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PERIODIC COPRIME MATRIX FRACTION
DECOMPOSITIONS*

RAFAEL BRU'®, CARMEN COLL!'® AND JOSEP GELONCH!?

Abstract. A study is presented of right (left) coprime decompositions of a collection
of N-periodic rational matrices, with some ordered structure. From a block-ordered right
coprime decomposition of a rational matrix of the given periodic collection, the corresponding
block-ordered right coprime decompositions of the remaining matrices of the collection are
constructed. In addition, those decompositions are N-periodic.
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1. Introduction. It is well-known that in control theory there are dif-
ferent approaches for studying linear multivariable systems. One of the most
important advantages of the fraction matrix approach is that it permits the
use of polynomial matrices which form the decomposition of the transfer ma-
trix. Those polynomial matrices have all information about the system. In
the study of rational matrices the right and left coprime polynomial fraction
decompositions play an important role in control theory, because they are di-
rectly related to the concept of controllability and observability; see [4] and
[6]. Further, those kind of decompositions apply to a lot of problems of mul-
tivariable systems as the minimal realization problem, the regulator problem
with internal stability, the output feedback compensator problem, etc. Differ-
ent studies of fraction decompositions with applications in control invariant
systems are [3], [5], [7]. and [8]

A discrete-time linear periodic system in the z-domain can be defined by
a periodic collection of rational matrices of the following form (see [2]),

(1) {Hy(2),s € 2}, Hyyn(z) = Hy(z) € RPVN,
such that
(2) Hypi(z) = SpN,p(Z)HS(Z)S;L}V,m(Z)v s € 7,

where S,n,(2) and S, N, (2) are given in (3), and one of the matrix of the
collection, say Ho(z), is proper with lower block triangular polynomial part.

It seems that the knowledge of coprime decompositions of the collection
(1)-(2) can help to solve problems of discrete-time linear periodic systems
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as those mentioned above in the invariant case. For instance, one can use
those decompositions to obtain, with an output feedback, a stable closed-loop
periodic system of minimal dimension. The main aim of this work is to obtain a
right (left) coprime decomposition of a collection of periodic rational matrices
and study the relationship among them. This paper is structured as follows: In
Section 2 we state our definitions and give some notation to simplify the paper.
Then, in Section 3 we study the block-ordered right coprime decomposition of
a rational matrix. Next, in Section 4, we study the Smith canonical form of
the natural decomposition of Hsyq, from a given decomposition of H,. That
canonical form is basic in the last section, where we shall construct a block-
ordered right coprime decomposition of H 1 from one of ;.

2. Preliminaries and notation. Given two nonnegative integers a, (3
with a > 3, we define the polynomial matrices:

g St = 9, 67|

Some properties of those matrices can be found in [1]. Here, we explicitly state
the following properties which are complementaries to those given in [1].
LEmMA 2.1. The matrices given in (3) satisfy the following properties:

; — SO& 1 2(2) Zf ﬁ ‘|‘ﬁ < a
(Z) Sa,ﬁ1(2) . Sa,ﬁ2(2) - { Zsjﬁjfﬁ2—a(2) Zf ﬁi i ﬁz S a
(i) det Sog(z) = (=1)P@=9)0

-1 -
(i) STHZ) = = Sramsl2).

In the rest of the paper we shall denote, in general, rational matrices by Hy,
because most of the results will be applied in the context of rational matrices
defined in (1) satisfying property (2). We recall that a pair of polynomial

matrices (DS(Z),NS(Z)), with Dy(2) € R™VXmN2] and Ny(z) € mPVXmN[2])
is a right decomposition of H(z) if

(4) H,(2) = No(2)D7'(2) -

In what follows we shall work with right coprime decompositions. A pair
of polynomial matrices (D(z), N(Z)) is said to be right coprime if the Smith
canonical form of the matrix

F(D(2),N(2)) = [ﬁgjg] € RUMHPINxmN )

is the matrix

5) [I%N] .



