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W-WEIGHTED GDMP INVERSE FOR RECTANGULAR MATRICES*

AMIT KUMAR', VAIBHAV SHEKHAR', AND DEBASISHA MISHRAT

Abstract. In this article, we introduce two new generalized inverses for rectangular matrices called W-weighted generalized-
Drazin—-Moore—Penrose (GDMP) and W-weighted generalized-Drazin-reflexive (GDR) inverses. The first generalized inverse
can be seen as a generalization of the recently introduced GDMP inverse for a square matrix to a rectangular matrix. The
second class of generalized inverse contains the class of the first generalized inverse. We then exploit their various properties
and establish that the proposed generalized inverses coincide with different well-known generalized inverses under certain
assumptions. We also obtain a representation of W-weighted GDMP inverse employing EP-core nilpotent decomposition. We
define the dual of W-weighted GDMP inverse and obtain analogue results. Further, we discuss additive properties, reverse-
and forward-order laws for GD, W-weighted GD, GDMP, and W-weighted GDMP generalized inverses.
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1. Introduction and motivation. Let C™*" be the set of all complex matrices of size m x n. Let
A*, R(A), N(A), and P4 denote the conjugate transpose of A, the range space of A, the null space of A,
and the orthogonal projection onto the range space of A, respectively. Given A € C"*™ the unique matrix
X € C"*™ that satisfies the following four matrix equations:

(DAXA = A, (2)XAX = X, (3)(AX)" = AX, and (4)(XA)" = XA,

is called the Moore—Penrose inverse [26] of A, and is denoted as Af. The set of all matrices which satisfies any
of the combinations of the above four matrix equations is denoted as A{i, j, k, [}, where i, j, k,1 € {1, 2, 3,4}.
For instance, if X satisfies equations (1) and (2), then A{1,2} denotes the set of all solutions of the first
two matrix equations. We denote a member of A{1,2} as A2 and it is called a reflexive inverse of the
matrix A. The definition of the index of a matrix is recalled next. Let A € C™*™. The smallest nonnegative
integer for which rank(A*) = rank(A**1) is called the index of the matrix A, and we denote it by ind(A).
Let A € C™*™, the unique matrix X € C"*" satisfying the matrix equations XAX = X, XA = AX, and
AF+LX = AF is called the Drazin inverse [5] of the matrix A. It is denoted as AP. Here, k denotes the index
of the matrix A. If ind(A) = 1, then the above equations reduce to XAX = X, XA = AX, and A2X = A,
and in this case, X is called the group inverse of A. The group inverse of a matrix A is denoted as A%. A
matrix A € C"*" is called EP (or range-Hermitian) if R(A) = R(A*). A matrix A is EP if and only if it
commutes with its Moore—Penrose inverse, that is, AAT = ATA. EP matrices are also characterized as the
class of matrices for which the Moore—Penrose inverse and the group inverse are the same.

In 1980, Cline and Greville [8] extended the Drazin inverse for square matrices to rectangular matrices,
which is recalled next. Let A € C™*™ and W € C™ ™, the unique matrix X = ((AW)P)24 ¢ Cm*n
is the solution of equations: (AW)FIXW = (AW)k, XWAWX = X, and AWX = XWA, where
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k = ind(AW). In this case, X is called the W-weighted Drazin inverse of A. It is denoted as Ap w.
Throughout this article, we will consider a nonzero weight W. The literature for generalized inverses is
quite rich due to their enormous applicability in several fields. In this direction, one of the most sig-
nificant recent generalized inverses is the core inverse introduced by Baksalary and Trenkler [3], which
is recalled next. Let A € C™ ™ the matrix X € C"*" is called the core inverse of A if AX = Py
and R(X) C R(A). The core inverse of a matrix is unique and is denoted by A®. Motivated by the
work of Baksalary and Trenkler [3], several authors introduced different generalized inverses and justified
their application to linear equations (see [4], [19], [25], [27], [33], and the references cited therein). In
2014, Malik and Thome [19] introduced a new generalized inverse for square matrices, called DMP in-
verse, as follows: for any A € C"*", the unique matrix X € C"*" that satisfies the matrix equations
XAX = X, XA = APA, and AFX = AFAT where k = ind(A), is called DMP inverse of A. It
can be computed using the expression X = APAAT. In 2017, Meng [21] generalized the notion of the
DMP inverse to a matrix of arbitrary order, the author called it W-weighted DMP inverse. The defini-
tion of W-weighted DMP inverse is recalled next. For any matrix A € C™*™ and W € C"*™ such that
ind(AW) = k, the unique matrix X = WAp W AAT that satisfies the following equations: XAX = X,
XA =WApwWA and (WAMHX = (WARLAT is called the W-weighted DMP inverse of A and is
denoted as AII/DV’T.

These generalized inverses have numerous applications. For example, the Moore-Penrose inverse is
used to find the least-squares solution of a given linear system. The group inverse is applied to solve a
problem involving Markov chains. The Drazin inverse helps to solve singular differential equations and has
applications in numerical analysis, neural computing, partial orders, etc. The core inverse helps study partial
order theory and find the Bott—Duffin inverse. MPCEP inverse is used to solve linear systems of equations
arising in chemical equations, robotics, coding theory, etc. Interested readers are referred to [3], [5], [6], [14],
[15], [17], [23], [25], and [32].

In 2016, Wang and Liu [29] proposed a new generalized inverse called generalized Drazin (or GD) inverse
as follows. For A € C"*", a matrix X € C"*" is called GD inverse of A if

AXA=A, XA = AF and AP X = AF,

where k = ind(A). It is denoted by X = AYP. In general, this inverse is not unique. We denote the set of all
GD inverse of a matrix A by A{GD}. In 2018, Coll et al. [9] introduced weighted generalized Drazin inverse
(WG-Drazin), which is an extension of the generalized Drazin inverse for a square matrix to a rectangular
matrix. Let A € C™*" W € C"*™, ky = ind(AW), ke = ind(WA), and k = max{ki, ke}. A matrix
X € C"*" is W-weighted G-Drazin inverse of A if it satisfies the following matrix equations:

(1.1) WAWXW AW = W AW,
(1.2) (AW)MHXW) = (AW)*,
(1.3) (WX) (WAL = (WA

It is denoted by AYP-W [9]. The set of all weighted generalized Drazin inverse of matrix A is denoted by
A{GD,W}. We further refer interested readers to [9], [11], [24], and [28] for more works on generalized
inverses and their extensions.

