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W -WEIGHTED GDMP INVERSE FOR RECTANGULAR MATRICES∗

AMIT KUMAR† , VAIBHAV SHEKHAR† , AND DEBASISHA MISHRA†

Abstract. In this article, we introduce two new generalized inverses for rectangular matrices called W -weighted generalized-

Drazin–Moore–Penrose (GDMP) and W -weighted generalized-Drazin-reflexive (GDR) inverses. The first generalized inverse

can be seen as a generalization of the recently introduced GDMP inverse for a square matrix to a rectangular matrix. The

second class of generalized inverse contains the class of the first generalized inverse. We then exploit their various properties

and establish that the proposed generalized inverses coincide with different well-known generalized inverses under certain

assumptions. We also obtain a representation of W -weighted GDMP inverse employing EP-core nilpotent decomposition. We

define the dual of W -weighted GDMP inverse and obtain analogue results. Further, we discuss additive properties, reverse-

and forward-order laws for GD, W -weighted GD, GDMP, and W -weighted GDMP generalized inverses.
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1. Introduction and motivation. Let Cm×n be the set of all complex matrices of size m × n. Let

A∗, R(A), N(A), and PA denote the conjugate transpose of A, the range space of A, the null space of A,

and the orthogonal projection onto the range space of A, respectively. Given A ∈ Cm×n, the unique matrix

X ∈ Cn×m that satisfies the following four matrix equations:

(1)AXA = A, (2)XAX = X, (3)(AX)∗ = AX, and (4)(XA)∗ = XA,

is called the Moore–Penrose inverse [26] of A, and is denoted as A†. The set of all matrices which satisfies any

of the combinations of the above four matrix equations is denoted as A{i, j, k, l}, where i, j, k, l ∈ {1, 2, 3, 4}.
For instance, if X satisfies equations (1) and (2), then A{1, 2} denotes the set of all solutions of the first

two matrix equations. We denote a member of A{1, 2} as A(1,2), and it is called a reflexive inverse of the

matrix A. The definition of the index of a matrix is recalled next. Let A ∈ Cn×n. The smallest nonnegative

integer for which rank(Ak) = rank(Ak+1) is called the index of the matrix A, and we denote it by ind(A).

Let A ∈ Cn×n, the unique matrix X ∈ Cn×n satisfying the matrix equations XAX = X, XA = AX, and

Ak+1X = Ak is called the Drazin inverse [5] of the matrix A. It is denoted as AD. Here, k denotes the index

of the matrix A. If ind(A) = 1, then the above equations reduce to XAX = X, XA = AX, and A2X = A,

and in this case, X is called the group inverse of A. The group inverse of a matrix A is denoted as A#. A

matrix A ∈ Cn×n is called EP (or range-Hermitian) if R(A) = R(A∗). A matrix A is EP if and only if it

commutes with its Moore–Penrose inverse, that is, AA† = A†A. EP matrices are also characterized as the

class of matrices for which the Moore–Penrose inverse and the group inverse are the same.

In 1980, Cline and Greville [8] extended the Drazin inverse for square matrices to rectangular matrices,

which is recalled next. Let A ∈ Cm×n and W ∈ Cn×m, the unique matrix X = ((AW )D)2A ∈ Cm×n

is the solution of equations: (AW )k+1XW = (AW )k, XWAWX = X, and AWX = XWA, where
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k = ind(AW ). In this case, X is called the W -weighted Drazin inverse of A. It is denoted as AD,W .

Throughout this article, we will consider a nonzero weight W . The literature for generalized inverses is

quite rich due to their enormous applicability in several fields. In this direction, one of the most sig-

nificant recent generalized inverses is the core inverse introduced by Baksalary and Trenkler [3], which

is recalled next. Let A ∈ Cn×n, the matrix X ∈ Cn×n is called the core inverse of A if AX = PA

and R(X) ⊆ R(A). The core inverse of a matrix is unique and is denoted by A#O. Motivated by the

work of Baksalary and Trenkler [3], several authors introduced different generalized inverses and justified

their application to linear equations (see [4], [19], [25], [27], [33], and the references cited therein). In

2014, Malik and Thome [19] introduced a new generalized inverse for square matrices, called DMP in-

verse, as follows: for any A ∈ Cn×n, the unique matrix X ∈ Cn×n that satisfies the matrix equations

XAX = X, XA = ADA, and AkX = AkA†, where k = ind(A), is called DMP inverse of A. It

can be computed using the expression X = ADAA†. In 2017, Meng [21] generalized the notion of the

DMP inverse to a matrix of arbitrary order, the author called it W -weighted DMP inverse. The defini-

tion of W -weighted DMP inverse is recalled next. For any matrix A ∈ Cm×n and W ∈ Cn×m such that

ind(AW ) = k, the unique matrix X = WAD,WWAA† that satisfies the following equations: XAX = X,

XA = WAD,WWA and (WA)k+1X = (WA)k+1A†, is called the W -weighted DMP inverse of A and is

denoted as AD,†
W .

These generalized inverses have numerous applications. For example, the Moore–Penrose inverse is

used to find the least-squares solution of a given linear system. The group inverse is applied to solve a

problem involving Markov chains. The Drazin inverse helps to solve singular differential equations and has

applications in numerical analysis, neural computing, partial orders, etc. The core inverse helps study partial

order theory and find the Bott–Duffin inverse. MPCEP inverse is used to solve linear systems of equations

arising in chemical equations, robotics, coding theory, etc. Interested readers are referred to [3], [5], [6], [14],

[15], [17], [23], [25], and [32].

In 2016, Wang and Liu [29] proposed a new generalized inverse called generalized Drazin (or GD) inverse

as follows. For A ∈ Cn×n, a matrix X ∈ Cn×n is called GD inverse of A if

AXA = A, XAk+1 = Ak and Ak+1X = Ak,

where k = ind(A). It is denoted by X = AGD. In general, this inverse is not unique. We denote the set of all

GD inverse of a matrix A by A{GD}. In 2018, Coll et al. [9] introduced weighted generalized Drazin inverse

(WG-Drazin), which is an extension of the generalized Drazin inverse for a square matrix to a rectangular

matrix. Let A ∈ Cm×n, W ∈ Cn×m, k1 = ind(AW ), k2 = ind(WA), and k = max{k1, k2}. A matrix

X ∈ Cm×n is W -weighted G-Drazin inverse of A if it satisfies the following matrix equations:

WAWXWAW = WAW,(1.1)

(AW )k+1(XW ) = (AW )k,(1.2)

(WX)(WA)k+1 = (WA)k.(1.3)

It is denoted by AGD,W [9]. The set of all weighted generalized Drazin inverse of matrix A is denoted by

A{GD,W}. We further refer interested readers to [9], [11], [24], and [28] for more works on generalized

inverses and their extensions.

In 2020, Hernández et al. [13] introduced another generalized inverse called generalized-Drazin–Moore–

Penrose (GDMP) inverse. The definition of GDMP inverse is stated next. Let A ∈ Cn×n and k = ind(A).

