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A SYLVESTER–KAC MATRIX TYPE AND THE LAPLACIAN CONTROLLABILITY OF

HALF GRAPHS∗

MILICA ANDELIĆ† , CARLOS M. DA FONSECA‡ , EMRAH KıLıÇ§ , AND ZORAN STANIĆ¶

Abstract. In this paper, we provide a new family of tridiagonal matrices whose eigenvalues are perfect squares. This result

motivates the computation of the spectrum of a particular antibidiagonal matrix. As an application, we consider the Laplacian

controllability of a particular subclass of chain graphs known as half graphs.
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1. Introduction. The first occurrence of the so-called Sylvester–Kac matrix type dates back to 1854

when J.J. Sylvester, in the brief note [35], conjectured that the eigenvalues of

0 1

n 0 2

n− 1
. . .

. . .

. . .
. . . n− 1

2 0 n

1 0


,

are:

±n,± (n− 2),± (n− 4), . . . .

A complete proof to this claim is given by M. Kac in his celebrated work [23], almost a century after

the original formulation. For distinct proofs, approaches, and some historical remarks, the reader is referred

to [4, 6–10, 12, 14–19, 22, 24, 25, 27, 30, 32, 34, 36]. Nowadays, a Sylvester–Kac type matrix is a tridiagonal

integral matrix with integer spectrum satisfying a certain regularity property. In some instances, the integral

condition is dropped.

A straightforward computation shows that the matrix An+1 = [aij ] of order n+ 1 given by

akk = (a+ (m+ k − 1)c)(a+ (m+ n− k + 1)c) + (k − 1) (n− k + 2) c2

ak,k+1 = −c(n− k + 1)(a+ (m+ k − 1)c)(1.1)

ak+1,k = −kc(a+ (m+ n− k + 1)c)
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is the square of the matrix

Bn+1 =


(a+mc)

(a+ (m+ 1) c) −c

(a+ (m+ 2) c) −2c

. .
.

. .
.

(a+ (m+ n)c) −nc


(n+1)×(n+1)

,

that is, An+1 = B2
n+1. We consider the initial matrices of order n+ 1.

Example 1.1. If we take n = 4,m = 0 and c = 1, then the matrix A5 is of the form

A5 =


a (a+ 4) −4a 0 0 0

−a− 4 (a+ 1) (a+ 3) + 4 −3a− 3 0 0

0 −2a− 6 (a+ 2)
2
+ 6 −2a− 4 0

0 0 −3a− 6 (a+ 1) (a+ 3) + 6 −a− 3

0 0 0 −4a− 4 a (a+ 4) + 4

 .

Our first aim is to show that, for a,m, c ≥ 0, the spectrum of An+1, σ(An+1), is{
(a+mc)

2
, (a+ (m+ 1) c)

2
, (a+ (m+ 2) c)

2
, . . . , (a+ (m+ n) c)

2
}
.

Afterwards, we prove that

σ (Bn+1) = {a+mc,−(a+ (m+ 1)c), a+ (m+ 2) c, . . . , (−1)
n
(a+ (m+ n) c)} .

As a consequence, in Section 3, we prove that the eigenvalues of the antibidiagonal matrix

B̃n =



1

2 −1

3 −2

4 −3

. .
.

. .
.

n −(n− 1)


,

are

1,−2, 3,−4, . . . , (−1)n−1n,

taking into account that the spectrum of

B̃2
n =



n −(n− 1)

−n 3n− 3 −2(n− 2)

−2(n− 1)
. . .

. . .

. . .
. . . −2(n− 2)

−3(n− 2) 4n− 6 −(n− 1)

−2(n− 1) 2n− 1


,
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contains the first n nonzero integer squares (each one with multiplicity 1). According to its spectral structure,

we may say that B̃2
n is of a Sylvester–Kac type. In Section 3, we show that a certain type of antibidiagonal

matrices has eigenvectors with nonzero entries in specific positions, the essential ingredient in the study

of controllability of dynamical leader–follower systems. As an application, a relation with particular chain

graphs and their Laplacian controllability is established in Section 4, representing the second goal of this

work.

