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POSITIVE LINEAR MAPS AND SPREADS OF NORMAL MATRICES∗
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Abstract. We obtain some inequalities involving positive linear maps on matrix algebra. The special cases provide bounds

for the spreads of normal matrices.
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1. Introduction. Let M(n) denote the algebra of all complex n × n matrices. A linear map Φ :

M(n) → M(k) is called positive if Φ (A) ≥ 0 whenever A ≥ 0 and unital if Φ (In) = Ik. A linear functional

ϕ : M(n) → C is a special case of such maps, see [4]. Beginning with Kadison [18], several authors have

studied the inequalities involving positive unital linear maps. An inequality of interest in the present context

is due to Bhatia and Davis [3]: if A is any Hermitian element of M(n) whose spectrum is contained in the

interval [m,M ], then

(1.1) Φ
(
A2
)
− Φ (A)

2 ≤ (MIk − Φ (A)) (Φ (A)−mIk) ≤
(
M −m

2

)2

Ik.

Bhatia and Sharma [5] extended this inequality for arbitrary matrices and have shown that for any matrix

A ∈M(n),

(1.2) Φ (A∗A)− Φ (A∗) Φ (A) ≤ ∆ (A)
2
Ik,

where ∆ (A) = infz∈C ‖A − zI‖ and ‖ · ‖ denotes the operator norm. The inequality (1.2) also holds good

if we replace Φ (A∗A) by Φ (AA∗) in the left-hand side of (1.2). Bhatia and Sharma [5] obtained several

lower bounds for ∆ (A) on choosing different linear maps in (1.2). They showed that ∆ (A) ≥ r, where r is

the radius of the smallest disk containing the eigenvalues of A and for normal matrices ∆ (A) = r. Also, by

a classical theorem of Jung [14], spd (A) ≥
√

3r, where spd (A) = maxi,j |λi (A) − λj (A) |. Beginning with

Mirsky [19], several authors have investigated bounds for the spreads of matrices. The inequality (1.2) also

provides several lower bounds for the spreads of normal matrices. Jiang and Zhan [12] have discussed some

stronger lower bounds for the spreads of Hermitian matrices. Bhatia and Sharma [7] have shown that these

lower bounds also follow from the inequality (1.2). For some related complementary inequalities involving

positive unital linear maps, see Kian et al. [15].

Bhatia and Sharma [7] also discussed a variant of (1.2) in the special case when A is normal and ϕ is a

positive unital linear functional,

(1.3) ϕ (A∗A)− |ϕ (A) |2 + |ϕ
(
A2
)
− ϕ (A)

2 | ≤ spd (A)
2

2
.
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It is also shown that the lower bounds for the spread derived by Johnson et al. [13] and Merikosky and

Kumar [17] follow as the special cases of (1.3). See [6].

Sharma et al. [21, 22] extended the work of Bhatia and Davis [3] and showed that for any positive unital

linear functional ϕ : M(n)→ C and for any Hermitian element A of M(n), we have

(1.4) ϕ
(
B4
)
≤ spd (A)

4

12

and

(1.5) ϕ
(
B4
)

+ 3ϕ
(
B2
)2 ≤ spd (A)

4

4
,

where B = A− ϕ (A) I.

We here mainly consider normal matrices and for the simplicity of notations denote A∗A by |A|2 where

A∗ is the conjugate transpose of A, see [2]. Our first theorem provides a refinement of the inequality (1.2) for

normal matrices. This inequality (Theorem 2.1) is used to derive some further results. The upper bounds

for ϕ
(
|A|4

)
and ϕ

(
|B|4

)
are obtained in terms of ϕ

(
|A|2A

)
, ϕ
(
|A|2

)
, ϕ (A) when all the eigenvalues of A

lie in |z − c| = r (Theorems 2.2 and 2.3). The upper bounds for ϕ(|A|4) and ϕ(|B|4) in terms of ϕ(|A|2)

and ϕ(A) derived in Theorems 2.4 and 2.5 yield several lower bounds for the radius r of the smallest disk

containing all the eigenvalues of a normal matrix in terms of ϕ
(
|B|2

)
and ϕ

(
|B|4

)
(Corollaries 2.6–2.8). We

discuss special cases and obtain lower bounds for the spread of normal matrices in terms of Frobenius norm

of A− trA
n I and

(
A− trA

n I
)2

(Corollaries 3.1–3.2). Corollary 2.7 also provides a lower bound for r in terms

of ϕ
(
B|B|2

)
(Corollary 3.2). We discuss upper bounds for the ratios

ϕ(|B|2)
|ϕ(A)|2 and

ϕ(|B|4)
|ϕ(A)|2 when A is normal

and a lower bound for the condition number of the Cauchy matrix is given (Corollaries 3.3–3.4).

