2− λmin, and thus
2n(A)ij

(n− 2)λmin
≤ λmax/λmin − n/(n− 2).(4.8)

Hence, whenever λmax/λmin ≤ n/(n− 2) we know that (A)ij ≤ 0 for all i ̸= j which completes the first part

of the proof.

Next, we show that the eigenvalue criterion is tight by constructing an example with positive entries

whenever the criterion is not met. Fix two numbers 1 ≤ i ̸= j ̸= n and let z1, z2 ∈ Rn be the vectors defined

as:

(z1)k :=


√

n− 2

2n
if k = i, j

−

√
2

n(n− 2)
otherwise

(z2)k :=



1√
2
if k = i

−1√
2
if k = j

0 otherwise

.

These vectors have unit norm, are pairwise orthogonal, and are both orthogonal to u. Let {zk}n−1
k=3 be an

orthonormal basis of span(u, z1, z2)
⊥ with (zk)i = (zk)j = 0 for all 3 ≤ k ≤ n− 1. In other words, if we let

i, j be the first two indices, these basis vectors are of the form (0, 0, z̃k) and {z̃k}n−1
k=3 is an orthonormal basis

of span(ũ)⊥ (where ũ is the (n− 2)× 1 all-one vector), since u, z1, z2 are constant in this subspace. Finally,

we fix some λ > 0 let n ≥ 3 and construct the matrix Bϵ as:

Bϵ = λ

(
n

n− 2
+ ϵ

)
︸ ︷︷ ︸

λmax

z1z
T
1 + λ︸︷︷︸

λmin

n−1∑
k=2

zkz
T
k for some ϵ > 0.

By construction, this matrix is centered and PSD (since Bϵu = 0 following zTk u = 0), has rank n − 1 ≥ 2

and eigenvalue ratio λmax/λmin = n/(n− 2) + ϵ > n/(n− 2). Furthermore, we find that

(Bϵ)ij = λ

(
n

n− 2
+ ϵ

)
(z1)i(z1)j + λ(z2)i(z2)j

= λ

(
n

n− 2
+ ϵ

)
n− 2

2n
− 1

2
λ

=
λϵ(n− 2)

2n
> 0.
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In other words, for a given n and λmax/λmin > n/(n− 2) we have at least one centered PSDn−1
n matrix Bϵ

which has a positive off-diagonal entry. This proves that the eigenvalue criterion is tight. □

The vectors z1, z2 that are used to construct the example that proves tightness are Soules vectors. These

vectors were introduced by G.W. Soules in [12] in the context of the inverse eigenvalue problem and used in

[9] to construct Laplacian matrices with any nonnegative spectrum.

4.1. Another application of the proof technique. One of the main steps in the proof of Theorem

2.2 is to solve the optimization problem (4.5). This is a geometric optimization problem asking how much

two orthogonal and unit-norm vectors x, y ∈ Rn can overlap in a certain subspace (given by K) relative to

the norm of one of the vectors in that subspace. This proof technique seems more broadly applicable and to

illustrate, we show how it can be used to retrieve the following result3:

Proposition 4.1. Let A be a real symmetric matrix with eigenvalues in [λmin, λmax] and λmin > 0, then

(A)ij ≤ 1
2 (λmax − λmin) for all i ̸= j.

Proof: Since A is a real, symmetric matrix, it has an orthonormal basis of eigenvectors {zk}nk=1. The

off-diagonal entries of A can be written as:

(A)ij =

n∑
k=1

λk(zk)i(zk)j

=

n∑
k=1

λkxkyk, where xk := zTk ei, yk := zTk ej

=
∑

k∈K+

λkxkyk +
∑

k∈K−

λkxkyk, where K± := {k : λk ≷ 0}

≤ λmax

∑
k∈K+

xkyk + λmin

∑
k∈K−

xkyk

= (λmax − λmin)
∑

k∈K+

xkyk (since eTi ej = 0 ⇒ xT y = 0).

Following the same steps as in the Proof of Theorem 2.2, we then find that optimizing
∑

k∈K xkyk translates

to max0≤A≤1

√
A(1−A) = 1

2 which completes the proof. □

5. Conclusion. The main result in this article, Theorem 2.2, states that centered positive semidefinite

matrices with one-dimensional kernel and with a thin spectrum have nonpositive off-diagonal entries, that

is, they are M-matrices. The tight condition on the eigenvalue ratio is a clear example of how spectral

properties can guarantee certain (sign) properties of matrices. The proof of Theorem 2.2 involves solving

what is essentially a geometric optimization problem; we believe it would be interesting to find alternative

proofs using different techniques. Finally, we also describe the connection to Laplacian matrices, where the

sign property relates to positivity of edge weights.
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3Prof. Van Mieghem noted that this bound is known and can also be derived by using the identity 2(zk)i(zk)j = (zk)
2
i +

(zk)
2
j − [(zk)i − (zk)j ]

2 (private communication).
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