For each AGD ∈ A{GD}, a GDMP inverse of A, denoted by AGD†, is an n × n matrix AGD† = AGDAA†.
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This inverse is also not unique. The symbol A{GD†} stands for the set of all GDMP inverses of A. However,

the notion of GDMP is limited to square matrices only. This article aims at expanding the applicability of

this generalized inverse. To do this, we redefine it so that the new generalized inverse exists for a larger class

of matrices.

Let A and B be invertible matrices. Then, (AB)−1 = B−1A−1 and (AB)−1 = A−1B−1 are known as

reverse-order law and forward-order law, respectively. The first expression is known to be always true, while

the later expression is not always true. These laws also do not hold for generalized inverses in general. In

1966, Greville [12] first obtained some sufficient conditions under which the reverse-order law holds for the

Moore–Penrose inverse, that is, (AB)† = B†A†. The same problem was considered by several authors for

other generalized inverses also. For example, Xiong and Zheng [31] provided some sufficient conditions for

the reverse-order laws of {1,2,3}- and {1,2,4}-inverses. In 2016, Wang et al. [30] obtained a few results of

the reverse-order law for the Drazin inverse. Deng [10] studied the reverse-order law for the group inverse on

Hilbert space. The reverse-order law is used to analyze Markov chains [22]. Also, it directly applies to the

celebrated Karmarkar algorithm [16]. Similarly, the forward-order law has many applications in numerical

linear algebra (see [1]). In 2018, Castro-González and Hartwig [7] provided some sufficient conditions for the

forward-order law for the Moore–Penrose inverse, that is, (AB)† = A†B†. In the same year, Liu and Xiong

[18] presented forward-order laws for {1,2,3}- and {1,2,4}-inverses.

In 2022, Baksalary et al. [2] provided certain sufficient conditions under which the Moore–Penrose inverse

is additive, that is, (A+B)† = A†+B†. Motivated by the works of these authors, we obtain various sufficient

conditions for the reverse-order law, the forward-order law and the additive property for GD, W -weighted

GD, GDMP, and W -weighted GDMP inverse.

This article aims to propose two new generalized inverses and investigate their properties by impos-

ing certain conditions. To fulfill our objective, the rest of this article is organized as follows. In Section

2, we recall some preliminary results. We then propose two new generalized inverses in Section 3, which

are extensions of GDMP inverse, and we call it W -weighted GDMP inverse and W -weighted GDR in-

verse, respectively. After that, we investigate some of their properties and obtain their representations.

Section 4 discusses some results on dual W -weighted GDMP, which are analogous to those established in

the previous sections. Section 5 establishes the reverse-order law, the forward-order law and the additive

property for GD inverse, W -weighted GD inverse, GDMP inverse, and W -weighted GDMP inverse, respec-

tively.

2. Preliminaries. This section recalls a few terminologies that this article uses frequently and also

collects some established results from the literature that play a significant role while proving our main

results in the next sections. O ∈ Cm×n is the null matrix of size m × n. Ir denotes the identity matrix

of size r × r. Let A1 ∈ Cr1×r2 and A2 ∈ Cr3×r4 . Then, A1 ⊕ A2 represents the diagonal block matrix[
A1 O

O A2

]
∈ C(r1+r3)×(r2+r4). Now, we state the first result, which is proved by Coll et al. [9], and is for

W -weighted G-Drazin inverse of a matrix.

Lemma 2.1 (Remark 2.1, [9]). Let A ∈ Cm×n and W ∈ Cn×m.

(i) If A = O, then any matrix of suitable size is a W -weighted G-Drazin inverse of A.

(ii) A{GD,W} ⊆ WAW{1}.
(iii) If AW and WA are nilpotent matrices, then WAW{1} ⊆ A{GD,W}.
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Next, we state a result that gives a representation of W -weighted G-Drazin inverse of a matrix.

Theorem 2.2 (Theorem 2.1, [9]). Let A ∈ Cm×n, W ∈ Cn×m, k1 = ind(AW ) and k2 = ind(WA).

Then, there exist nonsingular matrices P ∈ Cm×m and Q ∈ Cn×n such that

A = P (A1 ⊕A2)Q
−1 and W = Q(W1 ⊕W2)P

−1,

where A1 and W1 are t× t nonsingular matrices, and A2W2 and W2A2 are nilpotent matrices of indices k1
and k2, respectively. Moreover, X ∈ A{GD,W} if and only if

X = P

[
(W1A1W1)

−1 X12

X21 X2

]
Q−1,

with X12W2 = O,W2X21 = O and X2 ∈ W2A2W2{1}. In particular, if m = n and AW = WA, then Q = P .

In this case, if W = In, then W1 = It and W2 = In−t.

Theorem 2.3 (Proposition 2.13, [2]). Let P,Q ∈ Cn×n be orthogonal projections. Then, (P + Q)† =

P +Q if and only if PQ = O.

3. Main results. In this section, we discuss the main results of this article. In particular, we propose

two new generalized inverses and then investigate their properties. We first define W -weighted GDMP

inverse of a matrix of arbitrary order.

Definition 3.1. Let A ∈ Cm×n, W ∈ Cn×m and k = max{ind(AW ), ind(WA)}. Let AGD,W ∈
A{GD,W}, a W -weighted GDMP inverse of A, denoted by AGD†,W , be an n×m matrix

AGD†,W = WAGD,WWPA,

where PA denotes the orthogonal projection onto the space R(A).

Remark 3.2. From the above definition, it is clear that a W -weighted GDMP inverse of A coincides

with a GDMP inverse when W = I. Let A = O ∈ Cm×n. Then, O ∈ Cn×m is a W -weighted GDMP inverse

of A.

The following example demonstrates Definition 3.1.

Example 3.3. Let A = [1 1] ∈ C1×2 and W =

[
−1

1

]
∈ C2×1. Clearly, A† =

[
1/2

1/2

]
, AW = 0,

WA =

[
−1 −1

1 1

]
and k = max{1 = ind(AW ), 2 = ind(WA)} = 2. Then, by the definition of W -weighted

GD inverse, we get AGD,W = [a b] ∈ C1×2, where a, b ∈ C are arbitrary. Further, we have PA = 1. Now,

AGD†,W = WAGD,WWPA =

[
a− b

b− a

]
, where a, b ∈ C are arbitrary.

From the above example, it is clear that, in general, a W -weighted GDMP inverse of a matrix A is

not unique. If we replace A† by A(1,2) in the Definition 3.1, then we will have another generalized inverse

that contains the class of previous generalized inverse, and we call it W -weighted GDR, where R stands for

reflexive (since A(1,2) is a reflexive inverse of A). This definition is produced below.

Definition 3.4. Let A ∈ Cm×n, W ∈ Cn×m and k = max{ind(AW ), ind(WA)}. Let AGD,W ∈
A{GD,W}, a W -weighted generalized-Drazin-reflexive (GDR) inverse of A, denoted by AGDR,W , be an

n×m matrix
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AGDR,W = WAGD,WWTA,

where TA = AA(1,2).

