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THE HAMILTONIAN EXTENDED KRYLOV SUBSPACE METHOD*

PETER BENNER', HEIKE FASB8BENDER!, AND MICHEL-NIKLAS SENN#

Abstract. An algorithm for constructing a J-orthogonal basis of the extended Krylov subspace K s = range{u, Hu, H?u,
coey H?2r= by H= Yy, H 2y, ..., H 2%y}, where H € R2"%2" i5 a large (and sparse) Hamiltonian matrix is derived (for r =
s+ 1 or r = s). Surprisingly, this allows for short recurrences involving at most five previously generated basis vectors.
Projecting H onto the subspace K s yields a small Hamiltonian matrix. The resulting HEKS algorithm may be used in order
to approximate f(H)u where f is a function which maps the Hamiltonian matrix H to, e.g., a (skew-)Hamiltonian or symplectic
matrix. Numerical experiments illustrate that approximating f(H)u with the HEKS algorithm is competitive for some functions
compared to the use of other (structure-preserving) Krylov subspace methods.
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1. Introduction. Let H € R?"*2" be a nonsingular (large-scale) Hamiltonian matrix, that is J, H =
(J.H)T, where J,, = [_(}n I(ﬂ € R?X2n and I, is the n x n identity matrix. We are interested in computing
a J-orthogonal basis of the extended Krylov subspace

(1.1) Ky = Kop(H,u) + Kos(H™", H 'u) = range{u, Hu, H*u, ..., H* 'u, H ‘v, H 2u,..., H **u},
where u € R?" and either » = s + 1 or r = s. That is, assuming
dim Ko, (H,u) =2r and  dim Kos(H ', H ') = 2s,

we are looking for a matrix S, € R?"*2("+) with J-orthonormal columns (ST JnSris = Jrys) such that
the columns of S, ; span the same subspace as Ko, (H,u) + Kas(H ™1, H u).

Extended Krylov subspaces
range{b, A'b, Ab, A=2b, A%b, ..., A7*b, AFb} = Ki(A,b) + Kp(A™1, A710),

for general nonsingular matrices A € C"*" and a vector b € C™ have been used for the numerical approxi-
mation of f(A)b for a function f and a large matrix A at least since the late 1990s mainly inspired by [8, 18].
In case an orthogonal matrix V has been constructed such that range(V) = Ki(A,b) + Kp(A~L, A7), an
approximation to f(A)b can be obtained as

(1.2) fAL=VVTAV)VTD,

More on functions of matrices, the computation of f(A)b and the approximation of f(a)b via Krylov subspace
methods can be found in the all-encompassing monograph [17].
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573 The Hamiltonian extended Krylov subspace method

The idea of constructing a J-orthogonal basis for the extended Krylov subspace I, 5 (1.1) has been first
considered in [23] in the context of approximating exp(H )u. The Hamiltonian Extended Krylov Subspace
(HEKS) method presented in [23] is a straightforward adaption of the algorithm for computing an orthogonal
basis of an extended Krylov subspace described in [18]. Our main finding in this paper is the observation
that the HEKS algorithm allows for a short recurrence to generate S, ;.

We will explore the use of an J-orthogonal basis S,ys of the extended Krylov subspace K, s (1.1) for
approximating f(H)u for a (large-scale) Hamiltonian matrix H and a vector u € R?". Following the idea

from (1.2), we have
f(H)u =~ ST‘-‘,—Sf(HTJ,-s)Jg:;'_sSz:'_anu,

where H,; s = J,THSLSJTLHSHS € R2(r+s)x2(r+s) j5 5 Hamiltonian matrix. That is, we can preserve the rich
structural information inherent to the Hamiltonian structure of the matrix H. This would not be possible by
computing a standard (orthogonal) basis V' € R27%2(r+s) of K. s as the matrix product VI HV will in general
not be a Hamiltonian matrix even if H is Hamiltonian. Hence, the HEKS algorithm may be used in particular
in order to approximate f(H)u where f is a function which maps the Hamiltonian matrix H to a structured
matrix such as a (skew-)Hamiltonian or symplectic matrix. Such a structure-preserving approximation of
f(H)u is, e.g., important in the context of symplectic exponential integrators for Hamiltonian systems, see,
e.g., [9, 13, 22, 23]. A structure-preserving approximation of f(H)u may also be computed using, e.g., an
J-orthogonal basis Sy of the standard Krylov subspace range{u, Hu, H?u ..., H**~1u}. Such a basis can
be generated by the Hamiltonian Lanczos method [4, 5, 26]. Both approaches will be compared later on.

The paper is structured as follows: Section 2 summarizes some basic well-known facts about Hamiltonian
and J-orthogonal matrices. In Section 3, the general idea of generating the desired J-orthogonal basis .S, of
(1.1) as proposed in [23] is sketched. Then, it is noted that the projected matrices Hy1s = J S, JnHS 4
and JI, ST, J,H~'S, ., have at most 10k, resp. 10k -+ 2, nonzero entries. The details are given in Section 4
and in Section 5. The resulting efficient HEKS algorithm using short recursions is summarized in Section 6.
The rather long and technical constructive proof for our claim is deferred to the Appendix A. In Section 7,
the approximation of f(H)u using the HEKS algorithm is compared to the approximation by the extended
Krylov subspace method [19] and by the Hamiltonian Lanczos method [5].

2. Preliminaries. Here, we list some properties of Hamiltonian and J-orthogonal matrices useful for
the following discussion.

1. J, = [_(}n Ig] € R?"%27 ig orthogonal and skew-symmetric, J! = J-1 = —J,.
2. Let H € R?™*2"_ H is Hamiltonian if and only if there exist matrices E, B = BT, C = CT € R**"»
such that
E B
H = .
o

3. Let H € R>™*2" be a nonsingular Hamiltonian matrix. Then H~! is Hamiltonian as well.

4. The eigenvalues of a Hamiltonian matrix H occur in pairs {\, —A} if ) is real or purely imaginary, or
in quadruples {\, A\, =\, —\} otherwise. That is, the spectrum of a Hamiltonian matrix is symmetric
with respect to both the real and the imaginary axis.

5. A matrix S € R?"*2" ig called symplectic if ST.J,,S = J,,. Its columns are .J-orthogonal.

Let S € R2"*27 he a symplectic matrix. Then, S~1 = JT'STJ, is symplectic as well.

7. Let H € R?"*2" be a Hamiltonian matrix and S € R?"*2" be a symplectic matrix. Then, S~'HS
is a Hamiltonian matrix.

S
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8. Let S € R?"*2™m m < n, have J-orthogonal columns, S7.J,,S = J,,,. Let H € R?"*2" he Hamiltonian.
(a) The matrix JL ST J, is the left inverse of S, JLSTJ,S = I5,.
(b) The matrix (JLSTJ,,)HS is Hamiltonian.

Numerous further properties of the sets of these matrices (and their interplay) have been studied in the
literature, see, e.g., [20] and the references therein. In particular, J, induces a skew-symmetric bilinear
form (-,-);, on R?" defined by (z,y) s, =y’ J,z for z,y € R*". Hamiltonian matrices are skew-adjoint with
respect to the bilinear form (-,-); , while symplectic matrices are orthogonal with respect to (-,-); . The
2n x 2n symplectic matrices form a Lie group, the 2n x 2n Hamiltonian matrices the associated Lie algebra.

Assume that a matrix Sy = [Vi W] € R?*"*2¢ with J-orthogonal columns is given with V =
[v1 vo - v and Wy = [wy wy --- wg] € R7"** Two additional vectors xz, J,z € R?" can be added to
Sk to generate a matrix Sky1 = [Ver1 Wiyi] € R27x2k+2 with J-orthogonal columns by J-orthogonalizing
the vectors z and J,z against all column vectors v;, w; of S via
Vgl =T — SkJ,?Sanx,
W1 = (Jnrt1) — Skdd S8 In(Tnvks1),  Wigr = Wigr / (V41 Jnwis1)-
3. Idea of the HEKS algorithm. Let a Hamiltonian matrix H € R?"*2" and a vector u; € R?",
|lu1]l2 = 2, be given. Assume that dim Ko, (H,u1) = 2r and dim Koy (H 1, H uy) = 2s. The goal is to

construct a matrix S,,, € R?"*2("+$) with J-orthonormal columns (ST yJnSris = Jris) such that the
columns of S,.4, span the same subspace as Ko, (H,uy) + Kos(H ™1, H tuy).

In [23], it is suggested to construct the matrix S,4s in the following way (assuming that no breakdown
occurs):

1. We start with the two vectors in ICo(H,u1) and construct
S = [Ul | 1}1] S RQnXQ,

with STJ,,S1 = Ji and range{S;} = Ko(H,u;). This corresponds to the choice r = 1,5 = 0.
2. Thereafter we take the two vectors in Ko(H 1, H 'u;) and construct

Sy = [y1 U1 |x1 Ul] = [Yl Ui | X, Vl] E]R2n><47

with ST, Sy = Jo and range{Ss} = Ko(H,u1) + Ko(H 1, H uy). This corresponds to the choice
r=s=1.

We proceed in this fashion by alternating between the subspaces Ko, (H, u1) and Kog(H 1, H 1 uy). Assume
that a matrix

Sor=[Yu Ur|Xp Vi]e€R¥*W, Vi, Ug, Xy, Vi € RPK,

with J-orthonormal columns has been constructed such that its columns span the same space as Koy (H, u1)+
Kar(H~Y, H uy). The following three steps are repeated until the desired symplectic basis has been gener-
ated:

(3) Construct ugy; and vi11 and set

Sok+1 = [Yk Up ups1 | Xe Vi Uk-H] = [Yk Upt1 | X Vk+1} c ]R271,><4k+27
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with

Uri1 = [Ur  wes1], Virr = [V vpga] € RZVFH
such that SQTkHJnSng = Jog+1 and range{Sar i1} = Kokr2(H,u1) + Kox(H1, H tuy). The new
vectors are added as the last column to the U, resp. V-matrix.

