ON M-TH ROOTS OF COMPLEX MATRICES*

HEGUO LIU† AND JING ZHAO‡

Abstract. For an $n \times n$ matrix M, $\sigma(M)$ denotes the set of all different eigenvalues of M. In this paper, we will prove two results on the m-th ($m \geq 2$) roots of a matrix A. Firstly, let X be an m-th root of A. Then X can be expressed as a polynomial in A. Secondly, let X and Y be two m-th roots of A. If both X and Y can be expressed as polynomials in A, then $X = Y$ if and only if $\sigma(X) = \sigma(Y)$.

Key words. Root, Rank, Eigenvalue, Unipotent matrix, Chinese remainder theorem.

AMS subject classifications. 15A18, 15A21.

1. Introduction. Let A be a square matrix, and let m be a positive integer. A matrix X is called an m-th root of a matrix A if $X^m = A$. For a nonsingular complex matrix A, there always exists an m-th root, which is, in general, not representable in the form of a polynomial in A; see [1]. It is well-known that every positive semidefinite Hermitian matrix H has a unique m-th root Y such that Y is also a positive semidefinite Hermitian matrix, and Y can be expressed as a polynomial in H; see [2]. For square root, the following result appears in [2, Theorem 6.4.12].

THEOREM 1.1. Let A be an $n \times n$ complex matrix. If A is singular and has Jordan canonical form $A = SJS^{-1}$, let $J_{k_1}(0) \oplus J_{k_2}(0) \oplus \cdots \oplus J_{k_p}(0)$ be the singular part of J with the blocks arranged in decreasing order of size:

$$k_1 \geq k_2 \geq \cdots \geq k_p \geq 1.$$

Define $\triangle_1 = k_1 - k_2$, $\triangle_3 = k_3 - k_2$, \cdots Then A has a square root if and only if $\triangle_i = 0$ or 1 for $i = 1, 3, 5, \cdots$ and, if p is odd, $k_p = 1$. Moreover, A has a square root that is a polynomial in A if and only if $k_1 = 1$, a condition that is equivalent to requiring that $\text{rank}A = \text{rank}A^2$.

Let λ be an eigenvalue of a square matrix A, the dimension of the eigenspace of A corresponding to λ is called the geometric multiplicity of λ, the multiplicity of λ as a zero of the characteristic polynomial of A is called the algebraic multiplicity of λ. It is well-known that $\text{rank}A = \text{rank}A^2$ is equivalent to the geometric multiplicity of the eigenvalue 0 of A is equal to its algebraic multiplicity. More related results on these multiplicities can be found in [4].

2. Main results. Let $\sigma(M)$ be the set of all different eigenvalues of a matrix M. In this paper, we will study when an m-th root of a given matrix A can be expressed as a polynomial in A. Our aim is to prove the following two theorems.

THEOREM 2.1. Let A be a complex square matrix, and let X be an m-th root of A, $m \geq 2$. Then X can be expressed as a polynomial in A if and only if $\text{rank}X^2 = \text{rank}X$ and $|\sigma(A)| = |\sigma(X)|$.

*Received by the editors on March 26, 2022. Accepted for publication on July 22, 2022. Handling Editor: Panagiotis Psarrakos. Corresponding Author: Jing Zhao
†School of Science, Hainan University, Haikou, 570228, China (liuheguo@163.com). Supported by the National Natural Science Foundation of China (12171142).
‡School of Mathematics and Statistics, Hubei University, Wuhan, 430062, China (jzhao@163.com).
Theorem 2.2. Suppose that X and Y are two m-th roots of a complex square matrix A which can be expressed as polynomials in A, then $X = Y$ if and only if $\sigma(X) = \sigma(Y)$.

From these theorems, we can obtain some corollaries.

Corollary 2.3. Let A be an $n \times n$ nonsingular matrix, and let X be an m-th root of A. Then X can be expressed as a polynomial in A if and only if $|\sigma(A)| = |\sigma(X)|$.

