ON M-TH ROOTS OF COMPLEX MATRICES*

HEGUO LIU ${ }^{\dagger}$ AND JING ZHAO ${ }^{\ddagger}$

Abstract

For an $n \times n$ matrix $M, \sigma(M)$ denotes the set of all different eigenvalues of M. In this paper, we will prove two results on the m-th $(m \geq 2)$ roots of a matrix A. Firstly, let X be an m-th root of A. Then X can be expressed as a polynomial in A if and only if $\operatorname{rank} X^{2}=\operatorname{rank} X$ and $|\sigma(X)|=|\sigma(A)|$. Secondly, let X and Y be two m-th roots of A. If both X and Y can be expressed as polynomials in A, then $X=Y$ if and only if $\sigma(X)=\sigma(Y)$.

Key words. Root, Rank, Eigenvalue, Unipotent matrix, Chinese remainder theorem.

AMS subject classifications. 15A18, 15A21.

1. Introduction. Let A be a square matrix, and let m be a positive integer. A matrix X is called an m-th root of a matrix A if $X^{m}=A$. For a nonsingular complex matrix A, there always exists an m-th root, which is, in general, not representable in the form of a polynomial in A; see [1]. It is well-known that every positive semidefinite Hermitian matrix H has a unique m-th root Y such that Y is also a positive semidefinite Hermitian matrix, and Y can be expressed as a polynomial in H; see [2]. For square root, the following result appears in [2, Theorem 6.4.12].

Theorem 1.1. Let A be an $n \times n$ complex matrix. If A is singular and has Jordan canonical form $A=S J S^{-1}$, let $J_{k_{1}}(0) \oplus J_{k_{2}}(0) \oplus \cdots \oplus J_{k_{p}}(0)$ be the singular part of J with the blocks arranged in decreasing order of size:

$$
k_{1} \geq k_{2} \geq \cdots \geq k_{p} \geq 1
$$

Define $\triangle_{1}=k_{1}-k_{2}, \triangle_{3}=k_{3}-k_{4}, \cdots$ Then A has a square root if and only if $\triangle_{i}=0$ or 1 for $i=1,3,5, \cdots$ and, if p is odd, $k_{p}=1$. Moreover, A has a square root that is a polynomial in A if and only if $k_{1}=1$, a condition that is equivalent to requiring that $\operatorname{rank} A=\operatorname{rank} A^{2}$.

Let λ be an eigenvalue of a square matrix A, the dimension of the eigenspace of A corresponding to λ is called the geometric multiplicity of λ, the multiplicity of λ as a zero of the characteristic polynomial of A is called the algebraic multiplicity of λ. It is well-known that $\operatorname{rank} A=\operatorname{rank} A^{2}$ is equivalent to the geometric multiplicity of the eigenvalue 0 of A is equal to its algebraic multiplicity. More related results on these multiplicities can be found in [4].
2. Main results. Let $\sigma(M)$ be the set of all different eigenvalues of a matrix M. In this paper, we will study when an m-th root of a given matrix A can be expressed as a polynomial in A. Our aim is to prove the following two theorems.

Theorem 2.1. Let A be a complex square matrix, and let X be an m-th root of $A, m \geq 2$. Then X can be expressed as a polynomial in A if and only if $\operatorname{rank} X^{2}=\operatorname{rank} X$ and $|\sigma(A)|=|\sigma(X)|$.

[^0]ThEOREM 2.2. Suppose that X and Y are two m-th roots of a complex square matrix A which can be expressed as polynomials in A, then $X=Y$ if and only if $\sigma(X)=\sigma(Y)$.

From these theorems, we can obtain some corollaries.
Corollary 2.3. Let A be an $n \times n$ nonsingular matrix, and let X be an m-th root of A. Then X can be expressed as a polynomial in A if and only if $|\sigma(A)|=|\sigma(X)|$.

