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ON M-TH ROOTS OF COMPLEX MATRICES∗

HEGUO LIU† AND JING ZHAO‡

Abstract. For an n × n matrix M , σ(M) denotes the set of all different eigenvalues of M . In this paper, we will prove

two results on the m-th (m ≥ 2) roots of a matrix A. Firstly, let X be an m-th root of A. Then X can be expressed as a

polynomial in A if and only if rankX2 = rankX and |σ(X)| = |σ(A)|. Secondly, let X and Y be two m-th roots of A. If both

X and Y can be expressed as polynomials in A, then X = Y if and only if σ(X) = σ(Y ).
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1. Introduction. Let A be a square matrix, and let m be a positive integer. A matrix X is called

an m-th root of a matrix A if Xm = A. For a nonsingular complex matrix A, there always exists an m-th

root, which is, in general, not representable in the form of a polynomial in A; see [1]. It is well-known that

every positive semidefinite Hermitian matrix H has a unique m-th root Y such that Y is also a positive

semidefinite Hermitian matrix, and Y can be expressed as a polynomial in H; see [2]. For square root, the

following result appears in [2, Theorem 6.4.12].

Theorem 1.1. Let A be an n × n complex matrix. If A is singular and has Jordan canonical form

A = SJS−1, let Jk1(0)⊕Jk2(0)⊕· · ·⊕Jkp(0) be the singular part of J with the blocks arranged in decreasing

order of size:

k1 ≥ k2 ≥ · · · ≥ kp ≥ 1.

Define 41 = k1−k2, 43 = k3−k4, · · · Then A has a square root if and only if 4i = 0 or 1 for i = 1, 3, 5, · · ·
and , if p is odd, kp = 1. Moreover, A has a square root that is a polynomial in A if and only if k1 = 1, a

condition that is equivalent to requiring that rankA = rankA2.

Let λ be an eigenvalue of a square matrix A, the dimension of the eigenspace of A corresponding to

λ is called the geometric multiplicity of λ, the multiplicity of λ as a zero of the characteristic polynomial

of A is called the algebraic multiplicity of λ. It is well-known that rankA = rankA2 is equivalent to the

geometric multiplicity of the eigenvalue 0 of A is equal to its algebraic multiplicity. More related results on

these multiplicities can be found in [4].

2. Main results. Let σ(M) be the set of all different eigenvalues of a matrix M . In this paper, we will

study when an m-th root of a given matrix A can be expressed as a polynomial in A. Our aim is to prove

the following two theorems.

Theorem 2.1. Let A be a complex square matrix, and let X be an m-th root of A, m ≥ 2. Then X can

be expressed as a polynomial in A if and only if rankX2 = rankX and |σ(A)| = |σ(X)|.
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Theorem 2.2. Suppose that X and Y are two m-th roots of a complex square matrix A which can be

expressed as polynomials in A, then X = Y if and only if σ(X) = σ(Y ).

From these theorems, we can obtain some corollaries.

Corollary 2.3. Let A be an n× n nonsingular matrix, and let X be an m-th root of A. Then X can

be expressed as a polynomial in A if and only if |σ(A)| = |σ(X)|.

The following first example is a simple one illustrating Theorem 2.1. Other two counterexamples show

that the conditions rankX2 = rankX and |σ(A)| = |σ(X)| in Theorem 2.1 are necessary.

Example 2.4. Let A =

 1 −4 −4

−1 4 4

1 −3 −3

, and X =

 −1 1 1

1 −1 −1

−1 0 0

. Then rankX2 = rankX = 2

and σ(A) = {0, 1}, σ(X) = {0,−1}. We can prove that X4 = A and X = − 7
4A+ 3

4A
2.

Example 2.5. Let ω be an m-th primitive roots of unity, and let X = diag(ω, ω2, · · · , ωn). Then Xm = I

and rankX2 = rankX, but |σ(X)| > |σ(I)| = 1. Clearly, X cannot be expressed as a polynomial in I.

Example 2.6. Let X be a nilpotent matrix of rank 1. Then Xm = O for any integer m ≥ 2, and

σ(X) = σ(O) = {0}, but 1 = rankX > rankX2 = 0. Clearly, X cannot be expressed as a polynomial in O.

When rankA2 = rankA, there exists an m-th roots of A which can be expressed as a polynomial in A.

More accurately, we can obtain the following conclusion from Theorem 2.2.

Corollary 2.7. If rankA2 = rankA, then

|{X|Xm = A and X = f(A)}| = ms,

where s is the number of non-zero different eigenvalues of A.

The following Chinese Remainder Theorem is a special form of [3, Theorem 2.25], and it is a key tool in

the argument of this paper.