The following first example is a simple one illustrating Theorem 2.1. Other two counterexamples show that the conditions $\text{rank } X^2 = \text{rank } X$ and $|\sigma(A)| = |\sigma(X)|$ in Theorem 2.1 are necessary.

Example 2.4. Let $A = \begin{pmatrix} 1 & -4 & -4 \\ -1 & 4 & 4 \\ 1 & -3 & -3 \end{pmatrix}$, and $X = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & -1 \\ -1 & 0 & 0 \end{pmatrix}$. Then $\text{rank } X^2 = \text{rank } X = 2$ and $\sigma(A) = \{0, 1\}$, $\sigma(X) = \{0, -1\}$. We can prove that $X^4 = A$ and $X = -\frac{3}{4} A + \frac{3}{4} A^2$.

Example 2.5. Let ω be an m-th primitive root of unity, and let $X = \text{diag}(\omega, \omega^2, \cdots, \omega^n)$. Then $X^m = I$ and $\text{rank } X^2 = \text{rank } X$, but $|\sigma(X)| > |\sigma(I)| = 1$. Clearly, X cannot be expressed as a polynomial in I.

Example 2.6. Let X be a nilpotent matrix of rank 1. Then $X^m = O$ for any integer $m \geq 2$, and $\sigma(X) = \sigma(O) = \{0\}$, but $1 = \text{rank } X > \text{rank } X^2 = 0$. Clearly, X cannot be expressed as a polynomial in O.

When $\text{rank } A^2 = \text{rank } A$, there exists an m-th roots of A which can be expressed as a polynomial in A. More accurately, we can obtain the following conclusion from Theorem 2.2.

Corollary 2.7. If $\text{rank } A^2 = \text{rank } A$, then

$$\{|X | X^m = A \text{ and } X = f(A)\} = m^s,$$

where s is the number of non-zero different eigenvalues of A.

The following Chinese Remainder Theorem is a special form of [3, Theorem 2.25], and it is a key tool in the argument of this paper.

Theorem 2.8 (Chinese Remainder Theorem). Suppose that $m_1(\lambda), m_2(\lambda), \cdots, m_s(\lambda)$ are s pairwise relatively prime polynomials over a field, then for any s polynomials $f_1(\lambda), f_2(\lambda), \cdots, f_s(\lambda)$, there exists a unique polynomial $f(\lambda)$ whose degree is less than the sum of the degrees of these $m_i(\lambda)$ ($i = 1, 2, \cdots, s$), such that

$$\begin{cases} f(\lambda) \equiv f_1(\lambda) \pmod{m_1(\lambda)} \\ f(\lambda) \equiv f_2(\lambda) \pmod{m_2(\lambda)} \\ \vdots \\ f(\lambda) \equiv f_s(\lambda) \pmod{m_s(\lambda)}. \end{cases}$$

3. Proof of Theorem 2.1. We first establish a technique lemma about unipotent matrices. A square matrix U is said to be unipotent if $U - I$ is nilpotent.

Lemma 3.1. Let U be a unipotent matrix. Then for any nonzero integer m, U can be expressed as a polynomial in U^m.

Proof. We first deal with the case $m > 0$. Write $U = I + N$, where I is the identity matrix and N is a nilpotent matrix. Then we choose the least positive integer r such that $N^r = O$. For any positive integer $0 \leq s \leq r - 1$, we have
On m-th roots of complex matrices

$$(U^m)^s = (I + N)^{sm} = I + \binom{sm}{1} N + \binom{sm}{2} N^2 + \cdots + \binom{sm}{r-1} N^{r-1}. $$

Furthermore,

$$
\begin{pmatrix}
I \\
U^m \\
U^{2m} \\
\vdots \\
U^{(r-1)m}
\end{pmatrix} =
\begin{pmatrix}
1 & \binom{0m}{1} & \binom{0m}{2} & \cdots & \binom{0m}{r-1} \\
1 & \binom{1m}{1} & \binom{1m}{2} & \cdots & \binom{1m}{r-1} \\
1 & \binom{2m}{1} & \binom{2m}{2} & \cdots & \binom{2m}{r-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \binom{(r-1)m}{1} & \binom{(r-1)m}{2} & \cdots & \binom{(r-1)m}{r-1}
\end{pmatrix}
\begin{pmatrix}
I \\
N \\
N^2 \\
\vdots \\
N^{r-1}
\end{pmatrix}.
$$

Since the above transition matrix is nonsingular, it follows that N is a linear combination of I, U^m, U^{2m}, \ldots, $U^{(r-1)m}$. Thus, $U = I + N$ can be expressed as a polynomial in U^m.