2. The spectrum of An+1. In this section, we will prove the claim in the introduction about eigen-

values of the matrix An+1 as defined in (1.1).

Let v ∈ Rn+1 be defined by

v =
((

n
0

)
, −

(
n
1

)
,

(
n
2

)
, −

(
n
3

)
, . . . , (−1)

n (n
n

))⊺
.

Then, for λ = (a+ (m+ n) c)
2
, we have

vAn+1 = λv,

which means that v is a left-eigenvector of A corresponding to the eigenvalue λ.

Define the matrix T as

T =



(
n
0

)
−
(
n
1

) (
n
2

)
−
(
n
3

)
· · · (−1)

n (n
n

)
0 1 0 0 · · · 0

0 1 0 0

0 1
. . .

...
. . .

. . . 0

0 1


.

Its inverse follows easily:

T−1 =



(
n
0

) (
n
1

)
−
(
n
2

) (
n
3

)
· · · (−1)

n+1 (n
n

)
0 1 0 0 · · · 0

0 1 0
. . .

...
. . .

. . .
. . .

...
. . .

. . . 0

0 1


.

Then,

TAn+1T
−1 =



λ 0 · · · 0

−c
√
λ

0
... W

0


,
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where the n× n matrix W = [wij ] is given by

w11 = (a+ c (m− n+ 1)) (a+ c (m+ n− 1)) ,

wkk = (a (m+ k) c) (a+ (m+ n) c) + k (n− k + 1) c2, for 2 ≤ k ≤ n,

w12 =
1

2
c (n− 1)

(
−2 (a+ c) + an+ c

(
n2 − 2m+mn

))
,

wk,k+1 = −c (n− k) (a+ (m+ k) c) , for 2 ≤ k ≤ n− 1,

wk+1,k = −c (k + 1) (a+ (m+ n− k) c) , for 1 ≤ k ≤ n− 1.

For the bidiagonal matrix U of order n,

U =
1

n



1 n− 1

2 n− 2

3
. . .

. . . 3

n− 2 2

n− 1 1

n


,

the inverse is given by

U−1 =



(
n
1

)
/
(
n−1
0

)
−
(
n
2

)
/
(
n−1
0

) (
n
3

)
/
(
n−1
0

)
−
(
n
4

)
/
(
n−1
0

)
· · · −

(
n

n−1

)
/
(
n−1
0

) (
n
n

)
/
(
n−1
0

)(
n
2

)
/
(
n−1
1

)
−
(
n
3

)
/
(
n−1
1

) (
n
4

)
/
(
n−1
1

)
· · ·

(
n

n−1

)
/
(
n−1
1

)
−
(
n
n

)
/
(
n−1
1

)(
n
3

)
/
(
n−1
2

)
−
(
n
4

)
/
(
n−1
2

)
· · · −

(
n

n−1

)
/
(
n−1
2

) (
n
n

)
/
(
n−1
2

)
. . .

. . .
...

...(
n

n−1

)
/
(
n−1
n−2

)
−
(
n
n

)
/
(
n−1
n−2

)(
n
n

)
/
(
n−1
n−1

)


.

Since

U−1WU = An,

for λ = (a+ (m+ n)c)2, it follows

TAn+1T
−1 =



λ 0 · · · 0

−c
√
λ

0
... UAnU

−1

0


,

which proves our main claim. Therefore, we may conclude the next result.

Theorem 2.1. The eigenvalues of the matrix An+1 defined in (1.1) are

(a+ (m+ k)c)2 , for 0 ≤ k ≤ n .
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As a consequence, we have

det(An+1) = λ det(An) = (a+ (m+ n) c)
2
det(An),

and therefore

det(An+1) =

n∏
k=0

(a+ (m+ k) c)
2
.