Theorem 2.8 (Chinese Remainder Theorem). Suppose that m1(λ),m2(λ), · · · ,ms(λ) are s pairwise

relatively prime polynomials over a field, then for any s polynomials f1(λ), f2(λ), · · · , fs(λ), there exists a

unique polynomial f(λ) whose degree is less than the sum of the degrees of these mi(λ) (i = 1, 2, · · · , s), such

that 
f(λ) ≡ f1(λ) (mod m1(λ))

f(λ) ≡ f2(λ) (mod m2(λ))
...

f(λ) ≡ fs(λ) (mod ms(λ)).

3. Proof of Theorem 2.1. We first establish a technique lemma about unipotent matrices. A square

matrix U is said to be unipotent if U − I is nilpotent.

Lemma 3.1. Let U be a unipotent matrix. Then for any nonzero integer m, U can be expressed as a

polynomial in Um.

Proof. We first deal with the case m > 0. Write U = I +N , where I is the identity matrix and N is a

nilpotent matrix. Then we choose the least positive integer r such that Nr = O. For any positive integer

0 ≤ s ≤ r − 1, we have
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(Um)s = (I +N)sm = I +

(
sm

1

)
N +

(
sm

2

)
N2 + · · ·+

(
sm

r − 1

)
Nr−1.

Furthermore, 
I

Um

U2m

· · ·
U (r−1)m

 =


1

(
0m
1

) (
0m
2

)
· · ·

(
0m
r−1

)
1

(
1m
1

) (
1m
2

)
· · ·

(
1m
r−1

)
1

(
2m
1

) (
2m
2

)
· · ·

(
2m
r−1

)
...

...
...

...

1
(
(r−1)m

1

) (
(r−1)m

2

)
· · ·

(
(r−1)m
r−1

)




I

N

N2

· · ·
Nr−1

 .

Since the above transition matrix is nonsingular, it follows that N is a linear combination of I, Um, U2m,

· · · , U (r−1)m. Thus, U = I +N can be expressed as a polynomial in Um.

Secondly, assume that m < 0. By the above argument, U−1 can be expressed as a polynomial in Um.

Since U can be expressed as a polynomial in U−1, U can be expressed as a polynomial in Um.

Proof of Theorem 2.1. There exists a nonsingular matrix P such that

A = P

(
N

B

)
P−1,

where N is a nilpotent matrix and B is a nonsingular matrix. Let r be the least positive integer satisfying

Nr = O.

Since Xm = A, we have AX = XA. Write

X = P

(
XN X12

X21 XB

)
P−1,

where the order of XN is the same as that of N . We have(
N

B

)(
XN X12

X21 XB

)
=

(
XN X12

X21 XB

)(
N

B

)
,

which implies that {
NX12 = X12B

BX21 = X21N.

Then X12 = O because X12B
r = NrX12 = O, and X21 = O because BrX21 = X21N

r = O. It follows that

X = P

(
XN

XB

)
P−1.

Note that Xm = A, i.e., Xm
N = N and Xm

B = B.

Assume that X = f(A) for some polynomial f(λ). Then XN = f(N) and XB = f(B). We claim that

N = O. Suppose that this is false and N 6= O. Since Xmr
N = Nr = O, we have

rankXN > rankX2
N ≥ · · · ≥ rankXm

N = rankN.

On the other hand, note that

XN = f(N) = k0I + k1N + · · ·+ kr−1N
r−1,



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 457-462, August 2022.

H. Liu and J. Zhao 460

then k0 = 0 since k0 is the eigenvalue of nilpotent matrix XN . This means that

XN = N(k1I + k2N + · · ·+ kr−1N
r−2),

and rankXN ≤ rankN , a contradiction. Therefore, N = XN = O, and rankA2 = rankA. Note that B is a

nonsingular matrix and Xm
B = B, so rankX2 = rankX2

B = rankXB = rankX.

Since A = Xm, we have |σ(A)| ≤ |σ(X)|. It follows from X = f(A) that |σ(X)| ≤ |σ(A)|. Thus,

|σ(A)| = |σ(X)|.

Conversely, suppose that |σ(A)| = |σ(X)| and rankX2 = rankX. Let λ0 = 0, λ1, λ2, · · · , λs be all

different eigenvalues of X. Then there exists a nonsingular matrix Q such that

X = Q


O

λ1U1

λ2U2

. . .

λsUs

Q−1,

where Ui is a unipotent matrix of order ni, 1 ≤ i ≤ s. It follows from Xm = A that

Xm = Q


O

(λ1U1)m

(λ2U2)m

. . .

(λsUs)
m

Q−1 = A.

Note that Ui is a unipotent matrix. By Lemma 3.1, Ui can be expressed as a polynomial in Umi . Therefore,

λiUi can be expressed as a polynomial in (λiUi)
m. Write λiUi = gi((λiUi)

m).