(4) Construct yx+1 and zx41 and set

Sopto = [yks1 Vi Urpr | Zes1 Xk Vigr] = [Yesr Uit | Xipr Vipr] € RIH

with

Yk+1 = [yk:"rl Yk::l )Xk+1 = I:xk+1 Xk] c RQTLX/C+17
such that S3, ,JnSokt2 = Jopqo and range{Sario} = Kopgo(H, u1) 4+ Kopyo(H ', H 'uy). The
new vectors are added as the first column to the Y, resp. X-matrix.

(5) Set k=k+ 1.

We refrain from restating the algorithm given in [23] which implements the approach stated above in a
straightforward way using long recurrences. As usual, a Krylov recurrence of the form

HSs, = SopHop + some rest term,

for r = s =k and

HS51 = Sak1Hoks1 + some rest term,
for r = s+ 1 = k holds, where Hyp = JQTkSQTkJnHSgk € R¥*4F and Hopyy = J2T,€+1S§€+1JnHSgk+1 €
R4k+2x4k+2 are Hamiltonian matrices. In the next two sections, we describe the very special forms of the
projected matrices Hop and Hopiq as well as J3,.53, J, H ™ Soy, and J3, 55, 1 JnH ' Sap11. These matrices
have at most 10k, resp. 10k + 2, nonzero entries. A constructive proof for our claim is given in Appendix A,
while the resulting efficient HEKS algorithm using short recursions is summarized in Section 6.

4. Projection J!, ST, J,HS, , of the Hamiltonian matrix H. Assume that
SrJrs = [}/s U, | X, Vr] s Ysts S RQnXS7 UTv‘/r c RQTLXT7

with J-orthogonal columns has been constructed with the HEKS algorithm (as before, we assume that r = s
or 7 = s+ 1). Then the projected Hamiltonian matrix

Hr+s _ JE+SSI+5JTLHST+S c R2(7‘+8)><2(T+s),
has a very special form with at most 2r + 8s nonzero entries. Let us first note that

-xrj.HY, -XTJ,HU, —-XYJ.HX, —-XTJ,HV,
-vrj,HY, -V%TJ,HU, -VTJ.HX, -VIJ,HV,
YrJ.HY, YTJ,HU, YTJ.HX, YTJ.HV, |’
UrJ,HY, UrJ.HU, Ul J.HX, UrJ,HV,

Hr+s =

where the blocks are of size either s X s, r X r, s X r, or r X s. As will be proven in Appendix A, ten of these
blocks are zero, three are diagonal (denoted by Ay, 0., Ay), one symmetric tridiagonal (denoted by T.) and
two anti-bidiagonal (denoted by By,), i.e.,

0 0 A; B,
0 0 BT T
4. H. = o . ’
(43) + A, 0 0 0
0 © 0 0

r
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with

A, = diag(ds, ...,01) € R°¥S, ar B

®r :diag(ﬂl,...,ﬁr) GRTXT7 Tr — 62 . c ]RTXT,

AS:diag(As,...,/\l)ERSXS, ﬂr

ﬁr Qe
and either
Yr—1  Hr
By, = B ERIXT i p=s+1,
Y1 M2
or
Tr
B,y = © Ml grxr if r=s.
Y1 M2

In particular, it holds for j =1,...,s
§; =yl JnHy;, X\ =—a] J,Haj,
and for j=1,...,r
¥ = ujTJnHuj, a; = —vaJnij, v = —x]TJnij,
and for j =2,...,r
B = —’U]TJnH’Uj_l 1y = —x?_lJnij.

We summarize this in the following theorem.

THEOREM 4.1. Let H € R?"*2" be o Hamiltonian matriz. Let r +s =n and eitherr =s+1 orr =s.
Then in case the procedure described in Section 3 does not break down for u; € R?™ with ||ui|l2 = 1 there
exists a symplectic matriz S € R2"*2" such that Segy 1 = uq,

range{S} = ICQT(Ha ul) + KQS(H717H71U1)7

and
S'HS =H,,,
with Hyys = H,, as in (4.3).

Proof. A constructive proof is given in Section A. a0
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REMARK 4.2. In case the Hamiltonian matriz H can be written in the form H = JK with the symmetric
matriz K and K is positive definite, all inner products of the form w™ JHw and w” JH 'w are negative, as
wl JHw = wT JJKw = —wT Kw < 0 and as with K its inverse is symmetric and positive definite. Thus,
in this case, all §; and ¥; are negative, while all A; and «; are positive. Such Hamiltonian matrices have
been considered in [1, 2].

Theorem 4.1 implies

0 0 0 0
0 0 Ay By
0o | BL Tk
0 | 0 | prgrel | Brrrel
H[Y, U, Xy Vi]=8| 0]0 0 0
0 0 0 0
Ar| O 0 0
0 | Ok 0 0
Lo |0 0 0 |
From this, we obtain the HEKS recursion for r = s =k
(4.4) HSay, = Sop Hop + pik 1tk 1€55 41 + By 1Urt1€dy,,
while for r = s +1 =k + 1 we have
(4.5) HSop11 = Sapr1Hopr1 + (Ve 1Yk41 + BrroUk+2)€psa-

5. Projection J!, ST J,H~'S,., of the Hamiltonian matrix H~'. Assume that Theorem 4.1
holds. As H,, = ST1HS € R**2" is Hamiltonian, its inverse H,, ! = S"'H~1S is Hamiltonian as well. Not
only H,, has a nice sparse structure (4.3), but also its inverse. From that we can derive the special forms of
JL ST J, H=1Ss; and JQTkHS;kHJnH_lSQkH.

Let S =85, = [Ys U, | X, VT] e R?mx2n vy X, € R?"*8 U,,V, € R2*" where r + s = n and either
r=sorr=s+1. DuetoS,! =JISLJ,, we have

(—xTJ.H7Y, —-XTJ,H U, —-XTJ,H'X, —-XTJ,H YV,
-1 _ -vrJ.H 'Y, -VTJ,H U, -VIJ,H'X, -VIJ.H 'V,
n YSTJnHAYs YSTJanlUT YSTJanlXS YSTJanlVr
| UF I Y, UFLHT'U,  UMJLHT'X, USJLHTW

00 A7l 0

S

o o 0o e
T |E. G, 0 0|’
GL F. 0 0

with B, € R®*% F. € R™*", G4 € R¥*" such that

As Bsr Es Gsr -7
BT T.||GT F.| 7
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holds and Ag, ©,., A, T, By, from (4.3). The matrices Es, F,. and G, have a special structure like A, T;
and By,: F. is diagonal, G4, anti-bidiagonal as By, and F; is symmetric tridiagonal;

€ss €s—1,s

. es_1,
Fr:dlag(f117f22w'~af7‘r)7 Es: s 3 ) ) :Ega
E €12
€12 €11
and either
9r—1,r—1 Gr—1,r
Gty = © -2l ERITf p=s41,
g22
gi1  gi2
or
g’l’"l"
Grr = © Il g grxr if r=s.
g22
11 912

Next, the projected matrices J3,57, J, H ' So, and J3, 157, JnH *Sop41 will be described. Let

Se
¢, = |:'8:| e R, 5, = [2] e %L Ty = ¢, N € R2X2(+D),
¢;
for j < r, £ < s. Thus, for 2k < n it holds
ST = Sor, € RZVM and S, Tp py1 = Sappq € RTWARF2

as well as

Snt]nikk = [_Xk _Vk: Yk) Uk] — S2]€J2k c ]:R2’!l><4k)7

SndnThgt1 = [~ Xp  —Vigr Yi Uky1] = Sops1Jopsr € R¥HFF2,

Hence, we obtain

0 0 A7l 0

_ _ _ 0 0 0 ©Or
Jh St T H Sy, = T IS T, H 1S, Ty = Tho H, 'S = Th B G 0 0 Tk
G F 0 0
0 0 SEAT S 0 0 0 A o0
0 0 0 efo, ey, 0 0 0 6.
(5.6) = | xT T = )
S, B8k T Gor€i 0 0 E, Gpg O 0
eTGT 3y  €lF.¢ 0 0 G, F. 0 0
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and
0 0 A0
(5.7) JL  SE T H YSop =%E,  JEST I H S, % 1 = 0 0 0 Opp
. 2k+1°2k+1Yn + k,k+1Yn “nJn n~k,k+ B, Gk,k+1 0 0
Gloi Fipr 00
The HEKS recurrences for H~! are given by
(5.8) H 'Sy = Sop (J3,S3xnH ™' Sor) + (€ak,2k+1T2k+1 + G2k, 2641V2k+1)€] 5
and
(5.9) H™ " Soy1 = Sarr1 (Jap 1S9k 1 InH " Sony1) + Tk i1 (€2k 251167 + Gakt1.2641€5511)-

6. HEKS algorithm. The HEKS algorithm is summarized in Fig. 1. The algorithm as given assumes
that no breakdown occurs. Clearly, any division by zero will result in a serious breakdown. As can be seen
from (4.4), a lucky breakdown occurs in case pgi1 = Br+1 = 0 or ug1 = 0, as range{Sar } = Ko (H,u1) +
Kox(H™Y, H uy) is H-invariant. Moreover, (4.5) shows that in case yx11 = Brr2 = 0, a lucky breakdown
occurs, as range{Sox11} = Kogo(H, uy) + Kok (H ™1, H tuy) is H-invariant. Similarly, lucky breakdown can
be read off of (5.8) and (5.9) resulting in an H ~!-invariant subspace.