ELA

46 Rafael Bru, Carmen Coll, and Josep Gelonch

From the right decomposition (4) of Hy(z) and the relation (2) we have

Ho1(2) = Spnp(2)Hs(2)95 N m(2) = Sonp(2)No(2) DTN (2) STy (2)

(6) = (Sonpl2)INa(2) (Smnm(2)Ds(2))

which is a right decomposition of Hsi1(2). In general, the right decom-
position (6) is not right coprime even in the case the right decomposition

(DS(Z), NS(Z)) is right coprime, as the following example shows.
ExaMPLE 2.2. Let us consider the matrices

1
z—1

™R

Ho(z) = and Hi(z) =

—_

0

IS IR S

z—1
The periodic set {Ho(z), Hi(2), Hs42(2) = Hs(z),s € Z} is a periodic collec-

tion of rational matrices with period N = 2 and, according to the notation
given in (1), p=1 and m = 1. The pair of matrices

22—z z z—1 1
(DO(Z)’NO(Z))_ ([22—2 2—1]’[ 22 Z—I—l])
is a right coprime decomposition of Ho(z). Then, compute the matrices
_fo 1] [2%2-=2 z [22—-2 z-1
L O ] | Y B e S et

saemie= |2 o] P20 L] =1L Y

(7) (82:1(2)Do(2), 52,1() No( =)

is a right decomposition of Hy(z). Since the Smith canonical form of the

matrix ]—"(5271(2)D0(2), 5271(2)]\70(2)) is

SO o
oo o

the pair (7) is not right coprime.
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For simplicity, we will omit the variable z in rational and polynomial
matrices, however, when z = 0, we will always make it explicit.
Let us consider the following row-block partition of the matrices Dy and

N.,
o m

D, = D , N, = % :

_DN_ _NN_

with D; € B7*7N[z] and N; € BP*™N[2], for i = 1,2,...,N. We construct
the block-polynomial matrices

Dy,

fk(Ds7 Ns) = € ]R(m‘HD)(]\f—k-l-l)><mN[Z]7

Ny

for k =1,2,..., N . Note that F defined in the first section is just F;. Denote

(8) ra = rank 7 (Dy(0), Ny(0)), b =1,2,..., N,

DEFINITION 2.3. Let (Ds, Ny) denote a right decomposition of a rational
matriz. We shall call the sequence (r41,7s2,...,7sN) the characteristic rank
of the pair (Dg, Ny).

Clearly,

mNZTSIZTSQZ"'ZTsNZO-

When definition 2.3 applies to a coprime decomposition then the first inequal-
ity of the above expression becomes equality, i.e., mN = rg.

DEFINITION 2.4. A right decomposition of Hs, (Ds, Ny), with charac-
teristic rank (rs1,7s2,...,7sN) is said to be block-ordered if for each matriz
Fr(Ds, Ng), k=1,2,..., N, there exists a partition in two blocks,

Fe(Ds,No) =[G Gr], Gp € RUOMPIIN=R) X7
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such that G(0) = O.

The next result gives a practical characterization of block-ordered decom-
positions. This characterization will be useful throughout the paper.

LEmma 2.5. Let (Dg, Ns) be a right coprime decomposition of Hs with
characteristic rank (rs1,7s2,...,7sn). Then (Dg, Ny) is block-ordered if and
only if there exists a partition of the matrices Dy and Ny,

D11 D1a D13 .- Dy N1 Din
2Dqy Dy Dys . e Dz,N—l Don
2Dz 2D39 D33 . e D3,N—1 D3y
D, = . . . . . 7
ZDN—1,1 ZDN—1,2 ZDN—LS e DN—1,N—1 DN—LN
(9) L ZDN1 ZDN2 ZDN3 ZDN7N_1 DNN 1
N1 Nio Ni3 Ninaa Ny ]
2Noy N No3 N2,N—1 Non
2N3q 2 N3 N33 . e N3,N—1 N3y
N, = . . . . . 7
ZNN—LI ZNN—1,2 ZNN—LS NN—1,N—1 NN—LN
L ZNN1 ZNN2 ZNN3 ZNN7N_1 NNN 1

with D;; € RM*rsi=7si01)[ 2], Ny € RPXsi=7si41)(2] and

Dy(0
(10) rank [NZEOH = Tsi = Tsitls
fori=1,2,...,N, where 7 N1 =0 .