In 2020, Herndndez et al. [13] introduced another generalized inverse called generalized-Drazin—-Moore—
Penrose (GDMP) inverse. The definition of GDMP inverse is stated next. Let A € C"*™ and k = ind(A).
For each ASP € A{GD}, a GDMP inverse of A, denoted by A“PT is an n x n matrix A9PT = AP AAT.
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This inverse is also not unique. The symbol A{G D7} stands for the set of all GDMP inverses of A. However,
the notion of GDMP is limited to square matrices only. This article aims at expanding the applicability of
this generalized inverse. To do this, we redefine it so that the new generalized inverse exists for a larger class
of matrices.

Let A and B be invertible matrices. Then, (AB)™! = B~'A~! and (AB)™! = A~'B~! are known as
reverse-order law and forward-order law, respectively. The first expression is known to be always true, while
the later expression is not always true. These laws also do not hold for generalized inverses in general. In
1966, Greville [12] first obtained some sufficient conditions under which the reverse-order law holds for the
Moore-Penrose inverse, that is, (AB)T = BTAf. The same problem was considered by several authors for
other generalized inverses also. For example, Xiong and Zheng [31] provided some sufficient conditions for
the reverse-order laws of {1,2,3}- and {1,2,4}-inverses. In 2016, Wang et al. [30] obtained a few results of
the reverse-order law for the Drazin inverse. Deng [10] studied the reverse-order law for the group inverse on
Hilbert space. The reverse-order law is used to analyze Markov chains [22]. Also, it directly applies to the
celebrated Karmarkar algorithm [16]. Similarly, the forward-order law has many applications in numerical
linear algebra (see [1]). In 2018, Castro-Gonzalez and Hartwig [7] provided some sufficient conditions for the
forward-order law for the Moore-Penrose inverse, that is, (AB)" = ATBT. In the same year, Liu and Xiong
[18] presented forward-order laws for {1,2,3}- and {1,2,4}-inverses.

In 2022, Baksalary et al. [2] provided certain sufficient conditions under which the Moore-Penrose inverse
is additive, that is, (A4 B)" = At 4 Bf. Motivated by the works of these authors, we obtain various sufficient
conditions for the reverse-order law, the forward-order law and the additive property for GD, W-weighted
GD, GDMP, and W-weighted GDMP inverse.

This article aims to propose two new generalized inverses and investigate their properties by impos-
ing certain conditions. To fulfill our objective, the rest of this article is organized as follows. In Section
2, we recall some preliminary results. We then propose two new generalized inverses in Section 3, which
are extensions of GDMP inverse, and we call it W-weighted GDMP inverse and W-weighted GDR in-
verse, respectively. After that, we investigate some of their properties and obtain their representations.
Section 4 discusses some results on dual W-weighted GDMP, which are analogous to those established in
the previous sections. Section 5 establishes the reverse-order law, the forward-order law and the additive
property for GD inverse, W-weighted GD inverse, GDMP inverse, and W-weighted GDMP inverse, respec-
tively.

2. Preliminaries. This section recalls a few terminologies that this article uses frequently and also
collects some established results from the literature that play a significant role while proving our main
results in the next sections. O € C™*" is the null matrix of size m x n. I, denotes the identity matrix
of size r x r. Let Ay € C™*"™ and A € C™*"™., Then, A; & A, represents the diagonal block matrix

Al 0]
o
W-weighted G-Drazin inverse of a matrix.

] € Clritrs)x(r24m4) - Now, we state the first result, which is proved by Coll et al. [9], and is for

LEMMA 2.1 (Remark 2.1, [9]). Let A € C™*" and W € C"*™.

(i) If A= O, then any matriz of suitable size is a W-weighted G-Drazin inverse of A.
(i) A{GD, W} C WAW{1}.
(iii) If AW and WA are nilpotent matrices, then WAW{1} C A{GD,W}.
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Next, we state a result that gives a representation of W-weighted G-Drazin inverse of a matrix.

THEOREM 2.2 (Theorem 2.1, [9]). Let A € C™*", W € C"*™, ky = ind(AW) and ke = ind(W A).
Then, there exist nonsingular matrices P € C™*™ and Q) € C™"*" such that

A=P(A & A)Q " and W = Q(Wy & W) P!,

where Ay and W1 are t X t nonsingular matrices, and AsWo and Wo Ao are nilpotent matrices of indices kq
and ko, respectively. Moreover, X € A{GD, W} if and only if

(W1 AiW)™t Xoo

X=P
Xo1 Xo

Qfl
with X19Wo = O, W5 X251 = O and Xo € WaAsWo{1}. In particular, if m = n and AW = WA, then Q = P.
In this case, if W = I,, then W1 = I; and Wy = 1,,_;.

THEOREM 2.3 (Proposition 2.13, [2]). Let P,Q € C™ ™ be orthogonal projections. Then, (P + Q)! =
P+ Q if and only if PQ = O.

3. Main results. In this section, we discuss the main results of this article. In particular, we propose
two new generalized inverses and then investigate their properties. We first define W-weighted GDMP
inverse of a matrix of arbitrary order.

DEFINITION 3.1. Let A € C™*", W € C™™ and k = max{ind(AW),ind(WA)}. Let ASPW ¢
A{GD,W?}, a W-weighted GDMP inverse of A, denoted by ASPTW be an n x m matriz

AGDT,W — WAGD’WWPA,

where Py denotes the orthogonal projection onto the space R(A).

REMARK 3.2. From the above definition, it is clear that a W-weighted GDMP inverse of A coincides
with a GDMP inverse when W = 1. Let A= 0O € C™*". Then, O € C"*™ is a W-weighted GDMP inverse
of A.

The following example demonstrates Definition 3.1.

EXAMPLE 3.3. Let A = [I 1] € C'*2 and W = {_11} e C**1. (learly, AT = { }, AW = 0,

1/2
-1
1
GD inverse, we get ASPW =[a b € C1*2, where a,b € C are arbitrary. Further, we have P4 = 1. Now,

AGPEW — W AGD W Py = [ZS], where a,b € C are arbitrary.

WA= { 11} and k = maz{l = ind(AW), 2 = ind(WA)} = 2. Then, by the definition of W -weighted

From the above example, it is clear that, in general, a W-weighted GDMP inverse of a matrix A is
not unique. If we replace A" by A(2) in the Definition 3.1, then we will have another generalized inverse
that contains the class of previous generalized inverse, and we call it W-weighted GDR,, where R stands for
reflexive (since A(1?) is a reflexive inverse of A). This definition is produced below.

DEFINITION 3.4. Let A € C™", W € C™™ and k = maz{ind(AW),ind(WA)}. Let ASPW ¢
A{GD,W?}, a W-weighted generalized-Drazin-reflerive (GDR) inverse of A, denoted by ASPEW e an
n X m matric
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AGDR,W — WAGD’WWTA,

where Ty = AAL2)

REMARK 3.5. Note that in the above definition, Ty is used just for the notational simplicity to make it
similar to W -weighted GDMP inverse definition. Also, from the above definitions, it is clear that A{GDT, W'}
C A{GDR,W}.