3. Two antibidiagonal matrices. In this section, we consider the matrix Bn+1, for a,m, c ≥ 0 and

obtain its spectrum. We start by noticing that if λ2 is an eigenvalue of An, then either λ or −λ is an

eigenvalue of Bn. Henceforth, our task is to determine the sign of λ.

Let Pσ be the permutation matrix for the permutation

σ =


(
1 2 · · · n+1

2
n+1
2 + 1 · · · n n+ 1

1 3 · · · n n+ 1 · · · 4 2

)
if n is odd;(

1 2 · · · ⌈n+1
2 ⌉ ⌈n+1

2 ⌉+ 1 · · · n n+ 1

1 3 · · · n+ 1 n · · · 4 2

)
if n is even.

Set ℓ = ⌊n+2
2 ⌋. Then for bk = a+ (m+ k)c, 0 ≤ k ≤ n,

P t
σBn+1Pσ =



0 b0
bn 0 −nc

−c 0 b1
bn−1 0 −(n− 1)c

. . .
. . .

. . .

0 bℓ−1

bℓ 0 −ℓc

−(ℓ− 1)c ℓc


,

for n even and

P t
σBn+1Pσ =



0 b0
bn 0 −nc

−c 0 b1
bn−1 0 −(n− 1)c

. . .
. . .

. . .

0 −(ℓ+ 1)c

−(ℓ− 1)c 0 bℓ−1

bℓ −ℓc


,

if n is odd. For a more general setting, the reader is referred to [13]. It is well-known that the pre-

vious matrices can be symmetrized by taking off diagonal entries (i, i + 1) and (i + 1, i) both equal to√
(P t

σBn+1Pσ)i,i+1(P t
σBn+1Pσ)i+1,1, 1 ≤ i ≤ n+ 1 (see [33]).

• According to [20, Corollary 2], if n is even, the spectrum of any tridiagonal matrix of the first form

is a real (n+ 1)-tuple (µ1, µ2, . . . , µn+1) such that µ1 > −µ2 > · · · > (−1)nµn+1 ≥ 0.
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• For n odd, (P t
σBn+1Pσ)n+1,n+1 = −ℓc. In this case, we apply the result of [20] to −P t

σBn+1Pσ.

Therefore its eigenvalues µ1, µ2, . . . , µn+1 satisfy −µ1 > µ2 > · · · > (−1)n+1µn+1 ≥ 0.

As we observed previously, there are two possibilities for the eigenvalue λk: either a + (m+ k) c or

− (a+ (m+ k) c). The eigenvalue with the least module is a+mc. Taking into account that as the modules

of the remaining eigenvalues increase their signs alternate, we arrive to desired conclusion:

σ (Bn+1) =
{
(−1)

k
(a+ (m+ k) c) : 0 ≤ k ≤ n

}
.

If we now set a = m = 0 and c = 1 in Bn+1, we immediately obtain the spectrum of B̃n+1, namely,

σ(B̃n+1) = {1,−2, 3,−4, . . . , (−1)n(n+ 1)}.

In the sequel, we show that for a certain type of antibidiagonal matrices some eigenvectors’ entries are

always nonzero.

Theorem 3.1. Let

B =



bn
bn−1 −bn

. .
.

. .
.

b2
b1 −b2


,

where bi ̸= 0 for any i ∈ {1, 2, . . . , n}. Then the ⌈n+1
2 ⌉th entry of any eigenvector of B is nonzero.

Proof. Suppose on the contrary, that there exists an eigenvector x of B for the eigenvalue µ, such that

x⌈n+1
2 ⌉ = 0.

If n = 2k, then we first consider the (k + 1)th equation in Bx = µx

bkxk − bk+1xk+1 = µxk+1.