Proof. Assume that (D, Ny) is block-ordered. Consider a block partition
of matrices Dy and N, with the same block sizes as partitions (9), where we
denote the blocks of the lower block triangular part by ﬁij and ]\Afij, T > 7.
We have to prove that each of those blocks are multiples of z and the equation

(10) holds.
Since (Ds, Ny) is block-ordered the matrix

Dyt ... Dyn-
Fn(Dy, Ny = | .
w( ) Nyt ... Nyn-a

Dyn
Nnn

evaluated at z = 0 is Fn(Ds(0), Ny(0)) = [0 Gn(0)]. Then, we can write
Dy; = zDn; and Ny; = z2Ny; for j = 1,2,...,N — 1. Moreover, by (8),



ELA

Periodic Coprime Matrix Fraction Decompositions 49

rank [ D (0) ] = ryn. Next, similarly,

Nyn(0)
fN—l(Ds(O)v NS(O))
ﬁN—m(O) e DN—LN—Z(O) Dy_1n-1(0) Dn_1n(0)
_]o ... O 0 Dyn(0)
B NN—1,1(0) NN—l,N—z(O) Nn_1,n-1(0) Ny_1,n(0)
19, . 0 0 Nyn(0)
= [0 Gn-a(0)],

implying that ﬁN—l,j =2zDn_1,; and ]\AfN_Lj =zNy_qj,forj=1,2,...,N—
2. By the expression (8) and the characteristic rank of the decomposition, we
can conclude that rank Dy—1,5-1(0) = rsN—1 — rsN. Reasoning in this
Nn-1,n-1(0) ’

way we complete the proof.
The converse is straightforward. O

As we said in the introduction, the aim of this paper is to find a block-
ordered right coprime decomposition of matrix Hsy 1, from a block-ordered
right coprime decomposition of H,, s € Z.

3. Block ordered right coprime decomposition of a rational ma-
trix. In this section, we prove the existence of a block-ordered right coprime
decomposition of an arbitrary rational matrix H,, which will be used in the
rest of the paper.

Let A € RP*9[z] be a polynomial matrix, with p > ¢. Let S be its Smith

canonical form
_ |
§ = [O] .

It is easily seen that there exists an unimodular polynomial matrix, V €
RPXP[z], such that

(11) VA= [g]

THEOREM 3.1. Let Hs, s € Z be a rational matriz. Then, there exists a
block-ordered right coprime decomposition of H,.

Proof. Let Hy = N,D;! be a right coprime decomposition, with the
following sizes D, € R™NXmN[2] and N, € RPN*™N[z]. We know that the
Smith canonical form of the matrix

Dy
V]

Fi(D,.N,) = [
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is given by (5). There exists, (see (11)), an unimodular polynomial matrix, V,
such that

VRN = | ]

Let (751,752, ...,7sn) be the characteristic rank of the pair of matrices (D, N).
Then, there exists a nonsingular constant matrix Wy of adequate size such that

F2(Ds(0), Ny(0)) W1 = [0 Ga(0)]

where Gy € RUPTP(N=1)x72 2] Then,

D11 512 Nll Nl?

zDoq 522 zNop N
D Wy = | 2Dz D32 , NJWi= | 2Nz N:az

2D ﬁN2_ 2Ny NN2_

with Dyy € RmX(mN=r2)[2] and Nyy € RP*(mN=r2)[2],
Obviously, the characteristic rank of the pair (D;Wy, N;W7) coincides with
that of (Dg, Ng). Then, there exists a nonsingular constant matrix,

L, O ]

WZI[O W,

of adequate size such that
F3(Ds(0)W1, Ny(O)W1 ) Wa = [0 Cs(0)]

with Gy € RUm+P)(N=2)xres[2]  Therefore,

Dy D1 513 N1t Nig NIS
2Dy Dy D3 2Noy Nag N3
DWWy = | 2D3 2Dz 533 , NWiWy = | 2N3y 2Nz N33

2Dn1 2Dpno 5N3 2Nn1 2Npno NNS

with Dgp € R™X(r2=72)[2] and Npp € RP¥Ure=rea)z]. T
repeated until we have constructed a pair of matrices (D,

Es = DSW7 Ws = N5W7

he
N

process can be
5)7
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which admits a partition of the form (9) with the conditions (

10), where W =

WiWy---Wn_y .
The matrices D, and N, form a right coprime decomposition for H,, since
No(Ds)™! = (NW)(DW) ™! = (N,W)(W DY) = No.DT,
and
= ES -1 D w 7 Ds _ ImN
v[w vz [R]= )