Remark 3.5. Note that in the above definition, TA is used just for the notational simplicity to make it

similar to W -weighted GDMP inverse definition. Also, from the above definitions, it is clear that A{GD†,W}
⊆ A{GDR,W}.

Now, we prove our first main result of this section with the help of Definition 3.1.

Lemma 3.6. Let A ∈ Cm×n, W ∈ Cn×m and k = max{ind(AW ), ind(WA)}. If AGD†,W ∈ A{GD†,W}
and AGD,W ∈ A{GD,W}, then a W-weighted GDMP inverse of the matrix A satisfies the following proper-

ties:

(i) WAAGD†,WAW = WAW .

(ii) AGD†,WA = WAGD,WWA.

(iii) AGD†,WA(WA)k = (WA)k.

(iv) WAAGD†,W = W , if W = A∗.

(v) AGD†,W (AW )k+1 = (WA)kW = W (AW )k.

(vi) AAGD†,W (AW )k+1 = (AW )k+1 and AGD†,W (AW )k+1A = (WA)k+1.

(vii) (WA)k+1AGD†,W = W (AW )kPA = (WA)kWPA.

(viii) AGD†,WPA = AGD†,W .

(ix) AGD†,WA(WA)k+1AGD†,W = (WA)k+1A†.

(x) AGD†,WAAGD†,WAW = AGD†,WAW .

(xi) WAAGD†,WAAGD†,W = WAAGD†,W .

(xii) (AGD†,WA)(WA)k+1 = (WA)k+1(AGD†,WA).

Proof. (i) WAAGD†,WAW = WAWAGD,WWAA†AW = WAWAGD,WWAW = WAW .

(ii) AGD†,WA = WAGD,WWPAA = WAGD,WWA.

(iii) AGD†,WA(WA)k = WAGD,WWPAA(WA)k = WAGD,WWA(WA)k = WAGD,W (WA)k+1 =

(WA)k.

(iv) Since W = A∗, we have WW † = A†A and W †W = AA†. Thus, WAAGD†,W = WAWAGD,WW

AA†AA† = WAWAGD,WWAWW †A† = WAWW †A† = WAA†AA† = WAA† = WW †W = W .

(v) AGD†,W (AW )k+1 = WAGD,WWPAAW (AW )k = WAGD,WW (AW )k+1 =

WAGD,W (WA)k+1W = (WA)kW = W (AW )k.

(vi) Pre-multiplying AGD†,W (AW )k+1 = W (AW )k by A, we obtain AAGD†,W (AW )k+1 = (AW )k+1.

Similarly, post-multiplying AGD†,W (AW )k+1 = (WA)kW by A, we get AGD†,W (AW )k+1A =

(WA)k+1.

(vii) (WA)k+1AGD†,W = (WA)k+1WAGD,WWPA = W (AW )k+1AGD,WWPA = W (AW )kPA =

(WA)kWPA.

(viii) AGD†,WPA = WAGD,WWAA†AA† = WAGD,WWPA = AGD†,W .

(ix) From (vii), AGD†,WA(WA)k+1AGD†,W = AGD†,W (AW )k+1PA. Now, applying (v), we get

AGD†,WA(WA)k+1AGD†,W = (WA)kWPA = (WA)k+1A†.

(x) AGD†,WAAGD†,WAW = WAGD,WWAA†AWAGD,WWAA†AW = WAGD,WWAW AGD,WWAW

= WAGD,WWAW = AGD†,WAW .

(xi) Similar to part (x).

(xii) (AGD†,WA)(WA)k+1 = WAGD,WWAA†A(WA)k+1 = WAGD,WWA(WA)k+1 =

WAGD,W (WA)k+1(WA) = (WA)k(WA) = (WA)k+1. And (WA)k+1(AGD†,WA) =
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(WA)k+1WAGD,WWAA†A = (WA)k+1WAGD,WWA = W (AW )k+1AGD,WWA = W (AW )kA =

(WA)k+1. So, (AGD†,WA)(WA)k+1 = (WA)k+1(AGD†,WA).

Theorem 3.7. Let A ∈ Cm×n, W ∈ Cn×m and k = max{ind(AW ), ind(WA)}. If W = A∗, then

WAAGD†,WW † is an orthogonal projection onto R(W ).

Proof. By Lemma 3.6 (iv), we have WAAGD†,W = W . Post-multiplying by W †, we get WAAGD†,WW †

= WW †. But, WW † is an orthogonal projection onto R(W ). Hence, WAAGD†,WW † is an orthogonal

projection onto R(W ).

Under certain fixed weight W , a W -weighted GDMP inverse coincides with different well-known gener-

alized inverses. This fact is investigated in the following result.

Theorem 3.8. Let A ∈ Cm×n, W ∈ Cn×m and k = max{ind(AW ), ind(WA)}. For each AGD,W ∈
A{GD,W}, a W-weighted GDMP inverse of the matrix A satisfies the following properties:

(i) If W ∈ A{1}, then AGD†,W ∈ A{1}.
(ii) If W ∈ A{2}, and WAGD,W is idempotent, then AGD†,W ∈ A{2}.
(iii) If W = A∗, then AGD†,W = A∗AGD,WA∗.

(iv) If W = A†, then AGD†,WAAGD†,W = AGD†,W = A†.

Proof. (i) If W ∈ A{1}, then we have

AAGD†,WA = AA(1)AGD,WA(1)PAA

= AA(1)AGD,WA(1)A.(3.4)

By Lemma 3.6 (i), we get A(1)AA(1)AGD,WA(1)AA(1) = A(1)AA(1), pre and post-multiplying by A,

we have AA(1)AGD,WA(1)A = A. Now, using this expression in (3.4), we get AAGD†,WA = A, and

thus AGD†,W ∈ A{1}.
(ii) As W ∈ A{2}, we have WAW = W . Also, WAGD,W is idempotent, so (WAGD,W )2 = WAGD,W .

Now,

AGD†,WAAGD†,W = WAGD,WWPAAWAGD,WWPA

= WAGD,WWAWAGD,WWPA

= (WAGD,W )2WPA

= WAGD,WWPA

= AGD†,W .

(iii) If W = A∗, then

AGD†,W = A∗AGD,WA∗PA

= A∗AGD,WA∗.
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(iv) If W = A†, then

AGD†,WAAGD†,W = A†AGD,WA†AA†AA†AGD,WA†AA†

= A†AA†AGD,WA†AA†AGD,WA†AA†

= A†AA†AGD,WA†AA†

= AGD†,W

= WAGD,WWPA

= A†AA†

= A†.

The following result provides a sufficient condition under which a W -weighted GDMP inverse of an EP

matrix coincides with its Moore–Penrose inverse.

Theorem 3.9. Let A ∈ Cm×m be an EP matrix and W = PA. Then, AGD†,W = A†.

Proof. If W = PA, then the equation WAWAGD,WWAW = WAW implies that AGD,W ∈ A{1}. Now,
AGD†,W = PAA

GD,WP 2
A = PAA

GD,WPA = AA†AGD,WAA†. Since A is an EP matrix, therefore, A and A†

commute and thus, AGD†,W = A†AAGD,WAA†. Further, as AGD,W ∈ A{1}, we have AGD†,W = A†AA† =

A†.