Secondly, assume that $m < 0$. By the above argument, U^{-1} can be expressed as a polynomial in U^m. Since U can be expressed as a polynomial in U^{-1}, U can be expressed as a polynomial in U^m.

Proof of Theorem 2.1. There exists a nonsingular matrix P such that

$$A = P \begin{pmatrix} N \\ B \end{pmatrix} P^{-1},$$

where N is a nilpotent matrix and B is a nonsingular matrix. Let r be the least positive integer satisfying $N^r = O$.

Since $X^m = A$, we have $AX = XA$. Write

$$X = P \begin{pmatrix} X_N & X_{12} \\ X_{21} & X_B \end{pmatrix} P^{-1},$$

where the order of X_N is the same as that of N. We have

$$\begin{pmatrix} N \\ B \end{pmatrix} \begin{pmatrix} X_N & X_{12} \\ X_{21} & X_B \end{pmatrix} = \begin{pmatrix} X_N & X_{12} \\ X_{21} & X_B \end{pmatrix} \begin{pmatrix} N \\ B \end{pmatrix},$$

which implies that

$$\begin{cases}
N X_{12} = X_{12} B \\
B X_{21} = X_{21} N.
\end{cases}$$

Then $X_{12} = O$ because $X_{12} B^r = N^r X_{12} = O$, and $X_{21} = O$ because $B^r X_{21} = X_{21} N^r = O$. It follows that

$$X = P \begin{pmatrix} X_N \\ X_B \end{pmatrix} P^{-1}.$$

Note that $X^m = A$, i.e., $X_N^m = N$ and $X_B^m = B$.

Assume that $X = f(A)$ for some polynomial $f(\lambda)$. Then $X_N = f(N)$ and $X_B = f(B)$. We claim that $N = O$. Suppose that this is false and $N \neq O$. Since $X_N^{mr} = N^r = O$, we have

$$\text{rank} X_N > \text{rank} X_N^{2} \geq \cdots \geq \text{rank} X_N^{mr} = \text{rank} N.$$

On the other hand, note that

$$X_N = f(N) = k_0 I + k_1 N + \cdots + k_{r-1} N^{r-1},$$
then \(k_0 = 0 \) since \(k_0 \) is the eigenvalue of nilpotent matrix \(X_N \). This means that
\[
X_N = N(k_1I + k_2N + \cdots + k_{r-1}N^{r-2}),
\]
and \(\text{rank}X_N \leq \text{rank}N \), a contradiction. Therefore, \(N = X_N = 0 \), and \(\text{rank}A^2 = \text{rank}A \). Note that \(B \) is a nonsingular matrix and \(X_B^m = B \), so \(\text{rank}X^2 = \text{rank}X_B^2 = \text{rank}X_B = \text{rank}X \).

Since \(A = X^m \), we have \(|\sigma(A)| \leq |\sigma(X)| \). It follows from \(X = f(A) \) that \(|\sigma(X)| \leq |\sigma(A)| \). Thus, \(|\sigma(A)| = |\sigma(X)| \).