Now, we prove our first main result of this section with the help of Definition 3.1.

LEMMA 3.6. Let A€ C™" W € C™™ and k = maz{ind(AW),ind(W A)}. If ASPTW ¢ A{GDt, W}
and ASPW ¢ A{GD, W}, then a W-weighted GDMP inverse of the matriz A satisfies the following proper-
ties:

(i) WAACGPYW AW = WAW.

(ii) AGPTWA = WACDW VA,

(iii) AGPEW AW Ak = (W A)F.

(iv) WAACGPTW =W if W = A*.

(v) AGDEW (AW)R+L = (W AW = W(AW)*.

( 1) AAGDT, W(AW)k+1 (AW)k+1 and AGDPT W(AW)kJrlA (WA)]C‘Fll
(vii) (WARFLAGDEW — W (AW)kPy = (WA)FW Py.
(viii) AGPTW p, = AGPTW,

( X) AGDT WA(WA>k+1AGDT W _ (WA)]H'IAT.

(x) AGDHIW AAGDEW AT = AGDLW AW
( )WAAGDTWAAGDTW WAAGDTW
(Xll) (AGDT WA)(WA)kJrl — (WA)kJrl(AGDT,WA)‘

Proof. (1) WAACPTWAW = WAW ASPWIW AATAW = W AW AGPWIW AW = W AW.

(i) AGDTW A = WAGDW W PyA = WASDW Y A,

(iii) AGPTW AW A = WASDWW PLAW Ak = WASPWI AW Ak = WAGDW (W A+ =
(WA)E.

(iv) Since W = A*, we have WWT = ATA and WIW = AAT. Thus, WAACPHW = W AW AGP-W 1/
AATAAT = WAWAGD WWAWWTAT = WAWWTAT = WAATAAT = WAAT = WWIW = W.

(v) AGDLW (AW )R+L = W AGDW W Py AW (AW)F = W ASDW W (AW )F+1 =
WAGDW (W A+ = (W AW = W (AW)F.

(vi) Pre-multiplying ASPTHW (AW)*+1 = W(AW)* by A, we obtain AAGPTW (AW)F+1 = (AW)F+1,
Similarly, post-multiplying AGPTW(AW)F+1 = (WA*W by A, we get ASPEW(AW)F+14 =
(WA)k'H.

(vil) (WARFTAGPEW — (W AW ACDW W Py = W(AW )FH1ACPW WP, = W(AW)* Py =
(WA)EW Py.

(viii) AGPTW P, = WACPWWWAATAAT = WAGPWI Py = AGDTW,

(ix) From (vii), AGPTW A(W A)kHLACGDTW = AGDTEW(AW)k+1 P, Now, applying (v), we get
AGDT,WA(WA>k+1AGDT,W — (WA)kWPA — (WA)k'HAT,

(x) AGPTW AAGDTW AW = WACD-WW AATAW ACPWIW AATAW = WASPWIW AW AW W AW
= WASPWWAW = AGPTW AW,

(xi) Similar to part (x).

(xii) (AGPTWAYW AL = WACDW W AAT AW A)FHL = WASDW W AW AR+ =
WAGDW (W AL W A) = (WAR(WA) = (WAL And (WA)RHL(AGDTW A) =
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(WA ACDWI AATA = (WARHIWACDWIVA = W(AW)H+1ACDWIT A = W(AW)FA =
(WA)E+L. So, (ACPHW A) (W A)E+L = (W A)F+1(AGDTW 4). 0

THEOREM 3.7. Let A € C™*", W € C"*™ and k = max{ind(AW),ind(WA)}. If W = A*, then
WAAGPTWIVT is an orthogonal projection onto R(W).

Proof. By Lemma 3.6 (iv), we have W AASPHW — W. Post-multiplying by W1, we get WAAGPT-W /T
= WWT. But, WWT is an orthogonal projection onto R(W). Hence, WAASPEW W1 is an orthogonal
projection onto R(W). d

Under certain fixed weight W, a W-weighted GDMP inverse coincides with different well-known gener-
alized inverses. This fact is investigated in the following result.

THEOREM 3.8. Let A € C™*" W € C™*™ and k = max{ind(AW),ind(WA)}. For each ASPW ¢
A{GD,W?}, a W-weighted GDMP inverse of the matriz A satisfies the following properties:

(i) If W € A{1}, then APTW ¢ A{1}.

(ii) If W € A{2}, and WASPW s idempotent, then AGPTW ¢ A{2}.
(iii) If W = A*, then AGPTW = Ax AGDW gx

If W = AT, then AGPTW AAGDTW = AGDTW — AT,

— — — —

(iv

Proof. (i) If W € A{1}, then we have

AATPTW A = AAW APV AN Py A
(3.4) = AAM AGDW 4 4,

By Lemma 3.6 (i), we get A AAMAGPW AW AAMW) = AM AAD | pre and post-multiplying by A,
we have AAMACPW A1) A = A, Now, using this expression in (3.4), we get AASPHW A = A and
thus AGPLW € A{1}.

(i) As W € A{2}, we have WAW = W. Also, WASP-W is idempotent, so (W AGP:W)2 = W AGDW,
Now,

AGPEW AAGDTEW — W AGD WY Py AW ASPW W Py
= WASPWW AW AP W Py
= (WASPW ) WP,

= WALV WP,
_ AGDT7W'

(iii) If W = A*, then

AGDT,W _ A*AGD,WA*PA
— A*AGD’WA*.
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(iv) If W = AT, then

AGDTW g AGDTW — AT AGDW AT A AT AATAGPW AT AAT
= ATAATAGPW AT AATAGDW AT AAT
= ATAATAGPW AT AAT
— AGDI,W
= WAPWVWP,
= ATAAT
= Al O

The following result provides a sufficient condition under which a W-weighted GDMP inverse of an EP
matrix coincides with its Moore-Penrose inverse.

THEOREM 3.9. Let A € C™*"™ be an EP matriz and W = P4. Then, ASPHW = At

Proof. If W = P, then the equation WAW AGPWIW AW = W AW implies that ASP-W € A{1}. Now,
AGDPEW — PAAGD’WPEl = PyACPW P, = AATAGDW AAT. Since A is an EP matrix, therefore, A and Af
commute and thus, AGPTW = ATAAGDW AAT Further, as A9PW ¢ A{1}, we have AGPTW = ATAAT =
AT, d

If we know the nilpotency of the matrices ASPTW (AW)*+1 4 and AAGPHW (AW)k+1 then we can guarantee

that the sets WAW {1} and A{GD, W} are the same. This is shown in the next result.