2. Main results.

Theorem 2.1. Let Φ : M(n) → M(k) be a positive unital linear map and let A be any normal element

of M(n) whose spectrum is contained in the disk |z − c| ≤ r. Then

(2.1) Φ
(
|A|2

)
− |Φ (A) |2 + |Φ (A)− cI|2 ≤ r2Ik.

Proof. A simple computation shows that for any complex number c, we have

(2.2) Φ
(
|A|2

)
− |Φ (A) |2 + |Φ (A)− cI|2 = Φ

(
|A− cI|2

)
.

Further, by the Spectral Theorem, we have

A =

n∑
i=1

λiPi, A
∗ =

n∑
i=1

λiPi and |A|2 =

n∑
i=1

|λi|2Pi,

where λi’s are the eigenvalues of A and Pi’s are corresponding orthogonal projections. Using this, we have

Φ
(
|A− cI|2

)
= Φ

(
n∑
i=1

|λi|2Pi − c
n∑
i=1

λiPi − c
n∑
i=1

λiPi + |c|2
)

=

n∑
i=1

|λi − c|2Φ (Pi) ≤ r2Ik.(2.3)

From (2.2) and (2.3), we immediately get (2.1).
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The inequality (2.1) becomes equality when all the eigenvalues of A lie on the circle |z − c| = r. Also, for

a positive unital linear functional ϕ : M(n) → C, we have ϕ
(
|A|2

)
− |ϕ (A) |2 = ϕ

(
|A− ϕ (A) I|2

)
. Denote

A− ϕ (A) I by B. Then, (2.1) yields

(2.4) ϕ
(
|B|2

)
+ |ϕ (A)− c|2 ≤ r2.

Theorem 2.2. Let ϕ : M(n)→ C be a positive unital linear functional and let A be any normal element

of M(n) whose spectrum is contained in the disk |z − c| ≤ r. Then

ϕ
(
|A|4

)
≤ 2Re cϕ

(
|A|2A

)
+
(
r2 − |c|2

)
ϕ
(
|A|2

)
−
(
Re ϕ

(
|A|2A

)
− 2Re cϕ (HA) +

(
|c|2 − r2

)
ϕ (H)

)2
r2 − |c|2 − ϕ (|A|2) + 2Re cϕ (A)

,(2.5)

where H = A+A∗

2 and 2Re cϕ (A)− ϕ
(
|A|2

)
+ r2 − |c|2 6= 0.

Proof. The eigenvalues λi’s of A all lie in the disk |z − c| ≤ r. Therefore, for any real number α, we

have

(2.6) |λi − α|2 (|λi − c|2 − r2) ≤ 0.

This gives

|λi|4 ≤ 2Re (α+ c) |λi|2 λi − (|c|2 − r2 + α2 + 2αRe c) |λi|2

− 2αRe cλ2i + 2Re (α2c+ α(|c|2 − r2))λi + α2(r2 − |c|2).

Multiplying both sides by ϕ (Pi) and adding n resulting inequalities, we get

(2.7) ϕ
(
|A|4

)
≤ 2Re cϕ

(
|A|2A

)
+ (r2 − |c|2)ϕ

(
|A|2

)
+ f(α)

where

f(α) = (r2 − |c|2 + 2Re cϕ (A)− ϕ
(
|A|2

)
)α2 + 2((|c|2 − r2)ϕ (H)

+ Re ϕ
(
|A|2A

)
− Re cϕ

(
|A|2

)
− Re cϕ

(
A2
)
)α.(2.8)

We note that f(x) = ax2 + 2bx with a > 0 attains its greatest lower bound at x = − b
a as the derivative

f
′
(x) = 2(ax+ b) vanishes there and f

′′
(x) = 2a > 0. Also, by (2.4), the coefficient of α2 in (2.8) is positive.

It follows that f(α) attains its minimum at

(2.9) α =
(|c|2 − r2)ϕ (H) + Re ϕ

(
|A|2A

)
− Re cϕ

(
|A|2

)
− Re cϕ

(
A2
)

|c|2 − r2 − 2Re cϕ (A) + ϕ (|A|2)
,

where

(2.10) f(α) =

((
|c|2 − r2

)
ϕ (H) + Re ϕ

(
|A|2A

)
− Re cϕ

(
|A|2

)
− Re cϕ

(
A2
))2

|c|2 − r2 − 2Re cϕ (A) + ϕ (|A|2)
.