The following first example is a simple one illustrating Theorem 2.1. Other two counterexamples show that the conditions $\operatorname{rank} X^{2}=\operatorname{rank} X$ and $|\sigma(A)|=|\sigma(X)|$ in Theorem 2.1 are necessary.

Example 2.4. Let $A=\left(\begin{array}{ccc}1 & -4 & -4 \\ -1 & 4 & 4 \\ 1 & -3 & -3\end{array}\right)$, and $X=\left(\begin{array}{ccc}-1 & 1 & 1 \\ 1 & -1 & -1 \\ -1 & 0 & 0\end{array}\right)$. Then $\operatorname{rank} X^{2}=\operatorname{rank} X=2$ and $\sigma(A)=\{0,1\}, \sigma(X)=\{0,-1\}$. We can prove that $X^{4}=A$ and $X=-\frac{7}{4} A+\frac{3}{4} A^{2}$.

Example 2.5. Let ω be an m-th primitive roots of unity, and let $X=\operatorname{diag}\left(\omega, \omega^{2}, \cdots, \omega^{n}\right)$. Then $X^{m}=I$ and $\operatorname{rank} X^{2}=\operatorname{rank} X$, but $|\sigma(X)|>|\sigma(I)|=1$. Clearly, X cannot be expressed as a polynomial in I.

Example 2.6. Let X be a nilpotent matrix of rank 1 . Then $X^{m}=\mathrm{O}$ for any integer $m \geq 2$, and $\sigma(X)=\sigma(\mathrm{O})=\{0\}$, but $1=\operatorname{rank} X>\operatorname{rank} X^{2}=0$. Clearly, X cannot be expressed as a polynomial in O.

When $\operatorname{rank} A^{2}=\operatorname{rank} A$, there exists an m-th roots of A which can be expressed as a polynomial in A. More accurately, we can obtain the following conclusion from Theorem 2.2.

Corollary 2.7. If $\operatorname{rank} A^{2}=\operatorname{rank} A$, then

$$
\mid\left\{X \mid X^{m}=A \text { and } X=f(A)\right\} \mid=m^{s}
$$

where s is the number of non-zero different eigenvalues of A.
The following Chinese Remainder Theorem is a special form of [3, Theorem 2.25], and it is a key tool in the argument of this paper.

Theorem 2.8 (Chinese Remainder Theorem). Suppose that $m_{1}(\lambda), m_{2}(\lambda), \cdots, m_{s}(\lambda)$ are s pairwise relatively prime polynomials over a field, then for any s polynomials $f_{1}(\lambda), f_{2}(\lambda), \cdots, f_{s}(\lambda)$, there exists a unique polynomial $f(\lambda)$ whose degree is less than the sum of the degrees of these $m_{i}(\lambda)(i=1,2, \cdots, s)$, such that

$$
\left\{\begin{array}{cc}
f(\lambda) \equiv f_{1}(\lambda) & \left(\bmod m_{1}(\lambda)\right) \\
f(\lambda) \equiv f_{2}(\lambda) & \left(\bmod m_{2}(\lambda)\right) \\
\vdots & \\
f(\lambda) \equiv f_{s}(\lambda) & \left(\bmod m_{s}(\lambda)\right)
\end{array}\right.
$$

3. Proof of Theorem 2.1. We first establish a technique lemma about unipotent matrices. A square matrix U is said to be unipotent if $U-I$ is nilpotent.

Lemma 3.1. Let U be a unipotent matrix. Then for any nonzero integer m, U can be expressed as a polynomial in U^{m}.