If we know the nilpotency of the matrices AGD†,W (AW )k+1A and AAGD†,W (AW )k+1, then we can guarantee

that the sets WAW{1} and A{GD,W} are the same. This is shown in the next result.

Theorem 3.10. Let A ∈ Cm×n, W ∈ Cn×m and k = max{ind(AW ), ind(WA)}. If AGD†,W (AW )k+1A

and AAGD†,W (AW )k+1 are both nilpotent, then WAW{1} = A{GD,W}.

Proof. By (vi) of Lemma 3.6, we have AAGD†,W (AW )k+1 = (AW )k+1 and AGD†,W (AW )k+1A =

(WA)k+1 which imply that (AW )k+1 and (WA)k+1 both are nilpotent. So, AW and WA both are nilpotent.

By Lemma 2.1, we get WAW{1} ⊆ A{GD,W}. Also, A{GD,W} ⊆ WAW{1} is true by the definition of

A{GD,W}. Hence, WAW{1} = A{GD,W}.

The following result shows that if X is a {1}-inverse of WAW , then it is also a {1}-inverse of

WAAGD†,WAW .

Theorem 3.11. Let A ∈ Cm×n, W ∈ Cn×m and k = max{ind(AW ), ind(WA)}. Then, WAW{1} ⊆
WAAGD†,WAW{1}.

Proof. Let X ∈ WAW{1}. By the Lemma 3.6 (i), we have WAAGD†,WAW = WAW . So,

WAAGD†,WAWXWAAGD†,WAW = WAWXWAW.

Since, X ∈ WAW{1}, using the above equation, we have

WAAGD†,WAWXWAAGD†,WAW = WAW = WAAGD†,WAW.

Hence, WAW{1} ⊆ WAAGD†,WAW{1}.

Now, we obtain some representations of the introduced generalized inverses. In this direction, we first

prove the following result which talks about the form of W -weighted GDR for a particular form of {1, 2}-
inverse of A1 ⊕ A2. For proving this, we will use a result from [20] which says that A

(1,2)
1 ⊕ A

(1,2)
2 ∈

(A1 ⊕A2){1, 2}. Clearly, if A1 is nonsingular, then A
(1,2)
1 coincides with the usual inverse A−1

1 .
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Theorem 3.12. Let A ∈ Cm×n, W ∈ Cn×m, k = max{k1 = ind(AW ), k2 = ind(WA)}. Then, there

exist nonsingular matrices P ∈ Cm×m and Q ∈ Cn×n such that

A = P (A1 ⊕A2)Q
−1 and W = Q(W1 ⊕W2)P

−1,

where A1 and W1 are t× t nonsingular matrices, and A2W2 and W2A2 are nilpotent matrices of indices k1
and k2, respectively. Moreover, for a particular A−1

1 ⊕ A
(1,2)
2 ∈ (A1 ⊕ A2){1, 2}, the representation of GDR

is

AGDR,W = Q

[
A−1

1 O

O W2X2W2TA2

]
P−1,

where X2 ∈ W2A2W2{1} and TA2
= A2A

(1,2)
2 .

Proof. From Theorem 2.2, we have

A = P (A1 ⊕A2)Q
−1 and W = Q(W1 ⊕W2)P

−1,

where A1 and W1 are t× t nonsingular matrices, and A2W2 and W2A2 are nilpotent matrices of indices k1
and k2, respectively. Now,

AGDR,W = WAGD,WWAA(1,2)

= Q

[
W1 O

O W2

] [
(W1A1W1)

−1 X12

X21 X2

] [
W1 O

O W2

] [
A1 O

O A2

] [
A−1

1 O

O A
(1,2)
2

]
P−1

= Q

[
W1 O

O W2

] [
(W1A1W1)

−1 X12

X21 X2

] [
W1 O

O W2

] [
I O

O A2A
(1,2)
2

]
P−1

= Q

[
W1(W1A1W1)

−1W1 W1X12W2TA2

W2X21W1 W2X2W2TA2

]
P−1

= Q

[
A−1

1 W1X12W2TA2

W2X21W1 W2X2W2TA2

]
P−1.

By Theorem 2.2, we have X12W2 = O and W2X21 = O, so we get

AGDR,W = Q

[
A−1

1 O

O W2X2W2TA2

]
P−1,

where X2 ∈ W2A2W2{1} and TA2
= A2A

(1,2)
2 .

The following example is provided in support of Theorem 3.12.

Example 3.13. Let A =

−1 3 0 0

0 1 −1/2 −1/2

0 1 1/2 1/2

 ∈ C3×4 and
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W =


−1 3/2 3/2

0 1/2 1/2

0 −1/2 1/2

0 1/2 −1/2

 ∈ C4×3. Decomposing A and W , we have

A =

1 0 0

0 1/2 −1/2

0 1/2 1/2

1 2 0 0

1 1 0 0

0 0 0 1




1 1 0 0

−1 1 0 0

0 0 1 −1

0 0 1 1

 ,

and

W =


1/2 −1/2 0 0

1/2 1/2 0 0

0 0 1/2 1/2

0 0 −1/2 1/2



−1 2 0

1 −1 0

0 0 1

0 0 0


1 0 0

0 1 1

0 −1 1

 .

Clearly, A and W have the forms A = P (A1 ⊕ A2)Q
−1 and W = Q(W1 ⊕ W2)P

−1, respectively, where

A1 =

[
1 2

1 1

]
, W1 =

[
−1 2

1 −1

]
, A2 = [0 1], W2 =

[
1

0

]
. Here, P =

1 0 0

0 1/2 −1/2

0 1/2 1/2

 and Q =


1/2 −1/2 0 0

1/2 1/2 0 0

0 0 1/2 1/2

0 0 −1/2 1/2

 are invertible matrices. Further, W2A2W2 =

[
0

0

]
. Thus, taking X2 =

[
a b

]
∈

W2A2W2{1}, where a, b ∈ C and using Theorem 3.12, we get

AGDR,W = Q


−1 2 0

1 −1 0

0 0 a

0 0 0

P−1,

where a ∈ C is arbitrary.

Since R(AAGD†,W ) = R(AWAGD,WWAA†) ⊆ R(AWAGD,W ) and N(AGD,WWA) ⊆ N(AWAGD,WWA) =

N(AGD†,WA). So, we have the following remark.

Remark 3.14. Let A ∈ Cm×n and W ∈ Cn×m. Then,

(i) R(AAGD†,W ) ⊆ R(AWAGD,W ).

(ii) N(AGD,WWA) ⊆ N(AGD†,WA).

If we assume WA and AW to be EP matrices, then with the help of EP-core nilpotent decomposition, we

can compute a W -weighted GDMP inverse of a matrix.