Conversely, suppose that \(|\sigma(A)| = |\sigma(X)| \) and \(\text{rank}X^2 = \text{rank}X \). Let \(\lambda_0 = 0, \lambda_1, \lambda_2, \ldots, \lambda_s \) be all different eigenvalues of \(X \). Then there exists a nonsingular matrix \(Q \) such that
\[
X = Q \begin{pmatrix}
O & \lambda_1 U_1 \\
& \lambda_2 U_2 \\
& & \ddots \\
& & & \lambda_s U_s
\end{pmatrix} Q^{-1},
\]
where \(U_i \) is a unipotent matrix of order \(n_i \), \(1 \leq i \leq s \). It follows from \(X^m = A \) that
\[
X^m = Q \begin{pmatrix}
O & (\lambda_1 U_1)^m \\
& (\lambda_2 U_2)^m \\
& & \ddots \\
& & & (\lambda_s U_s)^m
\end{pmatrix} Q^{-1} = A.
\]
Note that \(U_i \) is a unipotent matrix. By Lemma 3.1, \(U_i \) can be expressed as a polynomial in \(U_i^m \). Therefore, \(\lambda_i U_i \) can be expressed as a polynomial in \((\lambda_i U_i)^m \). Write \(\lambda_i U_i = g_i((\lambda_i U_i)^m) \).

Note also that the characteristic polynomial of \(\lambda_i^m U_i^m \) is equal to \((\lambda - \lambda_i^n)^{n_i} \). Since \(|\sigma(X)| = |\sigma(A)| \), we have \(\lambda_0^n = 0, \lambda_1^n, \lambda_2^n, \ldots, \lambda_s^n \) are all different eigenvalues of \(A \). Hence, \(\lambda_i(\lambda - \lambda_i^n)^{n_i}, (\lambda - \lambda_i^n)^{n_i+1}, \ldots, (\lambda - \lambda_i^n)^{n_i} \) are \(s + 1 \) pairwise relatively prime polynomials. According to the Chinese Remainder Theorem, there exists a polynomial \(f(\lambda) \) such that
\[
\begin{cases}
f(\lambda) \equiv 0 \pmod{\lambda} \\
f(\lambda) \equiv g_1(\lambda) \pmod{(\lambda - \lambda_1^n)^{n_1}} \\
f(\lambda) \equiv g_2(\lambda) \pmod{(\lambda - \lambda_2^n)^{n_2}} \\
\vdots \\
f(\lambda) \equiv g_s(\lambda) \pmod{(\lambda - \lambda_s^n)^{n_s}}.
\end{cases}
\]
Therefore, \(X \) can be expressed as a polynomial in \(A \).

4. Proof of Theorem 2.2. For the proof, we require a lemma.

Lemma 4.1. Let \(U \) and \(V \) be two unipotent matrices. If \(U^m = V^m \) for some nonzero integer \(m \), then \(U = V \).

Proof. Without loss of generality, assume that \(m > 0 \). By induction on the order of \(U \) and \(V \). Since 1 is the unique eigenvalue of \(U \), there exists a nonzero vector \(\alpha \) such that \(U\alpha = \alpha \). Thus, \(U^m\alpha = \alpha = V^m\alpha \) and
\[
(I - V^m)\alpha = (I + V + \cdots + V^{m-1})(I - V)\alpha = 0.
\]
Note that 1 is the unique eigenvalue of \(V \), so \(I + V + \cdots + V^{m-1} \) is nonsingular. Thus, \(V\alpha = \alpha \).
On \(m\)-th roots of complex matrices

Let \(P = (\alpha, \alpha_2, \cdots, \alpha_n)\) be a nonsingular matrix. Then

\[P^{-1}UP = \begin{pmatrix} 1 & X \\ U_1 \end{pmatrix}, \quad P^{-1}VP = \begin{pmatrix} 1 & Y \\ V_1 \end{pmatrix}, \]

where \(U_1\) and \(V_1\) are two unipotent matrices. We deduce that

\[P^{-1}U^mP = \begin{pmatrix} 1 & X(I + U_1 + \cdots + U_1^{m-1}) \\ U_1^m \end{pmatrix}, \]
\[P^{-1}V^mP = \begin{pmatrix} 1 & Y(I + V_1 + \cdots + V_1^{m-1}) \\ V_1^m \end{pmatrix}. \]

It follows from \(U^m = V^m\) that \(U_1^m = V_1^m\), and

\[X(I + U_1 + \cdots + U_1^{m-1}) = Y(I + V_1 + \cdots + V_1^{m-1}). \]

So \(U_1 = V_1\) by the induction hypothesis. Furthermore, \(X = Y\) because \(I + U_1 + \cdots + U_1^{m-1}\) is nonsingular. Hence, \(U = V\).