Proof. We first deal with the case $m>0$. Write $U=I+N$, where I is the identity matrix and N is a nilpotent matrix. Then we choose the least positive integer r such that $N^{r}=\mathrm{O}$. For any positive integer $0 \leq s \leq r-1$, we have

$$
\left(U^{m}\right)^{s}=(I+N)^{s m}=I+\binom{s m}{1} N+\binom{s m}{2} N^{2}+\cdots+\binom{s m}{r-1} N^{r-1}
$$

Furthermore,

$$
\left(\begin{array}{c}
I \\
U^{m} \\
U^{2 m} \\
\cdots \\
U^{(r-1) m}
\end{array}\right)=\left(\begin{array}{ccccc}
1 & \binom{0 m}{1} & \binom{0 m}{2} & \cdots & \binom{0 m}{r-1} \\
1 & \binom{1 m}{1} & \binom{1 m}{2} & \cdots & \binom{1 m}{r-1} \\
1 & \binom{2 m}{1} & \binom{2 m}{2} & \cdots & \binom{2 m}{r-1} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & \binom{(r-1) m}{1} & \binom{(r-1) m}{2} & \cdots & \binom{(r-1) m}{r-1}
\end{array}\right)\left(\begin{array}{c}
I \\
N \\
N^{2} \\
\cdots \\
N^{r-1}
\end{array}\right) .
$$

Since the above transition matrix is nonsingular, it follows that N is a linear combination of $I, U^{m}, U^{2 m}$, $\cdots, U^{(r-1) m}$. Thus, $U=I+N$ can be expressed as a polynomial in U^{m}.

Secondly, assume that $m<0$. By the above argument, U^{-1} can be expressed as a polynomial in U^{m}. Since U can be expressed as a polynomial in U^{-1}, U can be expressed as a polynomial in U^{m}.

Proof of Theorem 2.1. There exists a nonsingular matrix P such that

$$
A=P\left(\begin{array}{ll}
N & \\
& B
\end{array}\right) P^{-1}
$$

where N is a nilpotent matrix and B is a nonsingular matrix. Let r be the least positive integer satisfying $N^{r}=\mathrm{O}$.

Since $X^{m}=A$, we have $A X=X A$. Write

$$
X=P\left(\begin{array}{cc}
X_{N} & X_{12} \\
X_{21} & X_{B}
\end{array}\right) P^{-1}
$$

where the order of X_{N} is the same as that of N. We have

$$
\left(\begin{array}{ll}
N & \\
& B
\end{array}\right)\left(\begin{array}{ll}
X_{N} & X_{12} \\
X_{21} & X_{B}
\end{array}\right)=\left(\begin{array}{ll}
X_{N} & X_{12} \\
X_{21} & X_{B}
\end{array}\right)\left(\begin{array}{ll}
N & \\
& B
\end{array}\right)
$$

which implies that

$$
\left\{\begin{array}{l}
N X_{12}=X_{12} B \\
B X_{21}=X_{21} N .
\end{array}\right.
$$

Then $X_{12}=\mathrm{O}$ because $X_{12} B^{r}=N^{r} X_{12}=\mathrm{O}$, and $X_{21}=\mathrm{O}$ because $B^{r} X_{21}=X_{21} N^{r}=\mathrm{O}$. It follows that

$$
X=P\left(\begin{array}{ll}
X_{N} & \\
& \\
& X_{B}
\end{array}\right) P^{-1}
$$

Note that $X^{m}=A$, i.e., $X_{N}^{m}=N$ and $X_{B}^{m}=B$.
Assume that $X=f(A)$ for some polynomial $f(\lambda)$. Then $X_{N}=f(N)$ and $X_{B}=f(B)$. We claim that $N=\mathrm{O}$. Suppose that this is false and $N \neq \mathrm{O}$. Since $X_{N}^{m r}=N^{r}=\mathrm{O}$, we have

$$
\operatorname{rank} X_{N}>\operatorname{rank} X_{N}^{2} \geq \cdots \geq \operatorname{rank} X_{N}^{m}=\operatorname{rank} N
$$