Note also that the characteristic polynomial of λmi U
m
i is equal to (λ−λmi )ni . Since |σ(X)| = |σ(A)|, we

have λm0 = 0, λm1 , λ
m
2 , · · · , λms are all different eigenvalues of A. Hence, λ, (λ− λm1 )n1 , (λ− λm2 )n2 , · · · , (λ−

λms )ns are s+ 1 pairwise relatively prime polynomials. According to the Chinese Remainder Theorem, there

exists a polynomial f(λ) such that

f(λ) ≡ 0 ( mod λ )

f(λ) ≡ g1(λ) ( mod (λ− λm1 )n1 )

f(λ) ≡ g2(λ) ( mod (λ− λm2 )n2 )
...

f(λ) ≡ gs(λ) ( mod (λ− λms )ns ).

Therefore, X can be expressed as a polynomial in A.

4. Proof of Theorem 2.2. For the proof, we require a lemma.

Lemma 4.1. Let U and V be two unipotent matrices. If Um =V m for some nonzero integerm, thenU =V .

Proof. Without loss of generality, assume that m > 0. By induction on the order of U and V . Since 1 is

the unique eigenvalue of U , there exists a nonzero vector α such that Uα = α. Thus, Umα = α = V mα and

(I − V m)α = (I + V + · · ·+ V m−1)(I − V )α = 0.

Note that 1 is the unique eigenvalue of V , so I + V + · · ·+ V m−1 is nonsingular. Thus, V α = α.
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Let P = (α, α2, · · · , αn) be a nonsingular matrix. Then

P−1UP =

(
1 X

U1

)
, P−1V P =

(
1 Y

V1

)
,

where U1 and V1 are two unipotent matrices. We deduce that

P−1UmP =

(
1 X(I + U1 + · · ·+ Um−1

1 )

Um1

)
,

P−1V mP =

(
1 Y (I + V1 + · · ·+ V m−1

1 )

V m1

)
.

It follows from Um = V m that Um1 = V m1 , and

X(I + U1 + · · ·+ Um−1
1 ) = Y (I + V1 + · · ·+ V m−1

1 ).

So U1 = V1 by the induction hypothesis. Furthermore, X = Y because I + U1 + · · ·+ Um−1
1 is nonsingular.

Hence, U = V .

The proof of Theorem 2.2 depends on that of Theorem 2.1.

Proof of Theorem 2.2. Only the necessary of the condition is in question. Assume that σ(X) = σ(Y ),

we will prove that X = Y . Since X can be expressed as a polynomial in A, it follows by Theorem 2.1 that

rankX2 = rankX. Then, there exists a nonsingular matrix P such that

X = P


O

λ1U1

λ2U2

. . .

λsUs

P−1,

where Ui is a unipotent matrix of order ni, 1 ≤ i ≤ s, and λ1, λ2, · · · , λs are all nonzero different eigenvalues

of X.

Note that both X and Y can be expressed as polynomials in A, so XY = Y X. Furthermore,

Y = P


Y0

Y1
Y2

. . .

Ys

P−1,

where the size of Yi is the same as that of Ui for 1 ≤ i ≤ s. Since Xm = Y m = A, we have Y m0 = O and

Y mi = (λiUi)
m. By Theorem 2.1 again, rankY 2 = rankY . So Y0 = O.

Next Yi has a unique eigenvalue because |σ(Y )| = |σ(A)|, and we assume that µi be the eigenvalue of

Yi. Then µmi = λmi . Moreover, µi = λi because σ(X) = σ(Y ). Note that

λmi U
m
i = (λiUi)

m = Y mi = λmi

(
1

λi
Yi

)m
,

so Umi = ( 1
λi
Yi)

m. Note also that 1
λi
Yi is a unipotent matrix, and thus Ui = 1

λi
Yi by Lemma 4.1. Hence,

Yi = λiUi, and X = Y .
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Proof of Corollary 2.7. Since Xm = A and X = f(A), so by Theorem 2.1 we have rankX2 = rankX,

rankA2 = rankA and |σ(X)| = |σ(A)|. There exists a nonsingular matrix P such that

A = P


O

λ1U1

λ2U2

. . .

λsUs

P−1,

where Ui is a unipotent matrix of order ni, 1 ≤ i ≤ s, and λ1, λ2, · · · , λs are all nonzero different eigenvalues

of A.

It is easy to prove that

X = P


O

X1

X2

. . .

Xs

P−1,

where the size of Xi is same as that of Ui for 1 ≤ i ≤ s. Then Xm
i = λiUi, and Xi only has a eigenvalue

µi such that µmi = λi. By Theorem 2.2, X is uniquely determined by µ1, µ2, · · · , µs. Hence, |{X|Xm =

A and X = f(A)}| = ms.
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