THEOREM 3.10. Let A € C™*", W € C™*™ and k = max{ind(AW),ind(W A)}. If AGPTW (AW )k+1 A4
and AAGPTW (AW)E+L are both nilpotent, then W AW {1} = A{GD,W}.

Proof. By (vi) of Lemma 3.6, we have AACPTW(AW)*+L = (AW)F+1 and AGPTW(AW)F+H1A =
(W A)k+1 which imply that (AW)*+1 and (W A)**+! both are nilpotent. So, AW and W A both are nilpotent.
By Lemma 2.1, we get WAW{1} C A{GD,W}. Also, A{GD, W} C WAW{1} is true by the definition of
A{GD,W?}. Hence, WAW {1} = A{GD,W}. O

The following result shows that if X is a {1}-inverse of WAW, then it is also a {1}-inverse of

WAAGPTW AW,

THEOREM 3.11. Let A € C™*", W € C"*™ and k = maz{ind(AW),ind(W A)}. Then, WAW {1} C
WAAGPEW AW {1},

Proof. Let X € WAW{1}. By the Lemma 3.6 (i), we have WAAGPTW AW = WAW. So,
WAASPTW AW XWAACPTW AW = WAW XW AW.
Since, X € WAW {1}, using the above equation, we have
WAACSPEW AW XW AAPTW AW = WAW = WAASPHW AW
Hence, WAW {1} C WAACPTW AW {1}. d

Now, we obtain some representations of the introduced generalized inverses. In this direction, we first
prove the following result which talks about the form of W-weighted GDR for a particular form of {1,2}-
inverse of A; & Ay. For proving this, we will use a result from [20] which says that A§1’2) &) Aéu) €
(A1 @ A3){1,2}. Clearly, if A; is nonsingular, then A§1’2) coincides with the usual inverse A7 .
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THEOREM 3.12. Let A € C™*", W € C"*™, k = max{ks = ind(AW), ko = ind(WA)}. Then, there
exist nonsingular matrices P € C™*™ and Q) € C™*™ such that

A=P(A @ A)Q ' and W = QW @ Wa)P ™!,

where A1 and W1 are t X t nonsingular matrices, and AsWs and Wy As are nilpotent matrices of indices kq
and ks, respectively. Moreover, for a particular A7' @ Aéw) € (A1 ® A9){1,2}, the representation of GDR
18

A 0 o

AGDRW _ P
@00 WaXoWoTha, ’

where Xo € WoAsWo{1} and Ta, = AQA(QLZ),

Proof. From Theorem 2.2, we have
A=P(A & A)Q ! and W = Q(W, @ Wo)P~ 1,

where A; and Wi are t X t nonsingular matrices, and AsWs and W5 As are nilpotent matrices of indices ky
and ko, respectively. Now,

AGDR,W _ WAGD,WWAA(I,Z)

~0Q _Wl O (W1A1W1)_1 Xi2| [WA O A O Al_l o p-1
o L O Wy X9 X O Wy O A, 0] Aélg)
~-Q Wy O] [(WhA W)™t X [Wh O |1 o p-1
o W Xoy Xy | [0 Wy |0 AyA0?
"y (W (W1 A Wh)~t W, W1X12W2TA2] p-1
W X1 Wi WoXoWoTa,
_0 [ ALY W1X12W2TA2} =
(WoXo1 W1 WoXoWoThy,
By Theorem 2.2, we have X1osWs = O and W2 X5 = O, so we get
ATt O
AGDRW _ 1 p-1
Vo waxewara,| T
where Xy € WodoWa{1} and Ty, = A3 AJ™?. 0

The following example is provided in support of Theorem 3.12.

-1 3 0 0
EXAMPLE 3.13. Let A= | 0 1 —1/2 —1/2| € C*** and
0 1 1/2 1/2
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-1 3/2 3/2
0 1/2  1/2 s .
= . D A h
w 0 —1/2 1/2 eC ecomposing A and W, we have
0 172 —1/2
1 0 0 12 00 _11 1 8 8
A=10 1/2 —-1/2f (1 1 0 O 0 0 1 -1l
0 1/2 1/2 00 01 0 0 1 1
and
/2 —=1/2 0 01[-1 2 0]
S22 12 00 o0 1 -1 0
=15 0 /2 1/2 {0 0 1 8 _11 1
0 0 -1/2 1/2 0o 0 0

Clearly, A and W have the forms A = P(A; @ A2)Q1 and W = Q(Wy @ W2)P~L, respectively, where

1 2 -1 2 1 1 0 0
A = |:1 1:|, Wy = |:1 _1], Ay = [0 1], Wy = |:0] Here, P = |0 1/2 —1/2| and Q =
0 1/2 1/2

12 -1/2 0 0

/2 12 0

0o 0 1/2 1/2

0o 0 -1/2 1/2
WoAsWo{l}, where a,b € C and using Theorem 3.12, we get

0
are invertible matrices. Further, WoAsWy = [O} Thus, taking Xo = [a b] €

-1 2 0
-1 0

AGDRW _
@ 0 a
0

0

o O =

where a € C is arbitrary.
Since R(AACPTW) = R(AW ACP-WIV AAT) C R(AW ASPW) and N(ASP-WIWA) C N(AWAGPWIV A) =
N(AGPTW A). So, we have the following remark.

REMARK 3.14. Let A € C™*™ and W € C"*™. Then,

(i) R(AAGPTWY) C R(AWAGD-W),

(i) N(AGP-WIWA) C N(AGPTW 4).

If we assume WA and AW to be EP matrices, then with the help of EP-core nilpotent decomposition, we
can compute a W-weighted GDMP inverse of a matrix.

THEOREM 3.15. Let A € C™*"™ and W € C"*™ be such that both AW and WA are EP matrices,
k1 = ind(AW), and ko = ind(W A). Then, there exist unitary matrices P € C™*™ and @ € C™*™ such that

A=P(A & A)Q* and W = Q(W, & W) P,

where Ay and W1 are t X t nonsingular matrices, and AsWs and W As are null matrices.
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Further, a W-weighted GDMP inverse of A is given by
AT O
AGDEW _ 1 pP*.
@ O O
In particular, if m =n and AW = WA, then Q = P. In this case, if W = I, then Wy = I; and Wy = I,,_4.