Combining (2.7) and (2.10), we immediately get (2.5).
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Theorem 2.3. With notations and conditions as in Theorem 2.2,

ϕ(|B|4) ≤ 2Re (c− ϕ (A))ϕ
(
|B|2B

)
+ (r2 − |ϕ (A)− c|2)ϕ

(
|B|2

)
−

(Re ϕ
(
|B|2B

)
− 2Re (c− ϕ (A))ϕ (H1B))2

r2 − |ϕ (A)− c|2 − ϕ (|B|2)
,(2.11)

where H1 = B+B∗

2 and r2 − |ϕ (A)− c|2 − ϕ
(
|B|2

)
6= 0.

Proof. For any real number α, we have

(2.12) |λi − ϕ (A)− α|2 (|λi − ϕ (A) + ϕ (A)− c|2 − r2) ≤ 0.

Beginning with the inequality (2.12) and using the arguments similar to those used in the proof of Theorem

2.2, we easily get (2.11).

It may be noted here that r2 − |ϕ (A)− c|2 − ϕ
(
|B|2

)
= 0 when all the eigenvalues of A lie on the circle

|z − c| = r and therefore (2.5) and (2.11) are not applicable. In this case, we have

ϕ
(
|A|4

)
= 2Re cϕ

(
|A|2A

)
+ (r2 − |c|2)ϕ

(
|A|2

)
and

ϕ
(
|B|4

)
= 2Re (c− ϕ (A))ϕ

(
|B|2B

)
+ (r2 − |ϕ (A)− c|2)ϕ

(
|B|2

)
.

The inequalities (2.5) and (2.11) become equalities when A has three distinct eigenvalues such that two of

them lie on the circle |z − c| = r and one inside it. The eigenvalues are then λ1 = c− r, λ3 = c+ r and λ2
satisfies |λ2 − c| < r.

Let A ∈M(n) be Hermitian. Then, all its eigenvalues are real and lies in the disk with centre c = λ1+λn

2

and radius r = λn−λ1

2 . So, the inequality (2.5) yields the following result, see Sharma et al. [22],

(2.13) ϕ
(
A4
)
≤ (λ1 + λn)ϕ

(
A3
)
− λ1λnϕ

(
A2
)
−
(
ϕ
(
A3
)
− (λ1 + λn)ϕ

(
A2
)

+ λ1λnϕ (A)
)2

(λ1 + λn)ϕ (A)− ϕ (A2)− λ1λn
,

where (λ1 + λn)ϕ (A)− λ1λn 6= ϕ
(
A2
)
.

We now find an upper bound for ϕ
(
|A|4

)
in the following theorem which is independent of Re cϕ

(
|A|2A

)
.

The inequality (2.7) suggests that to achieve the desired result we must choose α = −c in (2.6) and in this

case the resulting inequality is also valid for linear maps.

Theorem 2.4. Let Φ : M(n) → M(k) be a positive unital linear map and let A be any normal element

of M(n) whose spectrum is contained in the disk |z − c| ≤ r. Then

(2.14) Φ
(
|A|4

)
≤ r2Φ

(
|A|2

)
+ r2Φ (X) + Φ (Y ) + |c|2 (r2 − |c|2),

where X = cA+ cA∗ and Y = (cA)2 + (cA∗)2.

Proof. The eigenvalues λi’s of A all lie in the disk |z − c| ≤ r. Therefore,

(2.15) |λi + c|2 (|λi − c|2 − r2) ≤ 0,



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 347-356, June 2022.

351 Positive linear maps and spreads of normal matrices

for all i = 1, 2, . . . , n. From (2.15), we get

(2.16) |λi|4 − r2 |λi|2 + |c|4 − |c|2 r2 − (c2λ2i + c2λ
2

i )− (cλi + cλi)r
2 ≤ 0.

This gives

(2.17) |λi|4 ≤ (c2λ2i + c2λi
2
) + r2(|λi|2 + |c|2 + cλi + cλi)− |c|4 .

Multiplying both sides by Φ (Pi) and adding n resulting inequalities we immediately get (2.14).

For the linear functional ϕ : M(n)→ C, the inequality (2.14) can be written as

(2.18) ϕ
(
|A|4

)
≤ r2ϕ

(
|A|2

)
+ 2Re c2ϕ

(
A2
)

+ 2r2Re cϕ (A∗) + |c|2 (r2 − |c|2).