On the other hand, note that

$$
X_{N}=f(N)=k_{0} I+k_{1} N+\cdots+k_{r-1} N^{r-1}
$$

then $k_{0}=0$ since k_{0} is the eigenvalue of nilpotent matrix X_{N}. This means that

$$
X_{N}=N\left(k_{1} I+k_{2} N+\cdots+k_{r-1} N^{r-2}\right)
$$

and $\operatorname{rank} X_{N} \leq \operatorname{rank} N$, a contradiction. Therefore, $N=X_{N}=\mathrm{O}$, and $\operatorname{rank} A^{2}=\operatorname{rank} A$. Note that B is a nonsingular matrix and $X_{B}^{m}=B$, so $\operatorname{rank} X^{2}=\operatorname{rank} X_{B}^{2}=\operatorname{rank} X_{B}=\operatorname{rank} X$.

Since $A=X^{m}$, we have $|\sigma(A)| \leq|\sigma(X)|$. It follows from $X=f(A)$ that $|\sigma(X)| \leq|\sigma(A)|$. Thus, $|\sigma(A)|=|\sigma(X)|$.

Conversely, suppose that $|\sigma(A)|=|\sigma(X)|$ and $\operatorname{rank} X^{2}=\operatorname{rank} X$. Let $\lambda_{0}=0, \lambda_{1}, \lambda_{2}, \cdots, \lambda_{s}$ be all different eigenvalues of X. Then there exists a nonsingular matrix Q such that

$$
X=Q\left(\begin{array}{ccccc}
\mathrm{O} & & & & \\
& \lambda_{1} U_{1} & & & \\
& & \lambda_{2} U_{2} & & \\
& & & \ddots & \\
& & & & \lambda_{s} U_{s}
\end{array}\right) Q^{-1}
$$

where U_{i} is a unipotent matrix of order $n_{i}, 1 \leq i \leq s$. It follows from $X^{m}=A$ that

$$
X^{m}=Q\left(\begin{array}{ccccc}
\mathrm{O} & & & & \\
& \left(\lambda_{1} U_{1}\right)^{m} & & & \\
& & \left(\lambda_{2} U_{2}\right)^{m} & & \\
& & & \ddots & \\
& & & & \left(\lambda_{s} U_{s}\right)^{m}
\end{array}\right) Q^{-1}=A
$$

Note that U_{i} is a unipotent matrix. By Lemma 3.1, U_{i} can be expressed as a polynomial in U_{i}^{m}. Therefore, $\lambda_{i} U_{i}$ can be expressed as a polynomial in $\left(\lambda_{i} U_{i}\right)^{m}$. Write $\lambda_{i} U_{i}=g_{i}\left(\left(\lambda_{i} U_{i}\right)^{m}\right)$.

Note also that the characteristic polynomial of $\lambda_{i}^{m} U_{i}^{m}$ is equal to $\left(\lambda-\lambda_{i}^{m}\right)^{n_{i}}$. Since $|\sigma(X)|=|\sigma(A)|$, we have $\lambda_{0}^{m}=0, \lambda_{1}^{m}, \lambda_{2}^{m}, \cdots, \lambda_{s}^{m}$ are all different eigenvalues of A. Hence, $\lambda,\left(\lambda-\lambda_{1}^{m}\right)^{n_{1}},\left(\lambda-\lambda_{2}^{m}\right)^{n_{2}}, \cdots,(\lambda-$ $\left.\lambda_{s}^{m}\right)^{n_{s}}$ are $s+1$ pairwise relatively prime polynomials. According to the Chinese Remainder Theorem, there exists a polynomial $f(\lambda)$ such that

$$
\begin{cases}f(\lambda) \equiv 0 & (\bmod \lambda) \\ f(\lambda) \equiv g_{1}(\lambda) & \left(\bmod \left(\lambda-\lambda_{1}^{m}\right)^{n_{1}}\right) \\ f(\lambda) \equiv g_{2}(\lambda) & \left(\bmod \left(\lambda-\lambda_{2}^{m}\right)^{n_{2}}\right) \\ \vdots & \\ f(\lambda) \equiv g_{s}(\lambda) & \left(\bmod \left(\lambda-\lambda_{s}^{m}\right)^{n_{s}}\right)\end{cases}
$$

Therefore, X can be expressed as a polynomial in A.
4. Proof of Theorem 2.2. For the proof, we require a lemma.