Theorem 3.15. Let A ∈ Cm×n and W ∈ Cn×m be such that both AW and WA are EP matrices,

k1 = ind(AW ), and k2 = ind(WA). Then, there exist unitary matrices P ∈ Cm×m and Q ∈ Cn×n such that

A = P (A1 ⊕A2)Q
∗ and W = Q(W1 ⊕W2)P

∗,

where A1 and W1 are t× t nonsingular matrices, and A2W2 and W2A2 are null matrices.
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Further, a W -weighted GDMP inverse of A is given by

AGD†,W = Q

[
A−1

1 O

O O

]
P ∗.

In particular, if m = n and AW = WA, then Q = P . In this case, if W = In, then W1 = It and W2 = In−t.

Proof. Suppose that one of the following two disjoint situations m ̸= n or m = n with AW ̸= WA holds.

As AW and WA are EP matrices, there exist unitary matrices P ∈ Cm×m and Q ∈ Cn×n such that

AW = P (T ⊕O)P ∗ and WA = Q(S ⊕O)Q∗,

where T and S are nonsingular matrices [6]. It is obvious that (AW )kA = A(WA)k, where k = max{k1, k2}.
Let

A = P

[
A1 A12

A21 A2

]
Q∗ and W = Q

[
W1 W12

W21 W2

]
P ∗.

Then,

(AW )kA = P

[
T k O

O O

] [
A1 A12

A21 A2

]
Q∗ = P

[
T kA1 T kA12

O O

]
Q∗

and

A(WA)k = P

[
A1S

k O

A21S
k O

]
P ∗.

So, A12 = O and A21 = O, and therefore A = P

[
A1 O

O A2

]
Q∗. Now,

AW = P

[
A1W1 A1W12

A2W21 A2W2

]
P ∗ = P

[
T O

O O

]
P ∗.

Thus, W12 = O, A2W21 = O and A2W2 = O. Similarly, when we calculate WA, we get W21 = O and

W2A2 = O. Using the equation WAWAGD,WWAW = WAW , we get

AGD,W = P

[
(W1A1W1)

−1 X21

X21 X2

]
Q∗,

such that X12W2 = O and W2X21 = O. Hence,

AGD†,W = WAGD,WWPA

= Q

[
W1 O

O W2

] [
(W1A1W1)

−1 X12

X21 X2

] [
W1 O

O W2

] [
A1 O

O A2

][
A−1

1 O

O A†
2

]
P ∗

= Q

[
W1 O

O W2

] [
(W1A1W1)

−1 X12

X21 X2

] [
W1 O

O W2

] [
I O

O A2A
†
2

]
P ∗

= Q

[
W1(W1A1W1)

−1W1 W1X12W2

W2X21W1 W2X2W2

][
I O

O A2A
†
2

]
P ∗

= Q

[
A−1

1 O

O W2X2W2A2A
(1,2)
2

]
P ∗

= Q

[
A−1

1 O

O O

]
P ∗ (∵ W2A2=0).
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The following example demonstrates Theorem 3.15.

Example 3.16. Let A =

[
1 1 0

1 1 0

]
∈ C2×3 and W =

1/2 1/2

1/2 1/2

0 0

 ∈ C3×2. Then, AW =

[
1 1

1 1

]
and

WA =

1 1 0

1 1 0

0 0 0

 are EP matrices. The EP decompositions of the matrices A and W are given as

A =

[
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

] [
2 0 0

0 0 0

]1/
√
2 1/

√
2 0

1/
√
2 −1/

√
2 0

0 0 1

 ,

and

W =

1/
√
2 1/

√
2 0

1/
√
2 −1/

√
2 0

0 0 1

1 0

0 0

0 0

[
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

]
,

which are in forms A = P (A1 ⊕ A2)Q
∗ and W = Q(W1 ⊕W2)P

∗, where A1 = [2], W1 = [1], A2 = [0 0],

W2 =

[
0

0

]
, P =

[
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

]
and Q =

1/
√
2 1/

√
2 0

1/
√
2 −1/

√
2 0

0 0 1

 . Therefore, by Theorem 3.15, we have

AGD†,W =

1/
√
2 1/

√
2 0

1/
√
2 −1/

√
2 0

0 0 1

1/2 0

0 0

0 0

[
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

]
=

1/4 1/4

1/4 1/4

0 0

 .

Note that the representation of a W -weighted GDMP inverse need not be unique as the matrices P and Q

need not be unique in EP-core nilpotent decomposition.

4. Dual W -weighted GDMP or W -weighted MPGD. Similar to the definition of W -weighted

GDMP inverse, we can define its dual. This section is devoted to the brief discussion on dual W -weighted

GDMP (or W -weighted MPGD). Most of the results obtained in the previous section can be obtained

analogously for this particular generalized inverse. Therefore, we discuss only some of the important results

without its proof. First, we define dual W -weighted GDMP inverse.

Definition 4.1. Let A ∈ Cm×n, W ∈ Cn×m and k = max{ind(AW ), ind(WA)}. Let AGD,W ∈
A{GD,W}, a dual W -weighted GDMP inverse of A, denoted by A†GD,W , be an n×m matrix

A†GD,W = PA∗WAGD,WW,

where PA∗ denotes the orthogonal projection onto the space R(A∗).

We present our first result of this section below.

Lemma 4.2. Let A ∈ Cm×n, W ∈ Cn×m and k = max{ind(AW ), ind(WA)}. For each AGD,W ∈
A{GD,W}, a dual W-weighted GDMP inverse of the matrix A satisfies the following properties:
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(i) WAA†GD,WAW = WAW .

(ii) WAA†GD,WAA†GD,W = WAA†GD,W .

(iii) A†GD,WAA†GD,WAW = A†GD,WAW .

(iv) PA∗A†GD,W = A†GD,W .

(v) (WA)k+1A†GD,W = W (AW )k.

(vi) (WA)k+1A†GD,WA = (WA)k+1.

(vii) A†GD,W (AW )k+1 = PA∗(WA)kW.

(viii) AA†GD,W (AW )k+1 = (AW )k+1.

(ix) (AW )kAA†GD,W = (AW )k.

The following result can be proved proceeding similarly as in Theorem 3.8.

Theorem 4.3. Let A ∈ Cm×n, W ∈ Cn×m and k = max{ind(AW ), ind(WA)}. For each AGD,W ∈
A{GD,W}, a dual W-weighted GDMP inverse of the matrix A satisfies the following properties:

(i) If WA and AW both are idempotent matrices, then AA†GD,WA = AWA.

(ii) If W ∈ A{1}, then A†GD,W ∈ A{1}.
(iii) If W = A∗, then A†GD,W = A∗AGD,WA∗.

(iv) If W = A†, then A†GD,WAA†GD,W = A†GD,W = WAW = A†.

Similarly, we can prove the next result as in Theorem 3.9.

Theorem 4.4. Let A ∈ Cm×m be an EP matrix and W = PA∗ . Then, A†GD,W = A†.

We end this section by stating the next result which is an analogue of Theorem 3.15.

Theorem 4.5. Let A ∈ Cm×n and W ∈ Cn×m be such that both AW and WA are EP matrices,

k1 = ind(AW ), and k2 = ind(WA). Then, there exist unitary matrices P ∈ Cm×m and Q ∈ Cn×n such that

A = P (A1 ⊕A2)Q
∗ and W = Q(W1 ⊕W2)P

∗,

where A1 and W1 are t× t nonsingular matrices, and A2W2 and W2A2 are null matrices.