Proof. Suppose that one of the following two disjoint situations m # n or m = n with AW # W A holds.
As AW and W A are EP matrices, there exist unitary matrices P € C"™*" and @ € C™*" such that

AW =P(T® O)P" and WA =Q(S s 0)Q",

where T'and S are nonsingular matrices [6]. It is obvious that (AW)¥A = A(W A)*, where k = max{ky, k2}.
Let

A Ap] o, [W1 W12:| "
A=P and W = P*.
[Am As | @ @ War W
Then,
T 0] A A TFA, TFA
AWVEA — P 1 12| o« _ p 1 12|
(AW) [O O} | A1 Ao @ 0] 0] @
and
ASF O
AWAr =p | P*
(W ) {Aﬂsk O]
A O
So, A12 = O and Ay = O, and therefore A = P o0 A Q*. Now,
2
A1W1 A1W12 T O
AW =P P*=P P*.
e It L P

Thus, Wis = O, AsWs = O and AsWso = O. Similarly, when we calculate WA, we get Wy, = O and
WoAs = O. Using the equation WAW AGP-WW AW = W AW, we get

AGDW _ p {(W1A1W1)1 Xo1

Xo1 Xz}Q ’

such that X155 = O and W5 X5, = O. Hence,
AGD]‘,W _ WAGD’WWPA

_0 Wy O] [(Wh AWy~ Xp] Wy 0][A O] |A7Y O p
O W, Xo Xo| O Wo] O Ay | O Al
_ Q _Wl @) (W1A1W1)71 X12 W1 @) I (@) p*
O W, Xo Xo| O Wa| |0 AyAl
_ Q _Wl(W1A1W1)_1W1 W1 X12Wo I @) p
WX W, WaXoWo | |0 Ay Al
A 0
= Pﬁ'<
@ O W2X2W2A2Aé1’2)
(AT O] .,
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The following example demonstrates Theorem 3.15.
1/2 1/2
L 1o 2x3 3x2 L1
EXAMPLE 3.16. Let A = 11 ol € C and W = [1/2 1/2| € C°**. Then, AW = 11 and
0 0

1 10
WA= |1 1 0| are EP matrices. The EP decompositions of the matrices A and W are given as
0 00

V2 1/V2 0
C[1v2 1v2702 0 0 1
A‘L/x/i —Uﬂ] [0 0 0] 1/0¢§ *1éﬂ o
and
1/vV2 1/v/2 0][1 0 )
47 B /N2 12
W= [1ve Ve ol fo ol e

which are in forms A = P(A; @ A2)Q* and W = Q(W1 @ Wa)P*, where A; = [2], W1 = [1], A2 = [0 0],

V2 1/V2 0
0] L [UVE 12 [ o
Wy = [0}, P= [1/\/5 12 and Q = 1/8/5 —1(/)\/§ (1) . Therefore, by Theorem 3.15, we have
1/vV2 1/vV/2 0] [1/2 0 VB 1/vE 1/4 1/4
ACPTW — 11/3/2 —1/v2 0l | 0 0 / / =|1/4 1/4
0 0 Lo o V2 —1/v2 0 0

Note that the representation of a W-weighted GDMP inverse need not be unique as the matrices P and @
need not be unique in EP-core nilpotent decomposition.

4. Dual W-weighted GDMP or W-weighted MPGD. Similar to the definition of W-weighted
GDMP inverse, we can define its dual. This section is devoted to the brief discussion on dual W-weighted
GDMP (or W-weighted MPGD). Most of the results obtained in the previous section can be obtained
analogously for this particular generalized inverse. Therefore, we discuss only some of the important results
without its proof. First, we define dual W-weighted GDMP inverse.

DEFINITION 4.1. Let A € C™*", W € C™™ and k = max{ind(AW),ind(WA)}. Let AGPW ¢
A{GD, W}, a dual W -weighted GDMP inverse of A, denoted by AT¢PW be an n x m matriz

ATGD,W _ PA* WAGD’WVV,
where Pax denotes the orthogonal projection onto the space R(A*).

We present our first result of this section below.

LEMMA 4.2. Let A € C™", W € C™™ and k = max{ind(AW),ind(WA)}. For each ASPW ¢
A{GD,W?}, a dual W-weighted GDMP inverse of the matriz A satisfies the following properties:
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(i) WAATCDW AW = WAW.

(ii) WAATGDW AATGDW — yi7 gATGD.W
(ifi) ATGDW AATGDW AT = ATGDW AWy
(1v) PA* TGDW ATGD W
(v) (WA)RHLATGDW — [ (AW )E.
( 1) (WA)k+1ATGD WA = (WA)k'H.
(vii) ATEDW(AW)FHL = Py (WA)FW.
(viii) AATGDW (AW )+ = (AW)FHL,
(ix) (AW)FAATCDW — (AW,

The following result can be proved proceeding similarly as in Theorem 3.8.

THEOREM 4.3. Let A € C™*" W € C™*™ and k = max{ind(AW),ind(WA)}. For each ASPW ¢
A{GD,W?}, a dual W-weighted GDMP inverse of the matriz A satisfies the following properties:

(i) If WA and AW both are idempotent matrices, then AATCPW A = AW A.
(ii) If W € A{1}, then ATGPW ¢ A{1}.
(iii) If W = A*, then ATGPW = A* AGDW gx,
(iv) If W = AT, then ATGDW AATGDW — ATGDW — W AW = Af,

Similarly, we can prove the next result as in Theorem 3.9.

THEOREM 4.4. Let A € C™*"™ be an EP matriz and W = Pa~. Then, ATGP-W = At

We end this section by stating the next result which is an analogue of Theorem 3.15.

THEOREM 4.5. Let A € C™*"™ and W € C"*™ be such that both AW and WA are EP matrices,
k1 = ind(AW), and ky = ind(W A). Then, there exist unitary matrices P € C™*™ and Q € C™*" such that

A=P(A & A2)Q* and W = Q(W, & W) P,

where Ay and W1 are t X t nonsingular matrices, and AsWs and WaAs are null matrices.
Further, a dual W-weighted GDMP inverse of A is given by

AT O
TGD,W — 1 *
wom g5 9

In particular, if m =n and AW = WA, then Q = P. In this case, if W = I, then Wy = I; and Wy = I,,_4.

5. Reverse-order law, forward-order law, and additive property. In this section, we present
some sufficient conditions under which the reverse-order law, forward-order law, and additive property hold
for GD, W-weighted GD, GDMP, and W-weighted GDMP inverse. Also, we discuss some results in which
the absorption law holds for GD inverse.