In case the Hamiltonian matrix H can be written in the form H = JK with a symmetric positive definite
matrix K, all inner products of the form w? JHw and w?JH~!w are negative (see Remark 4.2). Hence,
most scalars by which is divided in Algorithm 1 are nonzero and do not cause breakdown.

Implemented efficiently such that each matrix-vector product as well as each linear solve is computed
only once, the algorithm requires (for adding 4 vectors) in the for-loop just O(n) flops

e 4 matrix-vector multiplications with H,

e 3 linear solves with H (efficiently implemented in the form (JH )z = (Jb) making use of the symmetry
of JH),

e 14 scalar products.

Any multiplication of a vector w by J,, should be implemented by rearranging the upper and the lower part
of the vector w. That is, let w = [L], then J,w = [ "7 ].

Without some form of re-J-orthogonalization, the HEKS algorithm suffers from the same numerical
difficulties as any other Krylov subspace method. For the application of approximating f(H)v considered
here, the full basis has to be stored. Thus, full re-J-orthogonalization is possible without any additional
memory requirements. But this would add O(nk?) flops to the otherwise O(nk) flop count in case Say
or Sopy1 is computed. The computational efficiency due to the short term recurrence is lost in case k is
large. Hence, in that case, some form of periodic, partial, or selective re-J-orthogonalization in analogy
to these procedures for the symmetric Lanczos method should be employed (see, e.g., [25, Chapter 3.1]
and the references therein). In order to derive such a semi-J-orthogonal method, an error analysis of
the HEKS method similar to that of [3] for the unsymmetric Lanczos method and [10] for the symplectic
Lanczos method for the symplectic eigenproblem has to be derived. This is well beyond the scope of this

paper.
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Algorithm 1 HEKS with short recurrences.

Require: Hamiltonian matrix H € R?"*?" 4; € R*" with ||u;]ls =1

Ensure: a) Sop, = [yr --- y1 up -+ up | op -0 1 vp --- v € REXAF with ST JnSa, = Jop, and
Ho, = JngQTkJnHS% as in (4.3)
b) parameters A;,d;,a;,v;,9; for j =1,....k and B;, u; for j =2,...,k which determine Hyy
(for Sopy1 € R2"*4+2 the algorithm needs to be modified appropriately)

1wy = uy/||ual2 > Set up S1 = [u1 | v1]
2: 191 = U{JnHU1

3 v = HU1/’[91

4 fu =l JoH tuy > Set up So = [y1 uy | ¥1 v1]
5wy = H 'ug — frim

6: x1 = Wy /|wall2

7Y = H_lxl/aleJnH_lml

8: A\ = —foonl and §; = nynHyl

9: ay = —vl J,Hv; and v, = —z¥J,, Hv, > Set up Sz = [y1 w1 ug | 1 vy Vo]
10: wy = Huy — yiy1 — oqug

11: ug = Wy /||wy]|2

12: 99 = uanHUQ

13: v = HUQ/'[?Q

14: ey =yl J.H 1y > Set up Sy = [y2 Y1 w1 ug | T2 T1 V1 Vo
15: g11 = y?JnH’lul, and g12 = leJanluQ

16: wy = H 'yp — enn@y — g11v1 — 91202

17: x9o :ww/”wIHg

18: yo = H_lxg/(H_l.xQ)TJnJ}Q

19: Ay = —ad' J,Hao and 0y = y2 J,, Hyso

20: for j =3,4,...,k do

21: a1 = —U]T_lJnij,l and 31 = — f_lJnij,g > Set up Saj—1
22: Yji—1 = _xf_lJnHUj—l and Hji—1 = —x?_QJnHUj_l

23: Wy = Hvj_1 — vj-1Yj—1 — Pj—1Yj—2 — Bj—1Uj—2 — 0j_1Uj—1

2y = w,/walls

25: 19]‘ = ’LLTJnHU]

26: Vj = Huj/ﬁj

27: gi—1j1 =y, yJoH tuj_y and gj 1 =y] 1 J.H 'u; > Set up Sa;
28: €j—1,j—1 = y;rflJnH_lyj_l and €j_2j-1= y}LlJnH_lyj_Q

29: Wy = Hilyj—l —€j—1,j—-1%j—1 — €j—-2-1Tj—2 — §j—1,j—1Vj—-1 — §j—1,;V;

= w/wlls

31: Y; = H_lmj/(H_lfL'j)TJnl'j

32: Aj = —x?Jonj and 9; = y;‘-FJnHyj

33: end for
34: o = 7’UgjnH’Uk and ﬂk = 7'0,7;JTLHU]€_1
35 Y, = —fonHvk and pyp = —x;‘g_lJnHvk

7. Numerical experiments. In this section, we demonstrate experimentally that the HEKS algorithm
may be useful for approximating f(H)u for a (large-scale) Hamiltonian matrix H € R?"*2" and a vector
u € R?" |jull = 1, via
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(7.10) F(H)ur Sf(H)JLST Ju,

with the 2n x 2¢ J-orthogonal matrix S and the 2¢ x 2¢ Hamiltonian matrix H = J%STJ, HS. We consider
two methods (both based on a short term recurrence) to construct S:

e the HEKS method (Algorithm 1) which generates a .J-orthogonal matrix S such that range(S) = Kr.s
with r = s = % orr—1=s= Z_Tl, depending on whether £ is even or odd. Then f(H)u can be
approximated via Sf(H)es;1 (as due to the construction JLST J,u = egi1),

e the Hamiltonian Lanczos method (HamL) [5, 4, 26] which generates a .J-orthogonal matrix S such
that range(S) = Kog(H, u). Then, f(H)u can be approximated via Sf(H)e; (as due to the construc-

tion Jg;gTJnu =e1).

The Hamiltonian Lanczos method requires slightly less flops than the HEKS method. The comments on
re-J-orthogonalization stated at the end of Section 6 also apply to the Hamiltonian Lanczos method. These
methods are compared to the corresponding unstructured methods

e the extended Krylov subspace method (EKSM) [18],
e the standard Arnoldi method [12],

which generate an orthogonal matrix @ such that either range(Q) = K, or [range(Q) = Kos(H,u). Then
f(H)u can be approximated via Qf(QT HQ)e; (as by construction, QTu = e; holds).

Only functions f which map H to a structured matrix are dealt with. In particular, we consider

e f(H) =exp(H) : the exponential function of a Hamiltonian matrix is a symplectic matrix [14],

o f(H)=cos(H) : cos(H) is a skew-Hamiltonian matrix (as a sum of even powers of H),

o f(H) = sign(H) : sign(H) is a Hamiltonian matrix [21]. The matrix sign function is defined for
any matrix X € C™ " having no pure imaginary eigenvalues by sign(X) = X (X2)~2 [16, 17]. An
equivalent definition is sign(X) = T diag(—I,, ;)T ', where the Jordan decomposition of X =
T diag(Jy, Jo)T~! is such that the p eigenvalues of .J; are assumed to lie in the open left half-
plane, while the ¢ eigenvalues of J; lie in the open right half-plane. The Newton iteration Sy = X,
Spt+1 = 2(Xy + X;') converges quadratically to sign(X) [24].

Utilizing HEKS or HamL, the projected matrix H is Hamiltonian again, so that f(H) has the same structure
as f(H), while the projected matrix Q7 HQ as well as f(QT HQ) obtained via EKSM and Arnoldi have no
particular structure. Such a structure-preserving approximation of f(H)u is, e.g., important in the context
of symplectic exponential integrators for Hamiltonian systems, see, e.g., [9, 13, 22, 23]. Another example is
the solution of second order differential equations % + H%y = 0,y(0) = yo,y'(0) = y§, which is given by
y(t) = cos(Ht)yo + Hsin(Ht)y,. A further example is the computation of sign(H)c for given vectors ¢ in
the context of the overlap-Dirac operator in lattice quantum chromodynamics (QCD). Usually, this task is
formulated considering sign(Q)c for a complex Hermitian matrix @, see, e.g., [17, Chapter 2.7] and [7], but
it can easily be reformulated in terms of the Hamiltonian matrix H = J@Q.

All experiments are performed in MATLAB R2021b on an Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz
1.99 GHz with 16GB RAM. Our MATLAB implementation employs the standard MATLAB function expm
and funm(H,@cos) as well as signm from the Matrix Computation Toolbox [15]. The experimental code
used to generate the results presented in the following subsection can be found at [11]. All algorithms are
run to yield a 1000 x 30 matrix whose columns span the corresponding (extended) Krylov subspace. All
methods are implemented using full re-(.J)-orthogonalization. (Please note that full re-(.J)-orthogonalization
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may not be needed when the dimension 2k of the basis to be computed is low. Alternatively, a semi-
(J)-orthogonal method can be employed. Here, full re-(.J)-orthogonalization is employed in order to be
able to show the full power of using a symplectic basis versus an orthogonal one for approximating f(H)v
without having to argue about loss of (J)-orthogonality.) The accuracy of the approximation for HEKS and
HamlL is measured in terms of the relative error || f(H)u — gf(ﬁ)JgégTJnuHQ/Hf(H)uHQ, while || f(H)u —
QFf(QTHQ)QTu||2/||f(H)ul|z is used for EKSM and Arnoldi.

7.1. Example 1. Inspired by [18, Example 4.1], our first test matrix is a diagonal Hamiltonian matrix
H, = diag(D, —D) with a diagonal 500 x 500 real matrix D whose eigenvalues are log-uniformly distributed
in the interval [1071,1]. EKSM will preserve the symmetry of H, while HEKS and HL will not.