Further, a dual W -weighted GDMP inverse of A is given by

A†GD,W = Q

[
A−1

1 O

O O

]
P ∗.

In particular, if m = n and AW = WA, then Q = P . In this case, if W = In, then W1 = It and W2 = In−t.

5. Reverse-order law, forward-order law, and additive property. In this section, we present

some sufficient conditions under which the reverse-order law, forward-order law, and additive property hold

for GD, W -weighted GD, GDMP, and W -weighted GDMP inverse. Also, we discuss some results in which

the absorption law holds for GD inverse.

5.1. GD inverse. First, we illustrate the reverse-order law for GD inverse under the assumption of a

few conditions.

Theorem 5.1. Let A,B ∈ Cm×m with AB2 = B2A = BAB and k = max{ind(A), ind(B)} ≥ 2. If

ABBGD = BBGDA and BBGDAGD = AGDBBGD, then (AB)GD = BGDAGD.
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Proof. If AB2 = B2A = BAB, then (AB)k = AkBk = BkAk, Ak+1Bk = BkAk+1 and AkBk+1 =

Bk+1Ak for k ≥ 2. Now, ABBGDAGDAB = AAGDBBGDAB = AAGDABBGDB = AB. Further, we have

BGDAGD(AB)k+1 = BGDAGDAk+1Bk+1

= BGDAkBk+1

= BGDBk+1Ak

= BkAk

= AkBk

= (AB)k,

and

(AB)k+1BGDAGD = Ak+1Bk+1BGDAGD

= Ak+1BkAGD

= BkAk+1AGD

= BkAk

= (AB)k.

Using the definition of GD inverse, it clearly shows that (AB)GD = BGDAGD.

If AB = BA and BBGDAGD = AGDBBGD, then the reverse-order law for GD inverse is true for every

positive integer k.

Theorem 5.2. Let A,B ∈ Cm×m and k = max{ind(A), ind(B)}. If AB = BA and BBGDAGD =

AGDBBGD, then (AB)GD = BGDAGD.

Proof. We have AAGDA = A, AGDAk+1 = Ak, Ak+1AGD = A and BBGDB = B, BGDBk+1 = Bk,

Bk+1BGD = Bk. Now,

ABBGDAGDAB = AAGDBBGDAB

= AAGDBBGDBA

= AAGDBA

= AAGDAB

= AB,(5.5)

BGDAGD(AB)k+1 = BGDAGDAk+1Bk+1

= BGDAkBk+1

= BGDBk+1Ak

= BkAk

= AkBk

= (AB)k,(5.6)
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and

(AB)k+1BGDAGD = Ak+1Bk+1BGDAGD

= Ak+1BkAGD

= BkAk+1AGD

= BkAk

= (AB)k.(5.7)

From (5.5), (5.6), and (5.7), we get (AB)GD = BGDAGD.

The next result discusses the forward-order law involving GD inverse.

Theorem 5.3. Let A,B ∈ Cm×m and k = max{ind(A), ind(B)}. If AB = BA and BGDBA =

ABGDB, then (AB)GD = AGDBGD.

Proof. Clearly, AAGDA = A, AGDAk+1 = Ak, Ak+1AGD = A, BBGDB = B, BGDBk+1 = Bk, and

Bk+1BGD = Bk. Now,

ABAGDBGDAB = BAAGDBGDBA

= BAAGDABGDB

= BABGDB

= ABBGDB

= AB,(5.8)

AGDBGD(AB)k+1 = AGDBGDBk+1Ak+1

= AGDBkAk+1

= AGDAk+1Bk

= AkBk

= (AB)k,(5.9)

and

(AB)k+1AGDBGD = Bk+1Ak+1AGDBGD

= Bk+1AkBGD

= AkBk+1BGD

= AkBk

= (AB)k.(5.10)

From (5.8), (5.9), and (5.10), we get (AB)GD = AGDBGD.

A set of necessary conditions are obtained in the next result for the absorption law of a GD inverse (i.e.,

AGD(A+B)BGD = AGD +BGD).

Theorem 5.4. Let A,B ∈ Cm×m and k = max{ind(A), ind(B)}. If AGD(A+ B)BGD = AGD + BGD,

then AAGDBBGD = AAGD, AGDABGDB = BGDB, AkBBGD = Ak, and AGDABk = Bk.
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Proof. We have

AGD(A+B)BGD = AGD +BGD.(5.11)

Pre-multiplying by Ak+1 and A in equation (5.11), we get

Ak+1AGD(A+B)BGD = Ak+1AGD +Ak+1BGD

Ak(A+B)BGD = Ak +Ak+1BGD

Ak+1BGD +AkBBGD = Ak +Ak+1BGD

AkBBGD = Ak,

and

AAGD(A+B)BGD = AAGD +ABGD

ABGD +AAGDBBGD = AAGD +ABGD

AAGDBBGD = AAGD,

respectively. Again, post-multiply by Bk+1 and B in equation (5.11), we get

AGD(A+B)BGDBk+1 = AGDBk+1 +BGDBk+1

AGD(A+B)Bk = AGDBk+1 +Bk

AGDABk +AGDBk+1 = AGDBk+1 +Bk

AGDABk = Bk

and

AGD(A+B)BGDB = AGDB +BGDB

AGDABGDB +AGDBBGDB = AGDB +BGDB

AGDABGDB +AGDB = AGDB +BGDB

AGDABGDB = BGDB,

respectively.

An immediate consequence of the above result is shown next as a corollary.

Corollary 5.5. Let A,B ∈ Cm×m and k = max{ind(A), ind(B)}. If AGD(A+B)BGD = AGD+BGD,

then R(Bk) ⊆ R(AGDABGDB) and R(Ak) = R(AkB).

Proof. From Theorem 5.4, we get

R(Bk) = R(AGDABk) = R(AGDABGDBk+1) ⊆ R(AGDABGDB).

Again, from Theorem 5.4, we get R(Ak) = R(AkBBGD) ⊆ R(AkB) ⊆ R(Ak) which implies that R(Ak) =

R(AkB).

Baksalary et al. [2] proved that (A + B)† = A† + B† under certain assumptions. Sufficient conditions

for (A+B)GD = AGD +BGD are obtained next.

Theorem 5.6. Let A,B ∈ Cm×m with AB = BA = O and k = max{ind(A), ind(B)}. If AGDB =

BAGD = O and BGDA = ABGD = O, then (A+B)GD = AGD +BGD.