5.1. GD inverse. First, we illustrate the reverse-order law for GD inverse under the assumption of a
few conditions.

THEOREM b5.1. Let A,B € C™*™ with AB?> = B?A = BAB and k = max{ind(A),ind(B)} > 2. If
ABBSP = BBEP A and BBSP AGP = AGPBBED | then (AB)GP = BGD AGD,
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Proof. If AB? = B?A = BAB, then (AB)* = A*B* = BFAF AFT1Bk = Bk Ak+1 and AFBr+1 =
BFtLAF for k > 2. Now, ABBSPASPAB = AASPBBYP AB = AAYP ABB“P B = AB. Further, we have

BGDAGD(AB)k+1 — BGDAGDAk+1Bk+1
_ BGD gk gk+1
_ BGD pgk+1 gk
= Bk AF
= AFBF
= (AB)",

and

(AB)k+1BGDAGD — Ak+1Bk+lBGDAGD
— Ak+1BkAGD
— BkAk-i-lAGD
— BkAk:
= (AB)*.

Using the definition of GD inverse, it clearly shows that (AB)¢P = BEP AP, 0

If AB = BA and BBSPASP = ASPBBYP | then the reverse-order law for GD inverse is true for every
positive integer k.

THEOREM 5.2. Let A,B € C™™ and k = max{ind(A),ind(B)}. If AB = BA and BBYP AP =
ASPBBEP | then (AB)GP = BEP AGD,

Proof. We have AAGPA = A, AGP AL = Ak AF+1AGD — A and BBSPB = B, B¢PB++1 = Bk,
BFt1BGD — Bk Now,

ABBYP AP AB = AA°P BBYP AB
= AAPBB%PBA
= AAYPBA
= AASP AB

(5.5) = AB,

BGDAGD(AB)k+1 — BGDAGDAkJrlBkJrl
— BGD gk pgk+1
— BGD pk+1 yk
— Bk Ak
— AkBk
(5.6) = (AB),
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and

(AB)k+1BGDAGD — Ak-{—lBk-i-lBGDAGD

— Ak+1BkAGD
_ Bk Ak+14GD
— BkAk
(5.7) — (AB).
From (5.5), (5.6), and (5.7), we get (AB)¢P = BED AGD. O

The next result discusses the forward-order law involving GD inverse.
THEOREM 5.3. Let A,B € C™™ and k = max{ind(A),ind(B)}. If AB = BA and BPBA =
ABYP B, then (AB)¢P = AP BED,

Proof. Clearly, AASPA = A, AGP AR+ = Ak ARHLAGD — A BBEPRB = B, BGPBk+1 = Bk and
BFt1BGED — Bk Now,

ABASPBEP AB = BAASPBEPBA
= BAA“P AB¢PR
= BAB“PB
= ABB“PB

(5.8) = AB,

AG’DBGD(AB)/C+1 — AGDBGDBk+1Ak+1
_ AGD gk gk+1
_ AGD gk+1pgk
= A*B*
(5.9) — (AB",

(AB)k-‘rlAGDBGD — Bk+1Ak+1AGDBGD
— Bk-‘rlAkBGD
— AkBk+1BGD
— AkBk
(5.10) = (AB)*.

From (5.8), (5.9), and (5.10), we get (AB)¢P = AGP BGD, 0

A set of necessary conditions are obtained in the next result for the absorption law of a GD inverse (i.e.,
ASP(A + B)BEP = AGP 4 BGD),

THEOREM 5.4. Let A, B € C™*™ and k = max{ind(A),ind(B)}. If A°P(A + B)B®P = AGP 4 B&D
then AASPBBGP = AAGP  AGPABCP B = BGPB, A*BBCP = A%, and AP AB* = B*.
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Proof. We have
(5.11) AYP (A4 B)BEP = ACP 4 BEP,
Pre-multiplying by A**! and A in equation (5.11), we get
Ak+1AGD(A 4 B)BGD — Ak+LAGD 4 pk+1pGD
AF(A+ B)BEP = AF 4 AR BEP
Ak+1BGD +AkBBGD _ Ak + Ak:+lBGD
AFBBYP = A*
and
AAGP (A 4+ B)BEP = AAGP + ABCP
ABGD + AAGDBBGD _ AAGD +ABGD
AAGDBBGD _ AAGD
respectively. Again, post-multiply by B**! and B in equation (5.11), we get
AGD(A + B)BGDBk+l _ AGDBk:+1 + BGDBk+1
A9P(A+ B)B* = AP B + B*
AGDABk 4 AGDBk—‘rl _ AGDBk+1 + Bk

AP AB" = B*
and
AYP(A+ B)BYPB = A“PB + B¢PB
AP ABCPB + ASPBBYPB = A“PB + B¢PB
AGDABGDB +AGDB _ AGDB —|—BGDB
AGDABGDB _ BGDB
respectively. 0

An immediate consequence of the above result is shown next as a corollary.

COROLLARY 5.5. Let A, B € C™™ and k = max{ind(A),ind(B)}. If AP (A+ B)BEP = AGP + BGD,
then R(B*) C R(A“P ABSPB) and R(A*) = R(A*B).

Proof. From Theorem 5.4, we get
R(B*) = R(A°P AB*) = R(A“P AB®P B*1) C R(A“P AB®P B).

Again, from Theorem 5.4, we get R(AF) = R(A*BBYP) C R(A*B) C R(A*) which implies that R(AF)
R(A*B).

o |l

Baksalary et al. [2] proved that (A + B)" = A" 4+ BT under certain assumptions. Sufficient conditions
for (A+ B)¢P = AP + BEP are obtained next.

THEOREM 5.6. Let A,B € C™*™ with AB = BA = O and k = max{ind(A),ind(B)}. If A°PB =
BASP = O and B¢PA = AB®P = O, then (A+ B)%P = AGD + BGP.

Proof. We have AB = BA = O, so by the binomial expansion (A + B)" = A™ + B™ for every positive
integer n. Further, we have
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(A+ B)(AYP + BEP)(A + B) = (AAYP + ABYP + BA“? + BB“P)(A + B)
= AAYP A+ ABYP A+ BAP A+ BBYPA+ AA“PB
+ ABSPB + BA“PB + BB¢PRB
= AASPA + BBYPB
(5.12) = A+ B,

(AGD +BGD)(A+B)k+1 — (AGD _|_BGD)(Ak+1 4 Bk+1)
— AGD pgk+1 | \GDpk+1 | BGD pk+1 | pGD pk+1
:Ak+AGDBk+1 +BGDAk+1 —i—Bk
= AF + B*
(5.13) = (A+ B)F,

and

(A—I— B)k+1(AGD + BG’D) _ (Ak-i-l =+ Bk-‘rl)(AGD —I—BGD)
_ Ak+1AGD + Ak+1BGD + Bk+1AGD + Bk+lBGD
:Ak+Bk
(5.14) = (A+ B)~.