Lemma 4.1. Let U and V be two unipotent matrices. If $U^{m}=V^{m}$ for some nonzero integer m, then $U=V$.
Proof. Without loss of generality, assume that $m>0$. By induction on the order of U and V. Since 1 is the unique eigenvalue of U, there exists a nonzero vector α such that $U \alpha=\alpha$. Thus, $U^{m} \alpha=\alpha=V^{m} \alpha$ and

$$
\left(I-V^{m}\right) \alpha=\left(I+V+\cdots+V^{m-1}\right)(I-V) \alpha=0
$$

Note that 1 is the unique eigenvalue of V, so $I+V+\cdots+V^{m-1}$ is nonsingular. Thus, $V \alpha=\alpha$.

Let $P=\left(\alpha, \alpha_{2}, \cdots, \alpha_{n}\right)$ be a nonsingular matrix. Then

$$
P^{-1} U P=\left(\begin{array}{cc}
1 & X \\
& U_{1}
\end{array}\right), \quad P^{-1} V P=\left(\begin{array}{cc}
1 & Y \\
& V_{1}
\end{array}\right)
$$

where U_{1} and V_{1} are two unipotent matrices. We deduce that

$$
\begin{aligned}
& P^{-1} U^{m} P=\left(\begin{array}{cc}
1 & X\left(I+U_{1}+\cdots+U_{1}^{m-1}\right) \\
& U_{1}^{m}
\end{array}\right) \\
& P^{-1} V^{m} P=\left(\begin{array}{cc}
1 & Y\left(I+V_{1}+\cdots+V_{1}^{m-1}\right) \\
& V_{1}^{m}
\end{array}\right)
\end{aligned}
$$

It follows from $U^{m}=V^{m}$ that $U_{1}^{m}=V_{1}^{m}$, and

$$
X\left(I+U_{1}+\cdots+U_{1}^{m-1}\right)=Y\left(I+V_{1}+\cdots+V_{1}^{m-1}\right)
$$

So $U_{1}=V_{1}$ by the induction hypothesis. Furthermore, $X=Y$ because $I+U_{1}+\cdots+U_{1}^{m-1}$ is nonsingular. Hence, $U=V$.

The proof of Theorem 2.2 depends on that of Theorem 2.1.
Proof of Theorem 2.2. Only the necessary of the condition is in question. Assume that $\sigma(X)=\sigma(Y)$, we will prove that $X=Y$. Since X can be expressed as a polynomial in A, it follows by Theorem 2.1 that $\operatorname{rank} X^{2}=\operatorname{rank} X$. Then, there exists a nonsingular matrix P such that

$$
X=P\left(\begin{array}{ccccc}
\mathrm{O} & & & & \\
& \lambda_{1} U_{1} & & & \\
& & \lambda_{2} U_{2} & & \\
& & & \ddots & \\
& & & & \lambda_{s} U_{s}
\end{array}\right) P^{-1}
$$

where U_{i} is a unipotent matrix of order $n_{i}, 1 \leq i \leq s$, and $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{s}$ are all nonzero different eigenvalues of X.

Note that both X and Y can be expressed as polynomials in A, so $X Y=Y X$. Furthermore,

$$
Y=P\left(\begin{array}{ccccc}
Y_{0} & & & & \\
& Y_{1} & & & \\
& & Y_{2} & & \\
& & & \ddots & \\
& & & & Y_{s}
\end{array}\right) P^{-1}
$$

where the size of Y_{i} is the same as that of U_{i} for $1 \leq i \leq s$. Since $X^{m}=Y^{m}=A$, we have $Y_{0}^{m}=\mathrm{O}$ and $Y_{i}^{m}=\left(\lambda_{i} U_{i}\right)^{m}$. By Theorem 2.1 again, $\operatorname{rank} Y^{2}=\operatorname{rank} Y$. So $Y_{0}=\mathrm{O}$.