Proof. We have AB = BA = O, so by the binomial expansion (A + B)n = An + Bn for every positive

integer n. Further, we have
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(A+B)(AGD +BGD)(A+B) = (AAGD +ABGD +BAGD +BBGD)(A+B)

= AAGDA+ABGDA+BAGDA+BBGDA+AAGDB

+ABGDB +BAGDB +BBGDB

= AAGDA+BBGDB

= A+B,(5.12)

(AGD +BGD)(A+B)k+1 = (AGD +BGD)(Ak+1 +Bk+1)

= AGDAk+1 +AGDBk+1 +BGDAk+1 +BGDBk+1

= Ak +AGDBk+1 +BGDAk+1 +Bk

= Ak +Bk

= (A+B)k,(5.13)

and

(A+B)k+1(AGD +BGD) = (Ak+1 +Bk+1)(AGD +BGD)

= Ak+1AGD +Ak+1BGD +Bk+1AGD +Bk+1BGD

= Ak +Bk

= (A+B)k.(5.14)

From (5.12), (5.13), and (5.14), we get (A+B)GD = AGD +BGD.

5.2. W -Weighted GD inverse. If W is involutory, then the reverse-order law holds for W -weighted

GD inverse under some conditions. Throughout this subsection, we consider k = max{ind(WA), ind(AW ),

ind(WB), ind(BW )}.

Theorem 5.7. Let A,B ∈ Cm×m, and W ∈ Cm×m be an involutory matrix with WA = AW and

WB = BW . If AB = BA, WBWAGD,W = AGD,WWBW and WAWBGD,W = BGD,WWAW , then

(AB)GD,W = BGD,WAGD,W .

Proof. We have W 2 = I and AB = BA. Now, pre and post-multiplying by W , we get

WABW = WBAW

WAW 2BW = WBW 2AW

(WAW )(WBW ) = (WBW )(WAW ).(5.15)

Now, we check BGD,WAGD,W is a W -weighted GD inverse of AB.

WABWBGD,WAGD,WWABW = WBWWAWBGD,WAGD,WWBWWAW

= WBWBGD,WWAWWBWAGD,WWAW

= WBWBGD,WWBWWAWAGD,WWAW

= WBWWAW

= WBAW

= WABW.(5.16)
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If W k+1 = I, then

(ABW )k+1BGD,WAGD,WW = Ak+1(BW )k+1BGD,WAGD,WW

= Ak+1W k+1(BW )k+1BGD,WAGD,WW

= Ak+1W k+1(BW )k+1BGD,WWWAGD,WW

= (AW )k+1(BW )kWAGD,WW

= (BW )kW (AW )k+1AGD,WW

= (BW )kW (AW )k

= (ABW )k,(5.17)

and

WBGD,WAGD,W (WAB)k+1 = WBGD,WAGD,W (WA)k+1Bk+1

= WBGD,WAGD,W (WA)k+1W k+1Bk+1

= WBGD,WWWAGD,W (WA)k+1W k+1Bk+1

= WBGD,WW (WA)k(WB)k+1

= WBGD,W (WB)k+1W (WA)k

= (WB)kW (WA)k

= (WAB)k.(5.18)

If W k = I, then

(ABW )k+1BGD,WAGD,WW = Ak+1(BW )k+1BGD,WAGD,WW

= Ak+1W k+2(BW )k+1BGD,WWWAGD,WW

= Ak+1W k+1W (BW )k+1BGD,WWWAGD,WW

= W (AW )k+1(BW )kWAGD,WW

= (BW )k(AW )k+1AGD,WW

= (BW )k(AW )k

= W 2k(AB)k

= W k(AB)k

= (ABW )k,(5.19)

and

WBGD,WAGD,W (WAB)k+1 = WBGD,WAGD,W (WA)k+1Bk+1

= WBGD,WWWAGD,W (WA)k+1W k+2Bk+1

= WBGD,WWWAGD,W (WA)k+1WW k+1Bk+1

= WBGD,WW (WA)kW (WB)k+1

= WBGD,W (WB)k+1(WA)k

= (WB)k(WA)k

= (W )2k(BA)k

= (W )k(BA)k

= (WAB)k.(5.20)

Hence, (AB)GD,W = BGD,WAGD,W .
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The proof for the forward-order law of W -weighted GD inverse is similar to the proof of Theorem 5.7

and is stated next.

Theorem 5.8. Let A,B ∈ Cm×m and W ∈ Cm×m be an involutory matrix with WA = AW and

WB = BW . If AB = BA, WBWAGD,W = AGD,WWBW and WAWBGD,W = BGD,WWAW , then

(AB)GD,W = AGD,WBGD,W .

The following result collects a set of sufficient conditions for the additive property of W -weighted GD

inverse.

Theorem 5.9. Let A,B,W ∈ Cm×m with AWBW = BWAW = WBWA = WAWB = O. If

BGD,WWA = AWBGD,W = O and AGD,WWB = BWAGD,W = O, then (A+B)GD,W = AGD,W +BGD,W .

Proof. Putting AGD,W +BGD,W in W -weighted GD inverse definition, we get

W (A+B)W (AGD,W +BGD,W )W (A+B)W

= (WAW +WBW )(AGD,W +BGD,W )(WAW +WBW )

= (WAW +WBW )(AGD,WWAW +AGD,WWBW

+BGD,WWAW +BGD,WWBW )

= (WAW +WBW )(AGD,WWAW +BGD,WWBW )

= WAWAGD,WWAW +WAWBGD,WWBW

+WBWAGD,WWAW +WBWBGD,WWBW

= WAW +WBW

= W (A+B)W.

We have BWAW = AWBW = O, so by the binomial expansion (AW +BW )k+1 = (AW )k+1 + (BW )k+1.

Further, we obtain

(AW +BW )k+1(AGD,W +BGD,W )W = ((AW )k+1 + (BW )k+1)(AGD,WW +BGD,WW )

= (AW )k+1AGD,WW + (AW )k+1BGD,WW

+ (BW )k+1AGD,WW + (BW )k+1BGD,WW

= (AW )k + (BW )k

= (AW +BW )k

= ((A+B)W )k.

We have WBWA = WAWB = O, so by the binomial expansion (WA+WB)k+1 = (WA)k+1 + (WB)k+1.

Further, we get

W (AGD,W +BGD,W )(WA+WB)k+1 = W (AGD,W +BGD,W )((WA)k+1 + (WB)k+1)

= WAGD,W (WA)k+1 +WBGD,W (WA)k+1

+WAGD,W (WB)k+1 +WBGD,W (WB)k+1

= (WA)k + (WB)k

= (WA+WB)k

= (W (A+B))k.

Hence, (A+B)GD,W = AGD,W +BGD,W .
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Next example demonstrates Theorems 5.7 and 5.8.

Example 5.10. Let A = P

2 0 0

0 1 0

0 0 0

P−1, B = P

3 0 0

0 2 0

0 0 0

P−1 ∈ C3×3, and W = P

1 0 0

0 1 0

0 0 −1


P−1 ∈ C3×3 be an involutory matrix. Then AB = P

6 0 0

0 2 0

0 0 0

P−1 and from Theorem 2.2, we have

AGD,W = P

1/2 0 0

0 1 0

0 0 X1

P−1 and BGD,W = P

1/3 0 0

0 1/2 0

0 0 X2

P−1, where X1, X2 ∈ C are arbitrary.