From (5.12), (5.13), and (5.14), we get (A + B)“P = AGP 4 B&P, 0

5.2. W-Weighted GD inverse. If W is involutory, then the reverse-order law holds for W-weighted
GD inverse under some conditions. Throughout this subsection, we consider k = maxz{ind(W A), ind(AW),
ind(WB),ind(BW)}.

THEOREM 5.7. Let A,B € C"™ ™ and W € C™*™ be an involutory matriz with WA = AW and

WB = BW. If AB = BA, WBWAGPW — AGDWIWBW and WAWBEPW = BEDWW AW, then
(AB)GQW — BGD,W pGDW

Proof. We have W2 =TI and AB = BA. Now, pre and post-multiplying by W, we get

WABW = W BAW
WAW?BW = WBW?2?AW
(5.15) (WAW)(WBW) = (WBW)(WAW).

Now, we check BEP:W AGD.W ig a W-weighted GD inverse of AB.

WABW BEPW ACDWyy ABW = W BWW AW BEDW ASD-Wyy BWW AW
= WBWBEPWWAWW BW ASP-W W AW
= WBWBSPWWBWW AW AP W W AW
= WBWW AW
= WBAW

(5.16) = WABW.
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Ak+1 (Bw)k+1BGD,WAGD,WW

_ Ak+1wk+1(Bw)k-‘rlBGD,WAGD,WW
— Ak+1Wk+1(BW)k+lBGD’WWWAGD’WW
= (AWM BW)kW AP Wy

( ) (AW)k+1AGD WW
= (BW)*W (AW)k
= (ABW)*,

WBGD WAGD W(WA k?+lBkt+1

)
— WBGD,WAGD,W(WA)IC+1W}€+IB]€+1
(

_ WBGD’WWWAGD’W WA)k+lwk+1Bk+l

— WBGD,Ww(WA)k(WB)k-i-l
— WBGD,W(WB)kJer(WA)k

— (WB)

W (W A)*

= (WAB)".

Ak-‘rl (BW)kJrlBGD’WAGD’WW

_ Ak+1wk+2(Bw)k+lBGD,WWWAGD,WW
_ AkJrlWk:+1W(Bw)k+lBGD,WWWAGD,WW

(AW)kJr ( )k AGD’WW
( )k(AW)k+1AGD WW
= (BW)*(AW)*

= W (AB)*
= W*(AB)*

A.
If Wktl =T, then
(ABw)k+1BGD,WAGD,WW —
(5.17)
and
WBGD WAGD W(WAB)k)+1
(5.18)
If W* = I, then
(ABW)k+1BGD’WAGD’WW _
(5.19)
and
WBGD,WAGD,W(WAB)IC+1 _
(5.20)

Hence, (AB)GP-W = BGDW AGD.W

— (ABW),

WBGD,WAGD,W(WA)k+1Bk+1

WBG’D WWWAGD W(WA)k-i-ka-‘rQBk-i-l
WBGD WWWAGD W(WA)k+1WWk+1Bk+1
WBPWW (W AW (W B)*+1

WBEPW (WB)M (W A)

(WB)* (W A)*

= (W)*(BA)*

= (W)*(BA)*

= (WAB)*.
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The proof for the forward-order law of W-weighted GD inverse is similar to the proof of Theorem 5.7
and is stated next.

THEOREM 5.8. Let A,B € C™ ™ and W € C™*™ be an involutory matriz with WA = AW and

WB = BW. If AB = BA, WBWAGPW — AGCDWWBW and WAW BGPW = BEDWW AW, then
(AB)GD,W — AGD.W pGDW

The following result collects a set of sufficient conditions for the additive property of W-weighted GD
inverse.

THEOREM 5.9. Let A,B,W € C™™ with AWBW = BWAW = WBWA = WAWB = O. If
BEPWW A = AWBSPW = O and ASPWWB = BWASPW = O, then (A+B)“PW = AGDW 4 BGD.W,

Proof. Putting A9P-W 4 BEDW in W-weighted GD inverse definition, we get

W(A+ BYW(APW o BEP-WYW (A 4+ B)W
= (WAW + WBW)(ASPW + BEPWY(W AW + WBW)
= (WAW + WBW)(AYPWW AW + ASPWw BW
+ BEPWW AW + BEPWW BW)
= (WAW + WBW)(APWW AW + BP-WWw BW)
= WAWASPWW AW + W AW B¢PWWwW BW
+WBW ASPWW AW + W BW B¢P-Ww BW
= WAW + WBW
= W(A+ B)W.

We have BWAW = AW BW = O, so by the binomial expansion (AW + BW)**t1 = (AW)k+1 1 (BW)*+1,
Further, we obtain

(AW + BW)MH(AGPW 1 BEPWYW — ((AW)*+! 4+ (BW)* (AP W W + BEP W)
_ AW)k+1AGD,WW + (AW)kJrlBGD,WW
+ (BW)kJrlAGD,WW + (BW)k+1BGD,WW
= (AW)* 4+ (BW)*
= (AW + BW)*
=

(A+ B)W)*.

o~ o~

We have WBW A = WAW B = O, so by the binomial expansion (WA + W B)k*! = (W A)F+1 + (W B)k+1.
Further, we get
W(AGD’W + BGD,W)(WA T WB)k—‘rl _ W(AGD,W 4 BGD,W)((WA)k+1 + (WB)k-‘rl)
_ WAGD,W(WA)k+1 + WBGD’W(WA)k+1
+ WASPW(W B 4 W B W (W Bk
= (WAF + (WB)
= (WA +WB)*
= (W(A+ B))~.
Hence, (A + B)GD’W = AGD.W 4 BGD.W 0
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Next example demonstrates Theorems 5.7 and 5.8.