It is clear that the inequality (2.14) becomes equality when the spectrum of A lies on the circle |z − c| = r.

Further, if A is Hermitian, c = λ1+λn

2 and r = λn−λ1

2 , and from (2.14), we get

(2.19) Φ
(
A4
)
≤
(

3

4
(λ1 + λn)2 − λ1λn

)
Φ
(
A2
)

+ (λ1 + λn)

(
λn − λ1

2

)2

Φ (A)− λ1λn
(
λ1 + λn

2

)2

Ik.

The inequality (2.19) becomes equality when A has at most two distinct eigenvalues. So, for a 2×2 Hermitian

matrix A, we have

Φ
(
A4
)

=

(
3

4
(trA)2 − detA

)
Φ
(
A2
)

+
1

4
trA

(
trA2 − 2detA

)
Φ (A)− 1

4
detA(trA)2Ik.

Our goal now is to find the lower bounds for the spreads of normal matrices. For this, we find the upper

bound for ϕ
(
|B|2

)
analogous to upper bound for ϕ

(
|A|2

)
in (2.18).

Theorem 2.5. Let ϕ : M(n) → C be a positive unital linear functional and let A be a normal element

of M(n) whose spectrum is contained in the disk |z − c| ≤ r. Then

(2.20) ϕ
(
|B|4

)
≤ r2ϕ

(
|B|2

)
+ 2Re (ϕ (A)− c)2ϕ

(
B2
)

+ |ϕ (A)− c|2(r2 − |ϕ (A)− c|2),

where B = A− ϕ (A) I.

Proof. The eigenvalues λi’s of A all lie in the disk |z − c| ≤ r. Therefore,

(2.21) |λi − ϕ (A) + c− ϕ (A)|2 (|λi − ϕ (A)− (c− ϕ (A))|2 − r2) ≤ 0.

From (2.21), we find that

|λi − ϕ (A)|4 ≤ r2 |λi − ϕ (A)|2 + 2Re (ϕ (A)− c)2 (λi − ϕ (A))
2

+ 2r2Re (c− ϕ (A)) (λi − ϕ (A)) + |ϕ (A)− c|2 (r2 − |ϕ (A)− c|2).(2.22)

Multiplying both sides by ϕ (Pi) and using
∑n
i=1(λi − ϕ (A))ϕ (Pi) = 0, we immediately get (2.20).

Corollary 2.6. With notations and conditions as in Theorem 2.5,

(2.23) ϕ
(
|B|4

)
+ 3

(
ϕ(|B|2)

)2 ≤ 4r2(r2 − |ϕ (A)− c|2) ≤ 4r4.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 347-356, June 2022.

R. Sharma and M. Pal 352

Proof. Since Re z ≤ |z|, we have

(2.24) Re (ϕ (A)− c)2ϕ
(
B2
)
≤ |ϕ (A)− c|2

∣∣ϕ (B2
)∣∣ .

Using the triangle inequality, we have

(2.25)
∣∣ϕ (B2

)∣∣ =

∣∣∣∣∣
n∑
i=1

(λi − ϕ (A))
2
ϕ (Pi)

∣∣∣∣∣ ≤
n∑
i=1

|λi − ϕ (A)|2 ϕ (Pi) = ϕ
(
|B|2

)
.

From (2.24) and (2.25),

(2.26) Re(ϕ (A)− c)2ϕ
(
B2
)
≤ |ϕ (A)− c|2 ϕ

(
|B|2

)
.

Combining (2.20) and (2.26), we get

(2.27) ϕ
(
|B|4

)
≤ (r2 + 2 |ϕ (A)− c|2)ϕ(|B|2) + |ϕ (A)− c|2 (r2 − |ϕ (A)− c|2).

It follows from (2.27) that

ϕ
(
|B|4

)
+ 3

(
ϕ
(
|B|2

))2 ≤ (r2 + 2 |ϕ (A)− c|2)ϕ
(
|B|2

)
+ |ϕ (A)− c|2 (r2 − |ϕ (A)− c|2) + 3

(
ϕ
(
|B|2

))2
.(2.28)

Using (2.4) in the right-hand side of (2.28) and simplifying the resulting expression, we easily get the first

inequality (2.23). The second inequality (2.23) is self-evident.

We note that ϕ
(
|B|4

)
≥
(
ϕ
(
|B|2

))2
and therefore the inequality (2.23) provides a refinement of the inequal-

ity (1.2) in the special case when A is normal and Φ is functional,

ϕ
(
|B|2

)
≤ 1

2

√
ϕ (|B|4) + 3 (ϕ (|B|2))

2 ≤ r2.