It is equivalent to xk = 0. Next from the kth equation, using the similar argument, we obtain xk+2 = 0. We

proceed in the same way, by considering first the (k + 1 − i)th and afterwards (k + 1 + i)th equation, for

2 ≤ i ≤ k − 1. The first one provides xk+1−i = 0, while the second one gives xk+1+i = 0 for 2 ≤ i ≤ k − 1.

In the end we obtain x = 0, which is a contradiction.

If n = 2k + 1, we start from the (k + 1)th equation and we obtain xk+2 = 0. Then we first observe the

(k + i + 1)th equation and after it the (k + 1 − i)th equation, for 1 ≤ i ≤ k − 1. In each step, we obtain

xk−i = xk+i+1 = 0, which altogether lead to x = 0. Thus, we have arrived at a contradiction, and the proof

is completed.

4. Controllability of chain graphs. In this section, we present our main motivation for studying the

matrices B̃n: the Laplacian controllability of some particular chain graphs.

Let G = (V (G), E(G)) be a simple graph (without loops or multiple edges) of order n = |V (G)|. We

use A(G) to denote its standard (0, 1)-adjacency matrix, D(G) for the diagonal matrix of vertex degrees and
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L(G) = D(G)−A(G) for the Laplacian matrix. Since L(G) is symmetric and semidefinite, we may assume

that its eigenvalues, indexed in nonincreasing order, are

µ1(G) ≥ · · · ≥ µn−1(G) ≥ µn(G) .

In addition, the least eigenvalue µn(G) is zero (associated with a constant eigenvector).

Following [31], we proceed with more details on controllability of specified dynamical control systems.

We consider a multiagent system with n agents modeled by a graph G. Let xi(t) be the state of the agent i

at time t, whose dynamics is described by the single integrator ẋi(t) = ui(t), where ui(t) is agent’s i control

input. To compute the control of the agent i, the information that it receives from its neighbours is also

taken into consideration. If we let ui(t) = −
∑

i∼j(xi(t)−xj(t)), then the single integrator dynamics can be

represented as the Laplacian dynamics of the form

ẋ(t) = −L(G)x(t).

The set V (G) is now disjoint union of the set of followers and the set of leaders, V (G) = ℓ ∪ f . This

designation induce the following partition of L(G):

L(G) =

[
Lf (G) lfℓ
l⊺fℓ Ll(G)

]
.

Since [
ẋf (t)

u̇(t)

]
= −

[
Lf (G) lfℓ
l⊺fℓ Ll(G)

] [
xf (t)

u(t)

]
,

we consider the leader–follower control system, where followers develop through the Laplacian based dynam-

ics

ẋf (t) = −Lf (G)xf (t)− lfℓ u(t),(4.2)

and u stands for the outer control signal imposed by the leaders’ states.

The system described by (4.2) is said to be controllable if it can be driven from any initial state to any

desired final state in finite time. In the study of the controllability of multiagent systems, the main problem

is to determine the locations of leaders under which the controllability can be realized. A multiagent system

(4.2) is said to be k leaders controllable if there exist minimum number of |ℓ| = k leaders to make (4.2)

controllable. Especially, if k = 1, the system (4.2) is called single leader controllable.

The following useful lemma was proven in [31].

Lemma 4.1. ([31]) The system (4.2) is controllable if and only if there is no nonzero vector v such that

the following equations are met simultaneously

Lf (G)v = λv(4.3)

lfℓ(G)⊺v = O.

Moreover, if Lf (G) does not have distinct eigenvalues, then (4.2) is not controllable.

We recall another important argument for further analysis of controllability.
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u1

u2

uh−1

uh

vh

vh−1

v2

v1

Figure 1. The half graph H2h = DNG(1, . . . , 1; 1, . . . , 1).

Lemma 4.2. ([31]) The system (4.2) is controllable if and only if there is no eigenvector of L(G) taking

0 on the elements corresponding to the leaders, i.e., if and only if L(G) and Lf (G) do not share any common

eigenvalues.