The proof of Theorem 2.2 depends on that of Theorem 2.1.

Proof of Theorem 2.2. Only the necessary of the condition is in question. Assume that \(\sigma(X) = \sigma(Y)\), we will prove that \(X = Y\). Since \(X\) can be expressed as a polynomial in \(A\), it follows by Theorem 2.1 that \(\text{rank}X^2 = \text{rank}X\). Then, there exists a nonsingular matrix \(P\) such that

\[X = P \begin{pmatrix} O \\ \lambda_1 U_1 \\ \lambda_2 U_2 \\ \vdots \\ \lambda_s U_s \end{pmatrix} P^{-1}, \]

where \(U_i\) is a unipotent matrix of order \(n_i\), \(1 \leq i \leq s\), and \(\lambda_1, \lambda_2, \cdots, \lambda_s\) are all nonzero different eigenvalues of \(X\).

Note that both \(X\) and \(Y\) can be expressed as polynomials in \(A\), so \(XY = YX\). Furthermore,

\[Y = P \begin{pmatrix} Y_0 \\ Y_1 \\ \vdots \\ Y_s \end{pmatrix} P^{-1}, \]

where the size of \(Y_i\) is the same as that of \(U_i\) for \(1 \leq i \leq s\). Since \(X^m = Y^m = A\), we have \(Y_0^m = O\) and \(Y_i^m = (\lambda_i U_i)^m\). By Theorem 2.1 again, \(\text{rank}Y^2 = \text{rank}Y\). So \(Y_0 = O\).

Next \(Y_i\) has a unique eigenvalue because \(|\sigma(Y)| = |\sigma(A)|\), and we assume that \(\mu_i\) be the eigenvalue of \(Y_i\). Then \(\mu_i^m = \lambda_i^m\). Moreover, \(\mu_i = \lambda_i\) because \(\sigma(X) = \sigma(Y)\). Note that

\[\lambda_i^m U_i^m = (\lambda_i U_i)^m = Y_i^m = \lambda_i^m \left(\frac{1}{\lambda_i} Y_i \right)^m, \]

so \(U_i^m = (\frac{1}{\lambda_i} Y_i)^m\). Note also that \(\frac{1}{\lambda_i} Y_i\) is a unipotent matrix, and thus \(U_i = \frac{1}{\lambda_i} Y_i\) by Lemma 4.1. Hence, \(Y_i = \lambda_i U_i\), and \(X = Y\).
Proof of Corollary 2.7. Since $X^m = A$ and $X = f(A)$, so by Theorem 2.1 we have $\text{rank } X^2 = \text{rank } X$, $\text{rank } A^2 = \text{rank } A$ and $|\sigma(X)| = |\sigma(A)|$. There exists a nonsingular matrix P such that

$$A = P \begin{pmatrix} O & \lambda_1 U_1 \\ \lambda_2 U_2 \\ \vdots \\ \lambda_s U_s \end{pmatrix} P^{-1},$$

where U_i is a unipotent matrix of order n_i, $1 \leq i \leq s$, and $\lambda_1, \lambda_2, \cdots, \lambda_s$ are all nonzero different eigenvalues of A.

It is easy to prove that

$$X = P \begin{pmatrix} O & X_1 & X_2 & \cdots & X_s \end{pmatrix} P^{-1},$$

where the size of X_i is same as that of U_i for $1 \leq i \leq s$. Then $X_i^m = \lambda_i U_i$, and X_i only has an eigenvalue μ_i such that $\mu_i^m = \lambda_i$. By Theorem 2.2, X is uniquely determined by $\mu_1, \mu_2, \cdots, \mu_s$. Hence, $|\{X | X^m = A \text{ and } X = f(A)\}| = m^s$.

Acknowledgment. The authors would like to thank the referee for his/her helpful comments and suggestions.

REFERENCES