This also implies (1.1) when A is Hermitian. Likewise, we obtain an extension of (1.4) for normal matrices

in the following corollary.

Corollary 2.7. Under the conditions of Theorem 2.5, we have

(2.29) ϕ
(
|B|4

)
≤ (r2 − |ϕ (A)− c|2)(r2 + 3 |ϕ (A)− c|2) ≤ 4

3
r4.

Proof. The first inequality (2.29) follows by using (2.4) in (2.27). The second inequality (2.29) is imme-

diate;

(r2 − |ϕ (A)− c|2)(r2 + 3 |ϕ (A)− c|2) =
4

3
r4 − 1

3

(
3 |ϕ (A)− c|2 − r2

)
≤ 4

3
r4.

Corollary 2.8. Under the conditions of Theorem 2.5, we have

(2.30) ϕ
(
|B|2

)
ϕ
(
|B|4

)
≤ 256

243
r6.

Proof. It follows from the inequality (2.27) that

ϕ
(
|B|2

)
ϕ
(
|B|4

)
≤ (r2 + 2 |ϕ (A)− c|2)ϕ

(
|B|2

)2
+ |ϕ (A)− c|2 (r2 − |ϕ (A)− c|2)ϕ

(
|B|2

)
.(2.31)
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Combining (2.4) and (2.31), we get

(2.32) ϕ
(
|B|2

)
ϕ
(
|B|4

)
≤ (r2 + 3 |ϕ (A)− c|2)(r2 − |ϕ (A)− c|2)2.

The function f(x) =
(
r2 + 3x2

) (
r2 − x2

)2
with derivative f

′
(x) = 18x

(
x2 − r2

) (
x2 − r2

9

)
attains its max-

imum at x = r
3 and therefore, f(x) ≤ 256

243r
6. It follows that

(2.33) (r2 + 3 |ϕ (A)− c|2)(r2 − |ϕ (A)− c|2)2 ≤ 256

243
r6.

Combining (2.32) and (2.33), we immediately get (2.30).

3. Special cases. We here demonstrate some important consequences of the above results.

Let 〈x, y〉 = y∗x denote the standard inner product on Cn and
√
〈x, x〉 = ‖x‖ be the associated norm.

Let B = A−〈Ax, x〉I, where x ∈ Cn and ‖x‖ = 1. Bjorck and Thomee [11] proved that for normal operators

in a Hilbert space,

(3.1) ‖Bx‖2 ≤ r2.

Let ϕ(A) = 〈Ax, x〉, where x ∈ Cn and ‖x‖ = 1. Then ϕ (A) is a positive unital linear functional and for

this choice of ϕ the inequality (2.4) provides a refinement of the inequality (3.1),

‖Bx‖2 ≤ r2 − |〈Ax, x〉 − c|2 .

Also, see Audenaert [1], Barnes [8, 9], Brujin [10].

Likewise, the inequality (2.23) provides some further refinements of (3.1), and we have

‖Bx‖2 ≤
√
‖B2x‖2 + 3‖Bx‖4

4
≤
√
r2(r2 − |〈Ax, x〉 − c|2) ≤ r2.

An independent and related inequality

‖B2x‖2 ≤ 4

3
r4

follows from (2.29) by using similar arguments.

We now give some related results for Frobenius norm.

Corollary 3.1. Let A ∈M(n) be normal. Then

1

n
‖B2‖2F + 3

(
1

n
‖B‖2F

)2

≤ 4r4 ≤ 4

9
spd (A)

4
,(3.2)

1

n
‖B2‖2F ≤

4

3
r4 ≤ 4

27
spd (A)

4
,(3.3)

and

(3.4)
1

n
‖B‖F ‖B2‖F ≤

16

9
√

3
r3 ≤ 16

81
spd (A)

3
,

where ‖A‖2F = trA∗A is the Frobenius norm of A.
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Proof. The linear functional ϕ (A) = trA
n is positive and unital. On using ϕ (A) = trA

n in (2.23), (2.29)

and (2.30), we immediately get (3.2), (3.3) and (3.4), respectively.

Sharma et al. [20] proved that

(3.5) ϕ
(
|B|4

)
≥
∣∣ϕ (B|B|2)∣∣2
ϕ
(
|B|2

) + ϕ
(
|B|2

)2
.

We use (3.5) to derive our next result.