In Fig. 1, the relative accuracy of all four methods is displayed, using a random starting vector z (plots
in the two leftmost columns) as well as a starting vector of all ones (plots in the two rightmost columns).
The Hamiltonian Lanczos method and the Arnoldi method perform alike just as the HEKS algorithm and
the EKS method. For the functions exp and cos, the HEKS approximation makes significant progress only
every other iteration step (that is, whenever the columns of S span Ky, z—1). The same holds for the EKSM
approximation of cos(H)x and cos(H )e, but not for the approximation of exp(H )z and exp(H )e. The HEKS
algorithm adds the vectors from K, ; in a different order than EKSM: HEKS alternates between adding
two vectors from Koy (H,u) and adding two vectors from Kox(H 1, Hu), while EKSM alternates between
adding one vector from Kox(H,u) and adding one from Kor(H 1, H'u) (for u = x or u = €). Thus, the
columns of S and @ span the same subspace only every other step. Adding vectors from Koy (H 1, H 1u)
does not seem to be relevant for the HEKS approximations exp(H)u and cos(H)u as well for the EKSM
approximation of cos(H)u. For the EKSM approximation of exp(H)u, some convergence progress can be
observed in every iteration step, but the overall convergence is similar to that of the HEKS approximation.
In summary, the use of an extended Krylov subspace does not improve the convergence for these examples
compared to the approximations computed using the Arnoldi method or the Hamiltonian Lanczos method.
The latter two methods converge about twice as fast as the first two.

But for the matrix sign function, the two methods based on the extended Krylov subspace converge
faster than the other two. They do make progress in every iteration step. It is clearly beneficial to use an
extended Krylov subspace here.

The HEKS algorithm requires 34 matrix-vector multiplications with H, 21 linear solves with H and
104 scalar products to construct the 1000 x 30 matrix S. In contrast, the ESKM requires 15 matrix-vector
multiplications with H, 14 linear solves with H and 493 scalar products. As H in this example is diagonal,
the linear solves and matrix-vector multiplications require less arithmetic operations than scalar products.
Hence, the HEKS algorithm is faster than EKSM and requires less storage. Of course, the situation will
change for more practically relevant examples with a more complex sparsity pattern. But it remains to note
that there is a big difference in the number of scalar products to be performed, which is not due to the
matrix structure but the difference of the short-term Lanczos-style and long-term Arnoldi-style recursions
in the nonsymmetric case.

7.2. Example 2. As a second example, we use the Hamiltonian matrix Hy = {f‘Q :AGT} € R1998x1998

from Example 15 of the collection of benchmark examples for the numerical solution of continuous-time

algebraic Riccati equations [6]. The matrix has a complex spectrum with real and imaginary parts between
—2 and 2.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society I I
Volume 38, pp. 572-606, September 2022.

583 The Hamiltonian extended Krvlov subspace method

cos(H)x
10° 10°
107 107
10710 10710
1071° 1071°
0 0 10 20 30

4 ~,
10 <

cos(H)e

relative error

0 10 20 30 0 10 20 30
sign(H)e
0 Arnoldi
10 == == HamL
O ) N HEKS
10 \ — - EKSM
102 N
SN
1038 N,
\\
107 ~
~.
0 10 20 30

subspace dimension

FIGURE 1. Diagonal Hamiltonian matric Hy = diag(A, —A) with A = diag(logspace(—1,0,500));, two different choices
of the starting vector ¢ = randn(1000,1) and e = ones(1000,1).

Fig. 2 provides the same information as in Fig. 1. Our findings from the first example are confirmed.
The Hamiltonian Lanczos method and the Arnoldi method perform alike just as the HEKS algorithm and
the EKS method. For the functions exp and cos, the first two methods converge faster than the latter two.
The use of the extended Krylov subspace does not result in faster convergence. But for the matrix sign
function, the two method based on the extended Krylov subspace perform much better.
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FIGURE 2. Hamiltonian matriz Ha, two different choices of the starting vector z = randn(1998,1) and e = ones(1998,1).

8. Concluding remarks. The HEKS algorithm for computing a J-orthogonal basis of the extended
Krylov subspace ;. s (1.1) has been presented. Unlike the EKSM for generating an orthogonal basis of K, ,
it allows for short recurrences. The convergence analysis provide in [18] does not apply here as the field of
values of a Hamiltonian matrix does not (strictly) lie in the right half-plane. Numerical experiments suggest
that it may be useful to employ the HEKS algorithm for the approximation of the action of f(H) on a vector
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u for Hamiltonian matrices H. The performance of the HEKS algorithm is similar to that of EKSM, but
HEKS guarantees the structure-preserving projection of the Hamiltonian matrix which may be relevant for
some applications.

Appendix A. Derivation of the HEKS algorithm. This section is devoted to deriving short
recurrences for the HEKS algorithm. We will follow the idea sketched in Section 3. First S; € R?"*2 is
constructed such that ST.J,,S; = J; and the columns of S; span the same subspace as Ka(H,u;) (that is,
range{S1} = K2(H,u1)). Here, H € R?"*2" is the Hamiltonian matrix under consideration and u; € R?"?
a given vector with |lui|ls = 1. Next S5 € R2"*4* ig constructed by extending So,_; by two columns
such that S J,Sor = Jox, and range{Sor} = Kaop(H,u1) + Kor(H 1, H 'uy). Finally, Sopqq € RZWX4F+2
is constructed by extending Sy; by two columns such that SQT,CHJHS%H = Jok4+1 and range{Sop+1} =
Korr1(H,u1) + Kox(H™Y, H uy). In doing so, we will provide a proof that the projected matrices Hoy, and
Hopi1 as well as J} ST J, H1Sy;, and JQTk,HSQTkHJnH—lSQkH are of the above given forms (4.3), (5.6)
and (5.7), respectively. In particular, we will prove Theorem 4.1. The assumption in Theorem 4.1 that no
breakdown occurs in particular implies that in the following all assumptions on nonzero parameters must
hold.

A.1. Step 1: range{S1} = Ko(H,u1). As u; satisfies ||uz|l2 = 1, there is nothing to do with the first
vector in KCq(H, u1). The second vector Huj needs to J-orthogonalized against uq. This is achieved by

(All) (%1 :Hul/ulTJnHul ZHU1/191,
assuming that ¥, = uf.J,, Hu; # 0. Thus, the matrix S; = [u1 | v1] has J-orthogonal columns by construction

S{Jnsl _ U{Jnul u?]nvl] _ { 0 1} 7

vanul vanvl -1 0

as any vector is J-orthogonal to itself, uf J,v1 = ulJ, Huy /ul J,Hu; = 1 and vI'Juy = (uf'JT )T =
—(uf Jpv)T.

A.1.1. The projected matrix H, = J{ ST J,HS;. We will prove that

T T
(A.12) Hy = JTSTJ,HS = | JnHuy  —vp JnHvl} _ [0 al} 7

ul J, Huy uf J,Hvy J1 0
holds. Due to (A.11) we have Hu; = ¥1v1 and thus
vlTJnHul =1 -vlTJnvl =0,

as any vector is J-orthogonal to itself. The zero in position (2,2) follows from the zero in position (1,1)

as H as well as H; is Hamiltonian (or by noting that 0 = v J,,Hu; = (vl J,H w)?T =« (J,H) v, =
FJ.Hv, =0

uy JpHvy = 0).

A.1.2. The projected matrix Ji S J,H 1S;. Making use of the fact that HY J,H ' = —J, as H
is Hamiltonian ((J,H)T = —HTJ,, = J,H), we have due to (A.11)

V1 -] JoH Yuy = (Huy) T T, H Yuy = wl HY T, H 'y = —ud Jouy = 0.
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This implies u? J, H = v; = 0. Moreover, using (A.11) again
v} JoH Yoy = (Hu) )T T, H N (Huy) /93 = ul HY Jyuy /93 = —ul J, Huy /93 = —1/9;.
Thus

T -1 T —1
(A.13) JTST g H1g, = | o Sl vl} _ { 0 1/191} |

ul JoH 'uy  wlJ,H 1oy fi1 0

A.2. Step 2: range{S>} = Kao(H,u1) + Ko(H ', H 1uy). Now the first vector from the Krylov sub-
space K,.(H 1, H uy) is added to the symplectic basis by J-orthogonalization H ~'u; against u; and v;.
This is achieved by computing

wy = (I — SyJESTJ)H Yy,

and normalizing w, to length 1, z1 = w,/||w,|2. Next the second vector from KC,.(H 1, H~'u;) needs to be
added to the symplectic basis. This can be accomplished by J-orthogonalizing H ~'x; against u; and v;

wy = (I —S1J{ ST T H ay,

and making sure that w, is J-orthogonal against 21 as well, y; = w, /w; Jz. Here, we assume that [|w,||2 # 0
as well as wz;Jxl # 0.

Collect the vectors into a matrix Sy = [y; u1 | #1 v1] € R?**4. By construction the columns of Sy are
J-orthogonal, that is

(A.14) S5 JnS2 = Ja,

and
range{Sa} = Ka(H,u1) + Ko(H ', H 'uy).

Let us take a closer look at w, and w,. Making use of (A.13), we have

U{JnH_1U1

-1
wy = H 'ug — [ug — uq] L)lTJnHlul

} =H 'uy — [v; —ui) {fél} =H 'uy — fi1vr.
Hence, with 11 = ||wg||2 we have

(A.15) z1 = (H 'uy — firor) /i1,
where, as already stated above, 11 # 0 is assumed.