Clearly, the pair (Dg, N,) is a block-ordered right coprime decomposition of

H,. O

4. The Smith canonical form of the matrix F (5, nmDs, Spn,pNs).

Let (D, N,
matrix H,,s € Z, and let (rs,7s2,...

s) be a block-ordered right coprime decomposition of a rational
,7sN) be its characteristic rank. For

simplicity, we rewrite the partition (9) in a more compact form as

(12)

where

Dsz[ﬁ—”

2Dy Do

Dy1=Dp € Rmx(mN_Tsz))[Z] ;
321 € Rm(N—l)x(mN—TSQ)[Z] :
Ny = Ny € pex(mN=re) [2] ,

Noy € RPN X(mN= T2[Z]7

Em] N. = [W_n

Em]

2Nag1  Nag

512 c Rmxrsg[ ] ,

Do e R™WV- )XT2[Z]7
Nip e RPX¥T2[2]
N22€Rp( )XT2[Z]7

We shall construct a polynomial matrix P, with a precise structure, such

that P F(D, Ny) = [ImN]. To that end, we define the matrices

0
Ell El? ImN—TSQ 0
—=_ | Ni1 Nio _ 0 O
F= zDa1 Do and €= 0 I,
ZN21 N22 O O

From (10), the matrices [

R R

] are full column rank. Then,

Noo(0)

there exists a nonsingular constant matrix V' of order (m 4 p)N such that

VF(0) =

C, that is, V.F = C + zA.

The structure of F(0) allows us to choose the matrix V so that its lower

left block, of size (m + p)(N —

1) X (m + p), is null; that is,

o]
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The Smith canonical form of the matrix VF is still (5). Therefore, by
equation (11), with an adequate row permutation, there exists an unimodular
polynomial matrix X such that

(13) XVF=C,

that is, X(C' 4+ zA) = C. The matrix X satisfying this equality has a very
special structure. It admits a partition such that

Lonor, +2X11 Xio zX13 Xig

X = 2 X9 X9 2X93 Xog
zX31 X3y Iy, +2X33 Xag
2 X4 X4 2X43 Xag

Since this matrix is unimodular, the matrix

ImN—Tsz X12(0) 0 X14(0)

0 X22(0) O Xa4(0

X(0) = 0 X32E0§ I, X34E0§
0 Xa2(0) O X44(0)

is a nonsingular constant matrix and the submatrix

X22(0) X24(0)
X42(0) X44(0)

is also nonsingular. Then, we can find a nonsingular constant matrix,

Invsy O O 0O
0 Yoo O Yo

Y =
0 Yy I, Ysal’
0 Yio, O Yy
such that

LoNory, +2X11 Xi2 zX13 Xig
VY = 2 X5 X5y 2 X5, X5y
B 2 X3 X5y L, +2X55 Xiy
ZXz/u ZX!Q ZX4/13 le14

Moreover, it is easy to see that
(14) YC=C.

_ Let us define the matrix P = Y XV. Equations (13) and (14) imply that
PF = (. By construction, the matrix P has the structure,

P:[* *]7
Zeok
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where the lower left block has size (m +p)(N —1) x (m +p). We can construct
a partition of the matrix P, in blocks with adequate sizes, such that

Py Py Pz Py 211 212
Py Py Pz Py ]ﬁl Em
2P 2P3 P33 Pay 2221 222
2Py 2Py Puz Py 2N N

PF = =C.

Hence, the matrix

Py P Py Py
2P31 P33 z2P3; Pay
Py Py Py Py
2Py Paz 2Py Py

P =

satisfies

PF(Ds, N,) = [I%N] :

This whole discussion can be summarized in the following resulr.

ProprosiTIiON 4.1. Let (Ds, Ny) be a block-ordered right coprime decom-
position of H, with characteristic rank (rs1,7s2,...,7sn). There exists an
unimodular polynomial matriz V', such that

with the following structure

Vit Viz Viz Vig
Vo1 Voo 2Vas Vo
Vai Vi Va3 Vay| 7
2V Vao 2Vas Vi

V =

where Vo € RF2X7M[2], Vs € B'2XP[2], Vi € R[(mﬂ?)(N—l)—rsz]Xm[Z] Vs €
R[(m‘l'p)(N—l)—Tsz)]Xp[Z] .