Next Y_{i} has a unique eigenvalue because $|\sigma(Y)|=|\sigma(A)|$, and we assume that μ_{i} be the eigenvalue of Y_{i}. Then $\mu_{i}^{m}=\lambda_{i}^{m}$. Moreover, $\mu_{i}=\lambda_{i}$ because $\sigma(X)=\sigma(Y)$. Note that

$$
\lambda_{i}^{m} U_{i}^{m}=\left(\lambda_{i} U_{i}\right)^{m}=Y_{i}^{m}=\lambda_{i}^{m}\left(\frac{1}{\lambda_{i}} Y_{i}\right)^{m}
$$

so $U_{i}^{m}=\left(\frac{1}{\lambda_{i}} Y_{i}\right)^{m}$. Note also that $\frac{1}{\lambda_{i}} Y_{i}$ is a unipotent matrix, and thus $U_{i}=\frac{1}{\lambda_{i}} Y_{i}$ by Lemma 4.1. Hence, $Y_{i}=\lambda_{i} U_{i}$, and $X=Y$.

Proof of Corollary 2.7. Since $X^{m}=A$ and $X=f(A)$, so by Theorem 2.1 we have rank $X^{2}=\operatorname{rank} X$, $\operatorname{rank} A^{2}=\operatorname{rank} A$ and $|\sigma(X)|=|\sigma(A)|$. There exists a nonsingular matrix P such that

$$
A=P\left(\begin{array}{lllll}
\mathrm{O} & & & & \\
& \lambda_{1} U_{1} & & & \\
& & \lambda_{2} U_{2} & & \\
& & & \ddots & \\
& & & & \lambda_{s} U_{s}
\end{array}\right) P^{-1}
$$

where U_{i} is a unipotent matrix of order $n_{i}, 1 \leq i \leq s$, and $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{s}$ are all nonzero different eigenvalues of A.

It is easy to prove that

$$
X=P\left(\begin{array}{ccccc}
\mathrm{O} & & & & \\
& X_{1} & & & \\
& & X_{2} & & \\
& & & \ddots & \\
& & & & X_{s}
\end{array}\right) P^{-1}
$$

where the size of X_{i} is same as that of U_{i} for $1 \leq i \leq s$. Then $X_{i}^{m}=\lambda_{i} U_{i}$, and X_{i} only has a eigenvalue μ_{i} such that $\mu_{i}^{m}=\lambda_{i}$. By Theorem 2.2, X is uniquely determined by $\mu_{1}, \mu_{2}, \cdots, \mu_{s}$. Hence, $\mid\left\{X \mid X^{m}=\right.$ A and $X=f(A)\} \mid=m^{s}$.

Acknowledgment. The authors would like to thank the referee for his/her helpful comments and suggestions.

REFERENCES
[1] F.R. Gantmacher. The Theory of Matrices, 2 vols. Chelsea, New York, 1959.
[2] R.A. Horn and C.R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1985.
[3] T.W. Hungerford. Algebra. Springer-Verlag, New York, 1974.
[4] J. Liao, H.G. Liu, M.F. Shao, and X.Z. Xu. A matrix identity and its applications. Linear Algebra Appl., 471:346-352, 2015.

[^0]: *Received by the editors on March 26, 2022. Accepted for publication on July 22, 2022. Handling Editor: Panagiotis Psarrakos. Corresponding Author: Jing Zhao
 ${ }^{\dagger}$ School of Science, Hainan University, Haikou, 570228, China (liuheguo0@163.com). Supported by the National Natural Science Foundation of China (12171142).
 ${ }^{\ddagger}$ School of Mathematics and Statistics, Hubei University, Wuhan, 430062, China (jzhao0@163.com).