2 0 0 3 0 0 1 0 0
EXAMPLE 5.10. Let A=P |0 1 O|P L, B=P|0 2 0[P 'eC®3 and W=P|0 1 0
0 00 0 00 00 -1
6 0 0]
P~1 ¢ C3**3 be an involutory matriz. Then AB = P [0 2 0| P! and from Theorem 2.2, we have
0 0 0]
1/2 0 0 1/3 0 T
AGDW —pl o 1 0|Ptand BEPW =pP| 0 1/2 0 P, where X1,X5 € C are arbitrary.
0 0 X; 0 0 Xof
1/6 0 0
Now, (AB)*PW =P | 0 1/2 0 | P7Y, where X3 is arbitrary and we can always choose X3 = X; Xo.
0 0 X;

Hence, (AB)GD’W — AGD,W RBGD,W _ BGD,W pGD,W

5.3. GDMP inverse. When A and B both are orthogonal projections, then the reverse-order law for
GDMP inverse holds under a few conditions as follows:

THEOREM 5.11. Let A,B € C™*™ be two orthogonal projections and k = max{ind(A),ind(B)}. If
AB = BA, AP AB = BASP A, and BBSP AGD — AGPBRBCD | then (AB)CPt = BGDT AGD

Proof. We have A" = A and BT = B as A and B both are orthogonal projections, and from orthogonal
properties and AB = BA, we get (AB)" = BT AT = ATBT. Now, from Theorem 5.3, we get

(AB)YPt = (AB)“P AB(AB)!
= BP AP ABBT Al
= BYPASP ABBA
= B“P AP AB
=B“PBAP A
= BEPBBTAYP AAT
— BGDt yGDt

Hence, (AB)“PT = BEPTAGDT, O
When A and B both are orthogonal projections, then the forward-order law for GDMP inverse holds
under a few conditions as follows:

THEOREM 5.12. Let A,B € C™*™ be two orthogonal projections and k = max{ind(A),ind(B)}. If
AB = BA and BSPBA = ABSP B, then (AB)GPt = AGDI BGDY,

Proof. Since A and B both are orthogonal projections, so AT = A and Bt = B, and from orthogonal
properties and AB = BA, we get (AB)" = Bf AT = ATBf. Now, from Theorem 5.3, we get
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(AB)YPt = (AB)“P AB(AB)!
= ASPBED ABBT AT
= ASPBEP ABBA
— AGDBGDBA
_ AGDABGDB
= ASP AATBCP BBt
_ AGDTBGDT_

Hence, (AB)%PT = AGPT BGDT, O

The next result is in the direction of Theorem 5.6.

THEOREM 5.13. Let A, B € C™ ™ be two orthogonal projections with AB = BA = O and k =
mazx{ind(A),ind(B)}. If APB = BAYP = O and BP A = AB®P = O, then (A+B)“Pt = AGPT 4 B&DT,

Proof. From Theorems 5.6 and 2.3, we have (A + B)P = AP 4 BEP and (A + B)' = A" + Bf. Now,

(A+ B)PT = (A+ B)“P(A+ B)(A+ B)'

= (A9P + BYP)(A + B)(AT + BY)

= (A9PA+ A°PB + BP A + BEPB)(AT + BY)
= (AP A+ BEPB)(AT + BY)
= A9PAAT + AP ABT + BYPBAT + BP BBt
= ASDPT 4 ASPAB + BYPBA + BOPT
= ASPT 4 BEPT.

Hence, (A + B)¢PT = AGPT 4 pGDT, O

5.4. W-weighted GDMP inverse. Throughout this subsection, we consider k = maz{ind(W A),
ind(AW),ind(W B),ind(BW)}. With the help of Theorem 5.7 and some additional conditions, the reverse-
order law for W-weighted GDMP inverse can be proved. The first result of this subsection is in this direction.

THEOREM 5.14. Let A, B € C™*™ be two orthogonal projections, and W € C™*™ be involutory matriz
with WA = AW and WB = BW. If AB = BA, WBWASPW = ACDWIBW and W AW BEP:W =
BEPWW AW | then (AB)GPTW = BGDT.W AGDT.W,

Proof. From Theorem 5.7, we have (AB)¢PW = BGDW AGD.W  Fyrther, we have

(AB)9PHW = W(AB)“PWWAB(AB)'
_ WBGD’WAGD’WWAB
= WBEPW ACDWyw BWW A
= WBEPW BW AP Wy A

= WBPYWIWBBIW AGP- Wy oAt
— pGDPLW 4GD W

Hence, (AB)¢PTW = BGDT.W AGDT.W, O
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The forward-order law for W-weighted GDMP inverse can also be proved using Theorem 5.8 and pro-
ceeding similarly as in the proof of Theorem 5.14. The statement is recorded below.

THEOREM 5.15. Let A,B € C™ ™ be two orthogonal projections, and W & C"™ ™ be an involu-
tory matriz with WA = AW and WB = BW. If AB = BA, WBWAGPW — ACDWWBW, and
WAW BGPW = BEDWW AW | then (AB)GPHW = AGDT.W pGDT,W

The next result shows that (A + B)¢PHW = AGPTW 4 BEDEW ysing Theorem 5.9 and Theorem 2.3.

THEOREM 5.16. Let A, B,W € C"™*™ with AW BW = BWAW = BWAW =WAWDB = 0. Let A and
B both be orthogonal projections. If BEPWWA = AWBSPW = O and ASPWWB = BWASPW = O,
then (A + B)¢PTW = AGPTW  pGDT.W.

Proof. From Theorem 5.9, we have (A+ B)¢P:W = AGP:W 1 BED.W and from Theorem 2.3 (A+ B)f =
AT+ Bt = A+ B. Now,

(A+ B)YPYW —W(A+ B)PWW(A+ B)(A+ B)T
_ W(AGD,W _|_BGD,W)W(A2 + Bz)
_ (WAGD,WW + WBGD,WW)(AQ + B?)
= WASPWW A2 4+ WASPWWB? + WBPWW B? + WBEP W A?
= WASPWW A2 + WBEPWw B?

= WAGPW AAT + WBEP-Www BBT
:AGDT,W_FBGDT,W.

Hence, (A + B)GPTW — AGDHW | pGDT,W, q

Next example shows that the given conditions in Theorem 5.14 and Theorem 5.15 are sufficient but not
necessary.

2 00 3 00
EXAMPLE 5.17. Let A= P |0 1 0| P L,B =P |0 2 0| P! e C3*3, both are not orthogonal
0 00 0 00

1 0 O 6 0 0
projections and W = P |0 1 0 | P71 € C**3 be an involutory matriz. Then AB =P |0 2 0| P!
0 0 -1 0 0 0
1/2 0 0 /3 0 0
and from Theorem 3.15, we have ASPTW = p| o0 1 o| P~ BPtW = pl o 1/2 0| P7Y,
0 0 0 0 0 0
1/6 0 0
(AB)¢PTW =P | 0 1/2 0| P~'. Hence, (AB)“PTW = AGDTL.W BEDTLW — REDT.W AGDTL.W,
0 0 0

6. Conclusions. The notion of GDMP inverse of a square matrix has been extended to a rectangular
matrix using a weight W. Some properties of this inverse, along with its representation, have been obtained.
We have also presented sufficient conditions such that the reverse and forward-order laws for GD, W-weighted
GD, GDMP, and W-weighted GDMP generalized inverses hold. The problems of computing GD, W-weighted
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GD, GDMP, and W-weighted GDMP generalized inverse of a sum of matrices have also been illustrated.
These theories can also be studied in a ring with involution and a tensor setting.
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