Next, define the matrix

V/ _ SmN77’S2 0 :|_1 1% |: SmN,m(N—l) 0
(15) 0 SPNv(p-I-m)(N—l)—T 2 0 SpN,p(N—l)
15

It is easy to check that the matrix V' is unimodular.

We know, by Example 2.2, that the coprimeness of the decomposition
(Ds, Ny) does not remain, in general, in the decomposition at time s+ 1. Now
we can prove a special canonical form of the decomposition at time s + 1.
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THEOREM 4.2. Let (D4, Ny) be a block-ordered right coprime decomposi-
tion of Hy. Then, the Smith canonical form of the matriz F (SN mDs, Spn pNs)
18

I, 0
0 ZImN—TSQ
0 0

Proof. Let V' be the matrix defined in (15). Then,

V/f(SmN,mst SpN,pNs) — V/ [ SmN,m 0 :| [ Ds :|

0 SpN p N,
— SmN mN—7 0 :| [ Ds :| [ SmN mN—r :|
— 1 ) 52 — , 52
—c 0 SpN,m(1=N)+p+res Vil | = 0

(16)
Multiplying this equation on the left by (the permutation matrix) Sy, n ., (1),
we have

L, O
V/‘/T(SvamDM SpNpNs ) SmNro (1) = g ZImg_T52 . O
0 0

5. A block-ordered right coprime decomposition of the matrix
Hgyq. Consider the periodic collection of rational matrices {H, s € Z} given
in (1) satisfying (2). Let (Ds, Ns) be a block-ordered coprime decomposition
of H, defined in (9). Then, we define the matrices

(17) D5+1 = SmN7mDSS7;L}V7mN—T52 and N5+1 = SpN7pN'SS7;L}V7mN—T52'

Note that the block structures of Dsyq and N 4 are parallel to those of the
D, and Ny, but now the first row block and the first column block are the
second row block and second column block of (9). In general, for 1 < j < N,

-1
and Nyyj = Spn,jpNs

L — , -1
(18) DS+] - Sm]\fv]mDSSm]V,m]V—TS mNmN—rs 11"

g1
This last expression has been obtained using Lemma 2.1 and Lemma 5.1.

In this section we shall prove that the pair (Ds11, Nsyq) written in (17)
(more in general, (Dst;, Nsyj), j > 1, as defined in (18)) is a block-ordered
right coprime decomposition of Hyyq, (Hsy;). First, we prove the following
lemma.

LeMMA 5.1. Let (rsp11,7s41,25---,7s+1,N) be the characteristic rank of
the right coprime pair (Dsy1, Nsy1), where the matrices Dgyq and Ngyq are
given in (17). Then, r541 5 = MmN + r5py1 — 2.
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Proof. From the definition of 7,41 % (see (8) and (10)), we have

rank Fi (Ds1(0), Noy1(0))
Dyt g 1(0)] [DNN(O)] [DH(O)]
= k it k k
ran [Nk+1,k+1(0) + + ran NNN(O) + ran Nll(O)
= Tsk+1 — Tsk+2 + Tsk+2 — Ts,k+3 + TN Tl — T2
= 7‘57k+1—|-mN—7‘52. 0

Ts+1,k

The result of Lemma 5.1 can be generalized to the right coprime pair
(Dstj,Nst5), 1 < 7 < N. Indeed, in this case one obtains the relations
Tstjhk = mN + Tskti — Ts 14y with Tsktj = TsktjoN — mN ifk+j>N.

THEOREM 5.2. Consider the periodic collection of rational matrices de-
fined in (1) satisfying (2), and consider the block-ordered right coprime decom-
position (12) of Hs for some s € Z. Then the pair of matrices (Dsy1, Nst1),
defined in (17), is a block-ordered right coprime decomposition of Hsiq.