Now, (AB)GD,W = P

1/6 0 0

0 1/2 0

0 0 X3

P−1, where X3 is arbitrary and we can always choose X3 = X1X2.

Hence, (AB)GD,W = AGD,WBGD,W = BGD,WAGD,W .

5.3. GDMP inverse. When A and B both are orthogonal projections, then the reverse-order law for

GDMP inverse holds under a few conditions as follows:

Theorem 5.11. Let A,B ∈ Cm×m be two orthogonal projections and k = max{ind(A), ind(B)}. If

AB = BA, AGDAB = BAGDA, and BBGDAGD = AGDBBGD, then (AB)GD† = BGD†AGD†.

Proof. We have A† = A and B† = B as A and B both are orthogonal projections, and from orthogonal

properties and AB = BA, we get (AB)† = B†A† = A†B†. Now, from Theorem 5.3, we get

(AB)GD† = (AB)GDAB(AB)†

= BGDAGDABB†A†

= BGDAGDABBA

= BGDAGDAB

= BGDBAGDA

= BGDBB†AGDAA†

= BGD†AGD†.

Hence, (AB)GD† = BGD†AGD†.

When A and B both are orthogonal projections, then the forward-order law for GDMP inverse holds

under a few conditions as follows:

Theorem 5.12. Let A,B ∈ Cm×m be two orthogonal projections and k = max{ind(A), ind(B)}. If

AB = BA and BGDBA = ABGDB, then (AB)GD† = AGD†BGD†.

Proof. Since A and B both are orthogonal projections, so A† = A and B† = B, and from orthogonal

properties and AB = BA, we get (AB)† = B†A† = A†B†. Now, from Theorem 5.3, we get
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(AB)GD† = (AB)GDAB(AB)†

= AGDBGDABB†A†

= AGDBGDABBA

= AGDBGDBA

= AGDABGDB

= AGDAA†BGDBB†

= AGD†BGD†.

Hence, (AB)GD† = AGD†BGD†.

The next result is in the direction of Theorem 5.6.

Theorem 5.13. Let A,B ∈ Cm×m be two orthogonal projections with AB = BA = O and k =

max{ind(A), ind(B)}. If AGDB = BAGD = O and BGDA = ABGD = O, then (A+B)GD† = AGD†+BGD†.

Proof. From Theorems 5.6 and 2.3, we have (A+B)GD = AGD +BGD and (A+B)† = A† +B†. Now,

(A+B)GD† = (A+B)GD(A+B)(A+B)†

= (AGD +BGD)(A+B)(A† +B†)

= (AGDA+AGDB +BGDA+BGDB)(A† +B†)

= (AGDA+BGDB)(A† +B†)

= AGDAA† +AGDAB† +BGDBA† +BGDBB†

= AGD† +AGDAB +BGDBA+BGD†

= AGD† +BGD†.

Hence, (A+B)GD† = AGD† +BGD†.

5.4. W -weighted GDMP inverse. Throughout this subsection, we consider k = max{ind(WA),

ind(AW ), ind(WB), ind(BW )}. With the help of Theorem 5.7 and some additional conditions, the reverse-

order law for W -weighted GDMP inverse can be proved. The first result of this subsection is in this direction.

Theorem 5.14. Let A,B ∈ Cm×m be two orthogonal projections, and W ∈ Cm×m be involutory matrix

with WA = AW and WB = BW . If AB = BA, WBWAGD,W = AGD,WWBW and WAWBGD,W =

BGD,WWAW , then (AB)GD†,W = BGD†,WAGD†,W .

Proof. From Theorem 5.7, we have (AB)GD,W = BGD,WAGD,W . Further, we have

(AB)GD†,W = W (AB)GD,WWAB(AB)†

= WBGD,WAGD,WWAB

= WBGD,WAGD,WWBWWA

= WBGD,WWBWAGD,WWA

= WBGD,WWBB†WAGD,WWAA†

= BGD†,WAGD†,W .

Hence, (AB)GD†,W = BGD†,WAGD†,W .
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The forward-order law for W -weighted GDMP inverse can also be proved using Theorem 5.8 and pro-

ceeding similarly as in the proof of Theorem 5.14. The statement is recorded below.

Theorem 5.15. Let A,B ∈ Cm×m be two orthogonal projections, and W ∈ Cm×m be an involu-

tory matrix with WA = AW and WB = BW . If AB = BA, WBWAGD,W = AGD,WWBW , and

WAWBGD,W = BGD,WWAW , then (AB)GD†,W = AGD†,WBGD†,W .

The next result shows that (A+B)GD†,W = AGD†,W +BGD†,W , using Theorem 5.9 and Theorem 2.3.

Theorem 5.16. Let A,B,W ∈ Cm×m with AWBW = BWAW = BWAW = WAWB = O. Let A and

B both be orthogonal projections. If BGD,WWA = AWBGD,W = O and AGD,WWB = BWAGD,W = O,

then (A+B)GD†,W = AGD†,W +BGD†,W .

Proof. From Theorem 5.9, we have (A+B)GD,W = AGD,W +BGD,W and from Theorem 2.3 (A+B)† =

A† +B† = A+B. Now,

(A+B)GD†,W = W (A+B)GD,WW (A+B)(A+B)†

= W (AGD,W +BGD,W )W (A2 +B2)

= (WAGD,WW +WBGD,WW )(A2 +B2)

= WAGD,WWA2 +WAGD,WWB2 +WBGD,WWB2 +WBGD,WWA2

= WAGD,WWA2 +WBGD,WWB2

= WAGD,WAA† +WBGD,WWBB†

= AGD†,W +BGD†,W .

Hence, (A+B)GD†,W = AGD†,W +BGD†,W .

Next example shows that the given conditions in Theorem 5.14 and Theorem 5.15 are sufficient but not

necessary.

Example 5.17. Let A = P

2 0 0

0 1 0

0 0 0

P−1, B = P

3 0 0

0 2 0

0 0 0

P−1 ∈ C3×3, both are not orthogonal

projections and W = P

1 0 0

0 1 0

0 0 −1

P−1 ∈ C3×3 be an involutory matrix. Then AB = P

6 0 0

0 2 0

0 0 0

P−1

and from Theorem 3.15, we have AGD†,W = P

1/2 0 0

0 1 0

0 0 0

P−1, BGD†,W = P

1/3 0 0

0 1/2 0

0 0 0

P−1,

(AB)GD†,W = P

1/6 0 0

0 1/2 0

0 0 0

P−1. Hence, (AB)GD†,W = AGD†,WBGD†,W = BGD†,WAGD†,W .

6. Conclusions. The notion of GDMP inverse of a square matrix has been extended to a rectangular

matrix using a weight W . Some properties of this inverse, along with its representation, have been obtained.

We have also presented sufficient conditions such that the reverse and forward-order laws for GD,W -weighted

GD, GDMP, andW -weighted GDMP generalized inverses hold. The problems of computing GD,W -weighted
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GD, GDMP, and W -weighted GDMP generalized inverse of a sum of matrices have also been illustrated.

These theories can also be studied in a ring with involution and a tensor setting.
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