Corollary 3.2. Let ϕ : M(n) → C be a positive unital linear functional and let A be any normal

element of M(n). Then

(3.6)
∣∣∣ϕ (B|B|2)2∣∣∣ ≤ ϕ (|B|2)ϕ (|B|4)− ϕ (|B|2)3 ≤ 16

27
r6.

Proof. The first inequality (3.6) follows from (3.5). Further, f(x) = ax− x3 ≤ 2
3
√
3
a

3
2 for a > 0. So

(3.7) ϕ
(
|B|2

)
ϕ
(
|B|4

)
− ϕ

(
|B|2

)3 ≤ 2

3
√

3
ϕ
(
|B|4

) 3
2 .

From (2.29), ϕ
(
|B|4

) 3
2 ≤

(
4
3

) 3
2 r6. Then, (3.7) yields the second inequality (3.6).

For a positive definite matrix A ∈M(n),

(3.8) ϕ
(
B2
)
≤ (λn − λ1)

2

4λnλ1
ϕ (A)

2
.

See Krasnoselski and Krien [16]. A related result for normal matrices is given in the following corollary.

Corollary 3.3. Under the conditions of the Theorem 2.5 and with |c| > r, we have

(3.9)
ϕ
(
|B|2

)
|ϕ (A) |2

≤ r2

|c|2 − r2

and

(3.10)
ϕ
(
|B|4

)
|ϕ (A)|2

≤ r4

|c|2 − r2
.

Proof. We first note that ϕ (A) 6= 0 for |c| > r. This follows from the fact that |ϕ (A)− c| =

|
∑n
i=1 (λi − c) pi| ≤ r for |λi − c| ≤ r, i = 1, 2, ..., n and therefore by the triangle inequality, we have

|ϕ (A) | ≥ |c| − r > 0 for |c| > r.

Using the triangle inequality, |ϕ (A)− c|2 ≥ (|ϕ (A)| − |c|)2. Therefore,

(3.11)
r2 − |ϕ (A)− c|2

|ϕ (A) |2
≤

2 |ϕ (A)| |c| −
(
|c|2 − r2

)
|ϕ (A)|2

− 1.

The function f (x) = 2ax−b
x2 attains its maximum at x = b

a and f
(
b
a

)
= a2

b . So (3.11) implies that

(3.12)
r2 − |ϕ (A)− c|2

|ϕ (A)|2
≤ r2

|c|2 − r2
.

Using (3.12) in (2.4) and (2.23) we immediately get the inequalities (3.9) and (3.10), respectively.
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It may be noted here that for a positive definite matrix A ∈ M(n), c = λ1+λn

2 , r = λn−λ1

2 and |c| > r.

Therefore, from the inequality (3.10), we have

(3.13) ϕ
(
B4
)
≤ (λn − λ1)

4

4λ1λn
ϕ
(
A2
)
.

The ratio spread c(A) = λmax(A)
λmin(A) is also important in the study of positive definite matrices. The inequality

(3.14)
λmax (A)

λmin (A)
≥

(√
ϕ (A2)− ϕ (A)

2

ϕ (A)
2 +

√
1 +

ϕ (A2)− ϕ (A)
2

ϕ (A)
2

)2

due to Bhatia and Sharma [5] also follows from (3.8).

A matrix A ∈M(n) with entries, aij = 1
xi+xj

, xi’s > 0, is called the Cauchy matrix; see Bhatia [4]. An

interesting consequence of (3.14) gives a lower bound for the ratio spread of the Cauchy matrix, which is

independent of the entries and depends only on the order of the matrix.

Corollary 3.4. Let A = (aij) ∈M(n) be the Cauchy matrix. Then

(3.15)
λmax (A)

λmin (A)
≥
(√
n− 1 +

√
n
)2
.

Proof. Without restricting generality suppose that x1 ≥ x2 ≥ ... ≥ xn. Let ϕ (A) = a11. Then, ϕ is a

positive unital linear functional and

(3.16)
ϕ
(
A2
)
− ϕ (A)

2

ϕ (A)
2 =

n∑
j=1

a21j − a211
a211

=

n∑
j=2

(
a1j
a11

)2

.

Now, for x1 ≥ xj , we have
a1j
a11

=
1

x1+xj
1

2x1

= 2x1

x1+xj
≥ 1. So, from (3.16),

(3.17)
ϕ
(
A2
)
− ϕ (A)

2

ϕ (A)
2 ≥

n∑
j=2

1 = n− 1.

Combining (3.14) and (3.17), we immediately get (3.15).
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