Next we turn our attention to wy,. We will make use of the fact that H~! is Hamiltonian (J,H ' =
—~H-TJ,) and ST J, S5 = Jo. With (A.15) we see

(A16) u{JnH_lml = —(H_lul)TJnarl = —(¢1x1 + fllvl)TJnQ?l =0.
Similarly, it follows with (A.11) that

(A.17) vl J,H 'ey = —(H ) Joay = ul Jpx, /091 = 0.
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Hence,
_ wI J,H 1z, _ 0 _
Wy = H 1x1 — [1)1 — ul] [U%JnH_lxl] =H 1.1;1 — [’Ul — ul] |:O:| =H 1$1,
and
v = H oy /€4,
where we assume that
(A.18) & =H o) Jpoy = 2T H T T #0.

Observe that

1 1 1

(A.19) 61 =yl JnHyr = a1 H TJ,HH 'ay = a{ H T J,z = —.
& & 3

Thus

(AQO) Y1 = H_ll‘l/fl = 51H_1$1.

A.2.1. The projected matrix Hy = JISTJ,HS;. We will see that the zero structure of Hy =
JISTJ,HS, is given as follows:

—x?J,LHyl —x?JnHul —x?J,LHxl —x?JnHvl 0 0| m

(A.21) o — fvlTJnHyl fvlTJnHul fvlTJonl fvanHvl B 0 O0fm o
' Ty Hy,  yTI Hu || yTJnHzr gl Hur | | & 0] 0 0
ul J, Hy uf J, Huy ul J, Hay ul J,Hoy 0 J1 0 O

The entries at the positions (2,2), (4,2),(2,4), and (4,4) (denoted in blue in (A.21)) are the same as in
(A.12). Due to H and thus Hs being Hamiltonian, we only need to prove the zero entries at the positions
(1,1),(1,2),(2,1), and (3,2), the other zeros in (A.21) follow immediately.

Due to (A.11) we have Huy = ¥yv;. Thus, 21 J, Huy = 91 -2 J,v1 = 0 and yf J, Huy = 91 -y Jv1 =0
due to (A.14). This gives the zero entries in the positions (1,2) and (3,2).

Due to (A.20) it follows with (A.14) for the entry (2,1)
UlTJnHyl = élvipJnHH_lacl = (51111TJn331 =0.
Moreover, in a similar way for the entry (1,1), we have
xlTJnHyl = 61x1TJnHH_1x1 = 51x1TJnx1 =0.

Hence, (A.21) holds.
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A.2.2. The projected matrix JJ ST .J, H~'S,. Some of the entries in Hy = JI ST .J,, H~S, (denoted
in blue) are already known from (A.13),

—xlTJnH_lyl —x{JnH_lul —xlTJnH_lxl —xlTJnH_lvl

. ol T, H Yy —ol T, H 'y || =l T, H ey —oT J, H 1oy
Hz = yl g, H yy yl g, H yl g, H yi'J, H oy
i u?JnH*1y1 ufJnH’lul ufJnH*Iml u{JnH’lvl

0 o166 o

o ol o 1/0
€11 911 0 0
g1 fn 0 0

(A.22) -

The entry in position (1,3) follows from (A.18) and (A.19), while the zero entries in the positions (1, 2),
(1,4), (2,3), and (4, 3) have already been proven in (A.16) and (A.17).

It remains to consider the entries at the positions (3,3) and (3,4). Using (A.20) and (A.11) leads to

gl T H ey = 60 (H *a) T (H 12y) = 0,
yzﬂJnHil’Ul = y?Jnul/ﬁl =0.

Hence, (A.22) holds.

A.3. Step 3: range{S3} = K4(H,u1) + Ko(H~1, H1uy). In this step, the next two vectors H?u; and
H3uy from K4(H,u;) are added to the symplectic basis. We start by J-orthogonalizing Hv, against the
columns of Ss

y{JnHUI

T, Ho

w=(I— S3J ST 1, Hvy = Hvy — —yr —wy] [0

w ( 2Jy Sy Jn)Hvy v1 = [z 0 hn u] 2T J, Ho,

vlTJnHvl
0
0

(A.23) =Huvy —[r1 v1 —y1 —ui] y = Hvi —my1 — oqua,

M
—oy

where (A.21) gives that the first two entries of the last vector are zero. Normalizing w,, to length 1 gives usy

(A.24) Uz = Wy /X2,
where it is assumed that xo = ||w,||2 # 0.

This step is finalized by J-orthogonalizing Huy against the columns of Ss:

y,iTJnHUQ
ulTJnHug
fo,LHuQ
vlTJnHug

Wy = (I — SQJQTSan)HUQ = H’LLQ — [.131 vT —Yyr — U1]
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All entries of the last vector are zero. The first two zeros follow as H 1 J,, H = —J,, with (A.20) and (A.11):
yl JyHuy /6y = (H 'x) T J, Huy = —2T Jus = 0,
ul Ty Huy /Y1 = (H 'v)T JyHuy = —vl Jyus =0
by construction of us. The last zero follows as H is Hamiltonian with (A.23),
ol JnHug = v (JoH) ugy = —(Huv)" Jyug = —(xaug + 1 + aru) " Jpug = 0
again due to the construction of us. With this and (A.15), we have for the next to last entry
V12T JHuy = (H 'y 4+ frio0)T T Huy = —u? Jyug + frivl J,Huy = 0.

Thus, the expression for w, simplifies to
Wy = H’U,g.

Normalizing w, by 92 = ud J,, Huy to make sure it is J-orthogonal to us as well yields
Vo = H’U,Q/’l92 .

Let
Ss = [y1 w1 u2 | 1 v1 vo] € R,

Then by construction
(A25) SanS?) = J3a
and

range{Ss} = K4(H,u1) + Ko(H ', H Muy).

A.3.1. The projected matrix Hs = JgSanHS;;. Some of the entries (denoted in blue) in Hs =
JIST J,HS; are already known from (A.21)

I 0 0 —aT Jn Hus A1 T —a7 J Hus
0 0 —vf J, Hua T ai —of J,Huvg
. — fvanHyl 0¥ J Hur —vlJ Hus | —v¥J.Hzy | =¥ J,Hoi  —of JoHus
3 5 0 o T Hus 0 0 o T Hus
0 h ui Jy Hus 0 0 ui Jy, Hva
L ugTJnHyl uQTJnHul uanHug uanHml ugTJnHvl uQTJnHvz
[ O] 0 O || A |y p2]
010 O || 7|1 B
(A.26) _ 010 0 |u|fPa a
6410 O 010 O
091 O 010 O
L 0] 0 P00 0 ]

The zeros in the third column (and hence the zeros in the last row) follow with Hus = ¥ovs due to (A.25).
Moreover, we have with (A.20) and (A.11)

UQTJnHyl = 61v2TJnx1 =0,
vQTJnHul = ﬁlv;Jnvl =0,

making again use of (A.25). Hence, (A.26) holds.
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A.3.2. The projected matrix JgS’anH_ls’g. Some of the entries in Hs = JgSanH_ng (denoted
in blue) are already known from (A.22)

0 0 —aT JnH g 1/61 0 —aT JnH vy
0 0 —vT Jn H Yug 0 1/%4 —vT J H vy
I{I _ fv;rJnH_lyl 7vanH_1u1 7UanH_luz fv;rJnH_lxl fvanH_lvl 7vanH_1v2
3 el g11 yiJnH tug 0 0 yi JnH vy
g11 fi1 uT T H Luy 0 0 uT Jn H vy
L uanH_lyl uanH_lul uanH_1u2 uanH_lml uanH_lvl ’U,anH_l’Ug
o0 0 0|15 o0 0
0 0 0 0 1/ 0
0 0 o0 o 0 1/0,
(A27) =
€11 911 9g12 0 0 0
gt fir O 0 0 0
L gi2 0 fao 0 0 0 |

It remains to show that the five entries vanH_lz for z = x1,v1,y1,u1,us as well as the three entries
20 J, H Yy for z = vy, 1, u; are zero. Moreover, we need to show that —UanH_1v2 =1/9,.

Most of these relations follow from H”J,H~T = —J,, and due to Hu; = 9Y;v;,j5 = 1,2. Making use of
(A.25) in the last equality of each equation, we have

V1 - v JoH Yug = uf HY J,H tug = —ul Jyug =0,

Og vy JnH Moy = ug H' JH vy = —u Jpvp = —1,
and for z = x1,v1, Y1, U1, U2
V2 vy JnH 'z =ul H' J,H 'z = —ul J,z = 0.

Thus, —vd J,, H vy = 1/05 and the five entries in the (1,1) (and the (2,2)) block of Hs are zero.

The derivation of the final two zero entries needs a slightly more involved derivation. Due to (A.24),
(A.25), and (A.22) we have

X221 JoH tug = 2 J,H ' (Hvy — yiy1 — aqun)

= xlTJnvl — 'ylxlTJanlyl — oqa:lTJanlul =0,
while due to H~! being Hamiltonian, (A.15) and (A.25) we get
U,{JnH71U2 = (Hilul)TJnUQ = (’1/111'1 + fll'l}l)TJnUQ =0.

Hence, (A.27) holds.

A.4. Step 4: range{Ss} = K4(H,u1) + K4(H™', H 1uy). In this step, the next two vectors H 3u;
and H~%u; from K4(H ', H 'up) are added to the symplectic basis. We start by J-orthogonalizing H =1y,
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against the columns of S5

leJanl.%
_ _ UTJnHilyl
wy = (I — S5JESTT)VH Yyy = H 'y, — o1 Va | —y1 — Us] ijJnH‘lyl
Vil Jn H
o]
g11
=H 'y1 — 11 Vo | —pn —U3) 9(1)2 = H 'y; —en1z1 — g11v1 — gi2va,
0
- 0 -
due to (A.27).
Normalizing w, to length 1 gives
(A.28) Ty = wg /12,

where we assume that ¥ = |Jw, |2 # 0.