Proof. First, we shall see that the pair of matrices (D41, Not1) is a right
decomposition of H,y1. By equation (6), we have

Hs—l—l = (SpN,pNs)(SmN,mDs)_l = (NS—I—ISmN,mN—TSQ)(DS—I—ISmN,mN—TSQ)_l
= ]Vs—l—lD_1

then, the pair of matrices (Dst1, Nst1) is a right decomposition of Hsy1. On
the other hand, by Theorem 4.2, more precisely by the expression (16), we
have

_ I,
V/f(Ds-I-lst-I-l) = V/f(SmN,mstSpN,pNS)Sm}V,mN—TSQ = |: ON :| ’

that is, the decomposition (D41, Net1) is right coprime (recall that the matrix
V' is unimodular). Moreover,

D;(0
(19) rank [NZEOH = Tot1io1 — Tsti, s

by Lemma 5.1. From the equalities (17) and (19), the pair of matrices (Dgy1, Not1)
is block-ordered (see Lemma 2.5).
Hence, it is clear that (Dsy1, Ns41) is a block-ordered right coprime decom-
position of H,1q . D

Notice that Theorem 5.2 applies to decompositions of Hs1;, 1 < j < N,
by using equation (18).
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We present now some final remarks.

1. All results obtained (with the corresponding definitions) for right decom-
positions can be directly translated to left decompositions.

2. The definition of the matrices Dy4q and Nyyq given in (17) provides a simple
algorithm for the construction of a block-ordered right coprime decomposition
of the rational matrix H,4q from one of H.

3. Repeating this algorithm, we construct a block-ordered right coprime de-
composition of the rational matrices H,i; defined in (18), for 1 < j < N.

In fact, we can say more than Remark 3, that is, the decompositions of
Heyj, (Doyj, Noyj), J € Z, are N -periodic as can be seen using the expressions
(18). Then, we have the next theorem.

THEOREM 5.3. Consider the periodic collection of rational matrices de-
fined in (1) satisfying (2). Let (Ds, Ns) be a block-ordered right coprime de-
composition of the rational matrizc Hy for some s € Z. If we construct the
pairs of matrices (Dgy;, Noyj), J € ZT, using (18), the equalities

D5_|_N = DS and N5_|_N = NS

are satisfied.
Finally, we illustrate the above results with the following example.

EXAMPLE 5.4. The matrices

1 1
—2 —z 4 22 0 0 —2 — z 4 22
—3—-2z— 22 1 1 -5 — 3z
—2z — 22 423 P Tz —2z — 22 4 23
—3—62—22%2— 23 1422 —-1-=z —5—9z — 277
—2z — 22 423 z z —2z — 22 4 23
Ho =
(=14 2)z 0 0 2
—2 —z 4 22 —2 — z 4 22
~12-72-102% 442422 —4-2 20— 112622
—2z — 22 423 z z —2z — 22 4 23
—9-32-822-2% 3422 ~3—2 —15-8z—622
| 22— 22423 z z —2z— 22 4 23
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[ 2 14z |
0 _— _— 0
—2—z+4 22 —2—z+4 22
—4—z —20—11z— 622 —12 — 7z — 1022 44 24 22
z 2z — 22 4 23 22(=2 -z 4+ 2?) 72
~3—2 —15-8z—-622 —9-3:-8%-2° 34 22
z —2z — 22 423 22(=2 -z 4+ 2?) 2
H1 = ’
0 _ b 0
—2—z+4 22 —2—z+4 22
1 -5—-3z -3 -2z 22 1
—2—z+4 22 —2z— 22423 z
—5— 9z — 222 —3—62—222 - 23 1422
—1-=z
-2 — 24 22 —2z — 22 423 z

form a collection of periodic rational matrices H; with N = 2, since 5673HOS4_7% =
Hq and 5673H154_7% = Hy. We have the block-ordered right coprime decompo-
sition Hg = NODEI, where

1 0 0 0
—1 | -1 0 0 22—z 0 0 1
1 | -z 1 0 3 1 1 0
No=|—/7T75 0 7| Po= —> |1+z 1 -1
—22 | —4 z 1 22 0 0 -1
—z | -4 =142z 0

Further, the characteristic rank of the pair (Dg, No) is (4,3). Then, the ma-
trices

0 0 0 1
—4 Z 1| -2
_ 4 —14z 0| -1
Ny = 56,3NOS4,} = 0 0 0l 1 )
—z 0 0-1
— 2 Z 0 1

D1 - 5472D()S4_& -

I
o

are a block-ordered right coprime decomposition of Hy, according with Theo-
rem 5.2. By Lemma 5.1 the characteristic rank of the pair (Dy, Ny) is (4,1).
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In addition, it is straightforward to see that

=

< = =4

5472D154_7; = D2 = DO and 5673N154_7§ = N2 = No.
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