This step is finalized by J-orthogonalizing H 'z, against the columns of S3

leJanliﬂz
T H—l
(A29) Wy = ([ — S3J§S§Jn)H_1$2 = H_lccg — [.’1?1 Vs | -y — UQ] U% In _11'2
xy JnH ™ o
V2TJnH_1x2
All entries 2T J,H tag = —(H_IZ)TJn.’L‘g in the last vector are zero. As Hu; = %;v;, i = 1,2, for the last

two entries, we have

191 . (H_l'l}l)TJnLCQ = U,{Jn.’EQ = 0,

g - (H  wo) T Ty = ul Jpxe = 0,

by construction of z2 as a vector J-orthogonal to all columns of Ss. Next, we use (A.28), (A.20), and (A.15)
to see

(H 'y) T Jpze = (om0 — e1121 — g1101 — g1202)” Jpae = 0,
(Hilzl)TJnIQ = gly?JnIQ = 07
(H  up) Jpwo = (bry — fravn) T Jpae =0,

again by construction of xs as a vector J-orthogonal to all columns of S5. With this and (A.24), it follows
that

X2 (H71UQ)TJ7L"132 = (’Ul — 71H71y1 — alelul)TJnxQ = O

Thus,
yo = H 'ao /&,
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where we assume that
(A.30) & = (H 'a)  Jpao = 2l HT Jyae #0.

With the same argument as in (A.19), we see that

1 1
by = ngnH?ﬁ = *2(H_1$2>TJHHH_1332 = —.
&2 )
Thus
(A31) Yo = H71I2/£2 _ 52H71‘T2.
Let

Sy = [yz y1 ur ug | T2 w1 vy o] € RPE

Then by construction
(A.32) S1 JnSs = Js,

and
range{S4} = ]C4(H, Ul) + ’C4(H717H71U1).

A.4.1. The projected matrix Hy = JI ST .J,HS,. Some of the entries in

Hy=JIsTJ,HS, =

21 22
HAE )| g22
with
[ —xQTJnHyg —xQTJ,LHyl —ngnHul —J:QTJnHu2 i
H(ll) _ 7${JnHy2 0 0 0
4 —ol J, Hys 0 0 0 ’
i —vgJ,LHyg 0 0 0 ]
[ foTJnH:cg fngnH:cl foTJnHvl foTJnva
12 _ —x{ J,Hxy A1 " H2
4 —vl' J, Hay %1 (o731 B2 '
i —vl J,Hxs 2 Bo ey i
[ vl TuHys Y3 JnHy: | y3 JoHur g3 JoHus
gy _ | vidHys & 0 0
4 ul J, Hys 0 ¥ 0 ’
L UanHyQ 0 0 192 ]
[ yQTJong yQTJonl yQTJnHvl yQTJnva 1
H(Ql) _ y,{JnH$2 0 0 O
4 ul J,Hzxo 0 0 0
uzTJong 0 0 0 ]

are already known from (A.26) (denoted in blue).
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We will show that

[0 0/0 01X 0]0 7~ ]
0 0|0 010 X|m pe
0 0 0 0 0 Y1 | ¢1 ﬂg
(A.33) H, — 0 010 0|y p|B a
& 0[0 00 0[]0 O
0 6/0 010 0|0 O
0 0|9, 00 O0]l0 o0
| 0 00 WU2/[0 0[O0 0 |

Let us consider the entries in the first column of (A.33). We make use of (A.31) and obtain
zTJnHyg = 8527 J, 1.

For z = x1, x9, v1, v2, Y1, U1, ug We have 2T J, 29 = 0 due to (A.32), while, ngnxg = 1. Thus ngnHyg = 5.
Moreover, the other 7 entries in the first column are zero. This implies that the other 7 entries in the fifth

row are zero as well.

For the entries x;:,FJnHz for z = y1,u1, us, in the first row we note that
Yo ag JoHz = (H 'y — ennw1 — g11v1 — giove) JoHz = —yi Juz — (e1171 + g1101 + giove)” J,Hz =0

due to (A.28), (A.32), and (A.26). These zeros imply zeros in the positions (6, 5), (7,5), and (8,5).

It remains to consider the two entries at the positions (1,6) and (1,7). With (A.15) it follows that
1wy JpHey = a3 JoH(H tuy — fao) = 23 Jpur — fuzy JnHoy = —fuizy JoHoy,

due to (A.32). Thus, the entry at position (1, 6) is zero if and only if the entry at position (1,7) is zero. For
the entry at position (1,7) we have with (A.24) and (A.23)

z3 JoHv = 23 J, (x2us + M1y1oqur) = 0,

due to (A.32). Hence, (A.33) holds.

A.4.2. The projected matrix JI ST .J, H~1S4. Some of the entries in

i Hiu) ﬁilz)
Hy=JlSTJ,H'S, =

Y

Hiﬂ) ]jLEQQ)
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with
r 2T J,H gy 0 0 0
ﬁ(ll) _ —Z{JnHilyg 0 0 O
o =T H Yy, 0 0 0|
L _’UanH_ly2 0 0 O
i —xQTJnH*IxQ 0 0 0
a0 — 0 /60 0 0
0 0 1/¢, O
L 0 0 0 1/192
[y JnH Yya ys JnH Yy s JnH
73D _ yi JnH 'y, el gi1 g12
4 uf J, H 1yo g1 fi1 0o |’
L UanH71y2 g12 0 fa2
i yQTJnH_le ngnH_lxl yQTJnH_lvl szJnH_lvg
- 0 0 0 0
7@ _
4 0 0 0 0
L 0 0 0 0

are already known from (A.27) (denoted in blue). In addition, most of the entries in the first column of
H £12) and H, i22) and hence in the first row of H in) and H £12) are known from the derivations concerning

(A.29) (denoted in red).

Next we will show that

(A.34) H,y

0 0]l0 o0l1/6 o0 0 0

0 0 0 0 0 1/61 0 0

0 0 0 0 0 0 1/191 0

0 0 0 0 0 0 0 1/9
€22 €12 | 12 922 0 0 0 0
€12 €11 | g11 912 0 0 0 0
gi2 g1t | Juu O 0 0 0 0
g2 g12| 0 faof O 0 0 0 ]

Let us consider the remaining entries in the first row of Hy. As H~! is Hamiltonian and due to (A.30), we

have

a3 JoH g = 2] (J,H ) 2y = —(H 'ag)  Jpzs = =& = —1/6.

Due to (A.31) and (A.32), it follows that

& -yl T H tay =yl Juys = 0.

Finally, we consider the three remaining entries in the first column,

2T I, H Yy, = —(H_lz)TJnyg,
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for z = x1,v1,v2. Due to ¥;H 'v; = u; for i = 1,2, we obtain with (A.32)
Oi - (H™ o))" Jnys = u Jnya =0,
while with (A.20) we have
1 (H 'w1) " Jnyz = yi Juyz = 0.
Hence, (A.34) holds.

A.5. Step 5: range{Ss} = K¢(H,u1) + Ks(H 1, H 'u;) and Step 6: range{Se¢} = K¢(H,u1) +
Ke(H~', H 'u1). We refrain from stating Steps 5 and 6 explicitly even so us and xo are not displaying the
general form of u; and x. This can only be seen from us and x3 which would be derived in Steps 5 and 6.
As the derivations which lead to us and x5 are the same as in the general case for deriving up+1 and g1,
we directly proceed to the general case assuming that Algorithm 1 holds up to step k.

A.6. Step 2k+1: range{Sori1} = Kopso(H,u1) + Kop(H™1, H uy). Assume that we have con-
structed

Sor=1[ye -+ yrur -+ up | @R o xy v e vp) = (Vi Up | Xg Vi) € RZAF
such that ST, JnSoy = Joy,

- XTJ.HYy —-XTJ.HU, —-XFJ.HX, —-XIJ.HVi
—-VIJ.HY: -VIJ.HU, -VIJ.HX, -VIJ.HVj
YIJ.HY:  YIJ.HU, Y,.E J. H Xy, Y.L T HVy
UL J, HY UL J,HU, UL J,HX} UL J.HV;
0 0 A, B
0 0 BE T,
A.35 = Kk )
( ) Ar 0 0 0
0 O, 0 0

Hop = J3. S5 JnHSoy, =

as in (4.3) (r =s=k),

X7, H 'Y, —-XFJ.H'U, -XFTJ.H'X) -XTJ,H 'V
-VII.H 'Y, -VIIL.H'U. -VIJL.H'X, -VIJL.H 'V,
YL J.H 'Y, Y.L J.H U, YT J.H 1 X, YL J.H 'V,
UrJ.HY, UFJ.H ‘U, ULJ.H'X, UL J.H= 'V,
0 0 A 0
o 0 0 o
E. G O 0 |’
GL.  Fy 0 0

Hyj, = JL.SE J, H 1Sy, =

(A.36) =

as in (5.6) and
range{Sor } = Kok (H, u1) + ng(Hil, Hﬁlul).

The computational steps can be found in Algorithm 1.
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In this step, the next two vectors H?* 9y and H?kt1yy from Kop+o(H,up) are added to the symplectic
basis. Due to the previous construction, this is achieved by first considering Hv. J-orthogonalizing Huy
against the columns of Sy yields

YL T, Hoy,
ULJ,Hv
T oT nd1Vg
Wy = (I — SQkJQ SQkJn)HUk = H’Uk — [Xk V}.C — Yk — Uk] X%JnHUk
VL J, Huy,
= Hok, — YWYk — feYk—1 — Bruk—1 — apuy,
as due to (A.35)
YL T, Hop = 0, Ul J,Huy, =0,
— e 0
—Hk :
XTJoHop=| 0 |, Vil JnHop = |
: —Br
0 — QO
Normalizing w,, to length 1 gives
(A.37) Uk+1 = Wa/Xk+15

where it is assumed that yp4+1 = ||wy|l2 # 0.
This step is finalized by J-orthogonalizing Hu11 against the columns of Sy

YkTJnHuIH_l
UEJ7LHuk+1
XTJ, Hug i
VkTJnH’LLkJrl

wy = (I = SopJh SE T ) Hupyr = Hupy1 — (X Vi =Y — Uyl

All entries of the last vector are zero. The zeros in the first two blocks VI J,, Huy41 and UL J, Huy41 can
be seen by using y; = §;H 'z; and u; = 9;H 1v; for j=1,...,k as well as H T J, H = —J,:

y;‘-FJnHukH/éj = (H_lxj)TJnHukH = —x;‘-FJnukH =0,

u JyHupsr /9 = (H )" JyHugy = —v] Jyugsr =0,
due to the construction of ug41 as J-orthogonal against all columns of Soy.
The zeros in the last block VkTJnH vy, follow as H is Hamiltonian and with
XiUj = ij — VY — HiYi-1 — /Bjuj—l - U,
for j=1,...,k, (where we set 81 = u; = 0 and yo = ug = 0)

v]TJnHukH = v;‘-F(JnH)TukH = —(Hvj)" Joups1

(A38) = 7(Xjuj + YiY;j + HiYji—1 + ﬂju]'_l + OéjUj)TJ7luk+1 = O,

again due to the construction of ux41 as J-orthogonal against all columns of Say.
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With this we can show that the entries of the next to last block X,?JnHvk are all zero. First, with
ey = H 'uy — friv1 and H-TJ,H = —J, we have

’(ﬁl . fonHuk_H = (H71U1 — fllvl)TJnHuk+1 = U{HiTJnH’U,k_Fl — fllvlTJnHuk+1

(A.39) = —ul Jyupgr — frvl JuHugpy =0,
due to the construction of ux11 as J-orthogonal against all columns of Sa;, and due to (A.38). Next, we use
(A.40) Yjp1541 = Hilyj — €T — €j—1,5Lj—1 — GjjV5 — Gj1,j+1Vj+1,

for j =1,...,k — 1 (where we set eg; = 0 and 29 = 0, see Lines 16 and 29 of Algorithm 1) for the other
entries of the next to last block

T T T r7—T
Gjr - @i InHuggr = —(ej55 + €101 + 95505 + 95.5410541) " JnHupgs +y; H™7 T Hug

_ T T
= —(ejjwj + 6;‘71,]'510]'71) JnHup1 — Y; JnUk1,

as v] JnHuy1 = 0 due to (A.38). Clearly, yT Jyugy1 = 0 by construction of uyy1. Thus, it remains to
consider

T T
’(/}j-i-l . IL‘j+1JnHuk+1 = —(ejjmj + ej_l,jxj_l) JnHupyq.

For j = 1 we have with xo = 0 and (A.39) that 5 - 21 J,, Hug 1 = 0. With this, we get ¥3 - 22 J,, Hup 41 = 0,
and, continuing in this fashion,

T
wj+1 . :z:j+1JnHuk+1 = O

Thus, the expression for w, simplifies to

Wy = Hupgyq.

Normalizing w, by V541 = ufHJnHukH to make sure it is J-orthogonal to uy41 yields

(A41) V41 = Huk+1/19k+1.

Let Sgk+1 = [yk e Yr U oot Ug41 | T vt X1 Vo0 ’Uk_;,_ﬂ = [Yk Uk+1 | Xk Vk+1] S R2n><4k+2. Then by
construction

(A42) SQTk+1JnSQk+1 = J2k+1a

and range{Sar 11} = Korro(H,uy) + Kop(H™1, H 1uy).

A.6.1. The projected matrix Hyp 1 = J§;€+1S§€+1JHHS%+1. Most of the entries in

iy, | g

T T
H2k+1 - J2k+1S2k+1JnHSQk+1H2k+1 -

Y

(21) (22)
H2k+1 ‘ H2k+1



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society I I

Volume 38, pp. 572-606, September 2022.

P. Benner et al. 598
with
(11) - 0 ‘ 0 — Xt JnHujr1 ]
Hopir = 0 0 VI J,Hugyr |
i —0f  JnHYy, | =0l JnHUy  —vl JnHugya |
) Ay, | B, — X[ J,Hupia
Hy Yy = By Tk VI Hogr |,
L _Ug+1JnHXk _v£+1JnHVk —Ug+1JnHvk+1 ]
. Ap | 0 Y T Hug 41
Hék+)1 = 0 Oy Ul JoHupi1 |
L uz;i,_lJnHYk ug_l,_lJnHUk u£+1JnHUk+1 |
s 0 | 0 Y, T, Hog g1
Hék+)1 = 0 0 UL JnHog 11
L uz;1+1JnHXk u£+1JnHVk u£+1JnH7}k+1 ]

are already known from Hyy, (A.35) (denoted in blue).

Next we will show that

_ e
010 0 Ay B :
0
0
0ol0 0 BT, Ty :
Hopy1 = ﬂkoﬂ
0 0 0 B 0 0 | 0 0 Brir Qg
Ay 0 0 0
0 | O 0 0 0 0
L 0| 0 pn 0 0 0 |
[0 0 Ay By k41
0 0 BT T;
(A.43) _ ki k+1 k+1
Ay 0 0 0
L 0 | Okqx 0 0

The zeros in the third column (and hence in the last row) follow due to Hug11 = 410541 and (A.42). The
zeros in the first block v,{_i_lJnHYk of the third row follow due to Hy; = d;z;, for j = 1,...,k, the ones in

the second block Ug+1JnHUk due to Hu; = 9¥;v;, j = 1,...,k. This also implies the zeros in the last row of
the fourth and fifth block.

Moreover, we obtain
Vp 1 InH Vi1 =0,
from
(A.44) Xj+1Uj+1 = Hvoj —v5y5 — piyj—1 — Bjuj—1 — ajuy,
for j=1,...,k —1 (where we set 5y = o = 0 and up = yo = 0, see Lines 11 and 24 in Algorithm 1) as

i1 In Huy = vf g Jn (a1 + 7595 + 15951 + Biug—1 + ajug) =0,



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society I I
Volume 38, pp. 572-606, September 2022.

AS

599 The Hamiltonian extended Krylov subspace method

due to the construction of v;, 1 as J-orthogonal against all columns of Syy,. With this, ¢12; = H u; — f1101
and the recurrence for x; as in (A.40), we observe that

O JnHX o1 =0,
holds. This can be seen step by step. Due to (A.42) and v£+1J,LHVk_1 =0, we have
7,/111),7;,_1(]on1 = U,?_HJHH(H*lul — fiin) = vg+1jnu1 — f11v£+1JnHv1 =0,
and with this and (A.28) we have further
¢2UkT+1Jon2 = —v{HJnyl - €11”1{+1JnH$1 - 91101{+1JnH01 - 912U£+1JnH@2 =0.

In this fashion, we continue with the expression for z;;1 as in Line 30 of Algorithm 1 to obtain for j =
2. k=2

T T T T
Vi1V 1 InHTj11 = Vi1 Inys = €V JnHEj — ej1 jvp i JnHzj

T T
— gjj’l)kJrlJnH’UjJrl — gj’ijkHJnij =0.

Hence, (A.43) holds.
A.6.2. The projected matrix J;‘FkHSQTkHJnH_lSQkH. Most of the entries in

A ag

~ B 2k+1 2k+1
Hop1 = Jop 1S 1 JnH ™ Sopgr = ) (22) |’
Hyjer H H2k+1
with
_ 0 0 —XkTJanluk.H
Hz(llcl+)1 = 0 0 Vi JnH g |
| v T H Y =l S H Uy vl T H gy
~ _ Al 0 —XTJ,H v q
P o v |,
| ol L H T Xy o T H Ve =0l JuH o |
. [ Ey G VI T H gy ]
g, = G{ Fl Ug JnH luggr |
| uf T H Yl JuH Ol T H
~ - 0 0 VI T H ™ M4
Hy?), = 0 0 Ui JnH vy
Ll T Xyl JuH Vil JuH v |

are already known from (A.36) (denoted in blue).
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Next we show that
i 0 0 0 AP0 0
0 0 0 0 ;' 0
0 0 0 0 0 1/
Ijl — Ik, k+1
2t By G, ° 0o 0 0
0
GT Fy, 0 0 0 0
| 9kkt1 0 0 0 fk:+1,k+1 0 0 0 ]
0 0 At 0
0 0 0 o
(A.45) = ==
E,  Grri1| 0 0
| Girer Fen 0 0

With (A.41) and H-TJ,H = —J,, we see that the entries v,{HJnH*lz in the third block row are zeros
(despite the last entry)

(A.46) 01 vl JnH e =ul  H T, H e = —ul  Jpz =0,
for z € {y1, . s Yk ULy - ooy Ukt1, L1y -+ - Thy V1. . . ., U } due to the construction of ug4q as J-orthogonal to all

columns of Soy. This implies the zeros in the last column of (A.45). For the last entry, we have
~ Vi1 Vi Jn H Yo = —uf | HY T H Yopgr = up o Jpvpgn = 1

Thus, —vi, 1 JnH tvpgr = 1/041.

With (A.37) the entries in the upper part of the third column (as well as the entries in the fourth and
fifth block of the last row) are zero as

Xe4127 I H Yupyr = 25 T H N (Hog — Yiyk — trys—1 — Brtti—1 — aguy)
= 2T Jovr — 20 T H  (vyk + -1 + Brug—1 + agug) = 0

for z € {x1,..., 2, v1,...,v5} due to (A.46) and (A.36).

The entries in Y, | .J,, H tuy41 are zero as H~! is Hamiltonian and (A.40) yield

ijJanluk_H = —(H 'y)T Jnugsa

(A47) = —(1¢; L i — i1 iEi 1 — i — (s )7 =0
= JH1T+1 — €555 — €5-1,5Tj-1 — 955V5 — G5 j+1Vj+1) JnUk+1 = U,

for j =1,...,k — 1 due to the construction of uy,1 as J-orthogonal to all columns of Soy.

With this, we can show in a recursive manner that the entries in
Ul JnH Mgy = —(H ' Up1) " T,
are zero by making use of yju; = 121 — fi1v1 and (A.44). First we obtain

(A.48) x1 - (H  u) T T = (i — frivn) Jnugegr = 0,
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due to the construction of ug41 as J-orthogonal to all columns of Soi. Next we observe
X2 - (H  ug) Ty = (1 = nH ryr — o H Mug) D Jpupeq = 0,

where the first term is zero as w41 is J-orthogonal to vy, the second one due to (A.47) and the third term
due to (A.48). Continuing in this fashion, we have

Xj - (H ) Tnuggr = (vj—1 — vj—1H i1 — -1 H 'yj—0) " Tnugega
— (Bj—2H Yujo +aj 1 H i 1) Jpugsr = 0,

where the first term is zero as w41 is J-orthogonal to v;_1, the second and third one due to (A.47), and the
fourth and fifth term due to the preceding observations.

Hence, (A.45) holds.

A.7. Step 2k+2: range{Sari2} = Kopso(H,u1) + Kogro(H ™, H tuy). Assume that we have con-
structed Sor1 = [V Ukt1 | Xk Viy1) € R74*+2 a5 in the previous section.

The two vectors H~ @Dy, and H~#+2y, from IC2k+2(H’1,H*1u1) are added to the symplectic
basis. Due to the previous construction, this is achieved by constructing zy,1 from H 'y, and 354, from
H~'xy,,. First H 'y, is J-orthogonalized against the columns of Sy 1:

YkTJnH_lyk
UkT+1JnH_1yk
XkTJanlyk
ijjkl JnHilyk

wy = (I — Sopt1J3 1 Stoi1dn)H ryp = H 'y — (X Vier — Y — Ugya]

—1
=H "y — exrTh — €h—1,kTh—1 — JkkVk — Gk k+1Vk+1

due to (A.45). Normalizing w, to length 1 gives

(A.49) Tpt1 = W /Vh11,

where we assume that ¢ = ||wg||2 # 0.

This step is finalized by J-orthogonalizing H ~'xj,; against the columns of Soj1:

YT JoH Y2y
Ug+1JnH71xk+1
X7 J H apsy
T —1
VI T H g

wy = (I = Sopi1 344159 19n) H i = H 'apn — [Xp Vipr | =Ye = U]

All entries ZTJnH’lmkH = —(H’lz)TJnka in the last vector are zero. In order to see this, let us first
consider z = wv;,j = 1,...,k+ 1. Due to ¥;v; = Hu;, we have immediately

(Hil’Uj)TJ”xk_H = —uJTJnka/ﬂj =0.
Next, we consider z = z;,7 = 1,...,k, and make use of {;y; = H 'z, to obtain

(H_l.%‘j)TJnkarl = ijjTJn.'L‘k+1 =0.
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Rewriting (A.40) in terms of H ly;, the case z = y,,j = 1,...,k yields
j j
(H ™ y) Jn@isr = (Y525 = €j-1,j-12j-1 = gj-1,j-10j-1 — gj-1,j05)" Jaht1 = 0.
Finally, for z = u;, we obtain from (A.15)
(H  u)  Jpzrsr = (1o — fraivn)F Tpwpgr = 0,
from (A.24)
(H  ug) " Jnwggr = (01 + 1 H 'yr + an H 'ug) T Juwega /x2 = 0,
and from (A.37)
(H i) Tz = (vj + v H Yy + pwyi—1 + Bjuj—1 + o H  ug) Jnwsi /x+1 = 0
for j=2,...,k.
Thus,
(A.50) Yr1 = H ' @pq1 /Epg,

where we assume that
Crhr1 = (H 'wpp1) Jnwrpr = H T Jpaipga # 0.
With the same argument as in (A.19), we see that
1

Ol = T

Let Sapt2 = [Yn+1 Yi kg1 | Thg1 X Vig1]) € R¥4EF4 Then by construction 5%, J5Sokt2 = Jopta
and range{52k+2} = ’Cgk+2(H, ul) + K2k+2(H_1, H_lul).

A.7.1. The projected matrix Ho;yo = J§€+QS;€+2JnHSQk+2. Most of the entries in
D H 12

2k42 2k12
Hopyo = Jop 1094 0dnH o2 = 2D H @) |’
Hylo || Hopo
with
- —m{+1JnHyk+1 —mf_HJnHYk —mf_HJnHUkH
Hylo=| —X{JnHyp 0 0 ,
VT Hykn 0 | 0
[ ol JuHarpe ol JoHXy | —af JnH Vi
HZ(IICi)Q = | X T Hzrp Ay By k41 ,
Vi Hae Bl | Tht1
(21) y£+1JnHyk+1 yg+1JnHYk yg+1JnHUk+1
H2k+2 = YkTJnHyk+l Ak 0 )
i Ul JnHygsa 0 ‘ Ok+1
yz:ry]onk-H yz:ry]nHXk yg+1JnHVk+1
HY = | YT Hap 0 0 ,
| Ul JnHag o 0 | 0

are already known from (A.43) (denoted in blue).
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Next we show that
[0 0 0 || Megr 0 0 0ypgr |
0 0 0 0 Ay By kt1
0
0 0| O . B[, T+
Hopo = 0 ot -
Yk+1
Ogr1 O 0 0 0 0
0 Ag 0 0 0 0
| 0 0 | Ot 0 0 0 ]
0 0 Ak+1 B+t
(A.51) i 0 | Biien  Ten
Ak 0 0 0
0 Okt1 0 0

Making use of (A.50) we obtain 2T Ty Hypy1 = Op4127 Juwky1 = 0 for all but two of the entries in the first
column, that is, for z = zq,... s Yk, U1, -.., Uk+1. This gives the zeros in the

fourth row as well.

yTk+15 U1y -+ Uk+1s Y15 - - -

For the entries x| J, Hz in the first row, we note that with (A.49) and H-"J,H = J7T,
ThoyInHz = Y1 (H 'y — epny — €k—1,6Tk—1 — Ghm1,kVk+1 — ki) JnHz =0,

vk—2 due to (A.43) and ST, | J,,S2k+1 = Jogi1. Next,
1,k k —1 that

Tk—2,U1y-- -,
aju; (A.44), it follows for j =k —

for z = Yty oo Yy ULy - - U415, L5 - -+
with Hvj = Xjr1uj1 + 755 + #Y5-1 + Bruj—1 —

zp oy JnHuog—o = a2} JoHog_1 =zt J,Hoy = 0,
as S£,1Jn52k+1 = Jok+1. With this and (A.49), we obtain three more zero entries
T _ T _ T _
V2T InHrg 2 = Yp 1w JJnHrg1 = Yrxp  JnHry = 0.

This gives the zeros in the fourth column as well.

Hence, (A.51) holds.

A.7.2. The projected matrix J2,1;€+QS;C+2J7EH_152]€+2- Most of the entries in

3 Hy Yy || Ay
Hopro = J3yy0SapiodnH ot = 7D H (22) |’
Hy o H2k+2
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with

- (11 [ $£+1J"H71yk+1 0 0

H§k+)2 =| X'J.H 'yppn 0 0 |,
L VkTJrlJnH_lykﬂ 0 0
[ 1/0k41 0 0

F(12) .

Hop'vo = 0 A 0 ,
L0 0 6,

F(21) [ =y InH e Y I Y =yl JnH Uk ]
Hyj i = Y, T H e B, G k+1 )
| Uil InH My Gi st Fin
(22 [ Vi InH e~y JnH T X~y JaH T Vi ]
H§k+)2 = 0 0 0 ’

L 0 0 0 ]

are already known from (A.45) (denoted in blue). All but one of the zeros in the first row of I~{2(,1€£22 and
1:12(,1322 and the first column of ﬁéi)w and ffz(il)

o follow from the derivations in the previous section (denoted
in red). Due to (A.50),

ThrInH s = —(H ' wrg1) " Tnyesr = —Ee1¥i 1 Jnlisr = 0,

and the last zero in the first row/fourth columns follows.

Next we will show that

I 0 0 0 1/6k41 O 0
0 0 0 0 A7l 0
0 0 0 0 0 |0,
B €kt1,k+1  €kk+1 0 0] 0 0 gryr ki 0 0 0
Hopyo = ropt
. Ey, G k+1 0 0 0
0
0
: G?Hl Fiyq 0 0 0
L Gk+1,k+1 .
0 0 Al 0
0 0 0 O,
(A.52) = htl
Exr1 Grtips1 0 0
L G£+1,k+1 Fra 0 0

Let us consider the first column. We have X7 J,H ty;.1 =0asfor j=1,...,k
mJTJnH_lka = —(H ™ 2)) Juyrsr = —ijyTJnka =0,
and VL | J,H 'ypp1 =0asfor j=1,... . k+1

vaJnH_lka = —(H ') Jyyri1 = —UJTJnyk+1/79j =0.
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Next, observe that YV, | J,H 'y 1 =0asfor j=1,....k—1
y; JnH yprr = &H ay) T T H kg = &2 Jayrra = 0.
Finally, making use of (A.44), we observe that Ul .J,,H ly,41 =0as for j =1,...,k.
Hence, (A.52) holds.
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