Next, we define the structure of half graphs. These are bipartite graphs and the corresponding colour

classes are partitioned into the h singletons
⋃h

i=1{ui} and
⋃h

i=1{vi}, respectively in such a way that a vertex

us is joined (by cross edges) to all vertices in
⋃h+1−s

k=1 {vk}, for 1 ≤ s ≤ h (see Figure 1).

These graphs are denoted by

DNG(1, 1, . . . , 1︸ ︷︷ ︸
h

; 1, 1, . . . , 1︸ ︷︷ ︸
h

).

The abbreviation DNG stands for double nested graph – an alternative name reflecting the double nesting

property: from left to right and from right to left, i.e., for any s, t ∈ {1, . . . , h− 1}, NG(us+1) ⊂ NG(us) and

NG(vt+1) ⊂ NG(vt) (by NG(u) we denote the set of neighbours of the vertex u). Since, a half graph is of

the order 2h we shortly denote it by H2h.

We start with a useful lemma, whose proof can be found in [28]. We use ∪̇ to denote the sum of two

multisets, i.e., the multiset in which the multiplicity of an element is the sum of its multiplicities in the

summands.

Lemma 4.3. [28, Lemma 4.1] Let A and B be symmetric matrices of the same order n, and let

C =

[
B A

A B

]
.

Then σ(C) = σ(A+B) ∪̇σ(B −A).

Remark 4.4. Since all the matrices C,A + B and B − A are symmetric, the multisets σ(C), σ(A +

B), σ(B−A) consist of respectively 2n, n and n eigenvalues. This fact shows that the corresponding sum of

Lemma 4.3 is obtained by “pasting” σ(B −A) to σ(B +A).

In the next step, we prove that a half graph has no multiple Laplacian eigenvalues. The Laplacian

matrix of such a graph is of the form:
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L(G) =

[
D −A

−A D

]
,

where

D =


h

h− 1
. . .

2

1

 and A =


1 1 . . . 1 1

1 1 . . . 1
...

... . .
.

1 1

1

 ,(4.4)

with respect to the vertex ordering u1, u2, . . . , uh, v1, v2, . . . , vh.

Remark 4.5. For the matrices A and D given in (4.4), A−1D = B̃h is the antibidiagonal matrix with

eigenvalues (−1)i−1i, for 1 ≤ i ≤ h.

Next, we determine σ(D −A) and σ(D +A).

Theorem 4.6. Let D,A be the matrices of order h ≥ 1 given in (4.4). Then σ(D −A) = {0, 1 . . . , h} \
{⌈h

2 ⌉} with the eigenvectors vi of the following form (up to nonzero scalar multiple)

• v0 = (1, 1, . . . , 1)⊺ for µ = 0;

• vi = (0, 0, . . . 0︸ ︷︷ ︸
i

, 1, 1, . . . , 1︸ ︷︷ ︸
h−2i

,−(h− 2i), 0, 0, . . . 0︸ ︷︷ ︸
i−1

)⊺ for µ = i, 1 ≤ i < ⌈h
2 ⌉;

• vi = (0, 0, . . . 0︸ ︷︷ ︸
h−i

, h+ 1− 2i, 1, 1, . . . , 1︸ ︷︷ ︸
2i−h−1

, 0, 0, . . . 0︸ ︷︷ ︸
h−i

)⊺ for µ = i, ⌈h
2 ⌉ < i ≤ h.

Proof. By direct computation.

To find σ(D +A), we consider the formula for the characteristic polynomial ϕD+A(t).

Theorem 4.7. Let D and A be the matrices of order h ≥ 1 given in (4.4). Then

ϕD+A(t) = t
(
t−

⌈h
2

⌉) h∏
i=1

(t− i)

 1

(t− 1)(t− h)
−

h∑
j=2

1

(t− (j − 1))(t− j)(t− (h+ 1− j))

 .(4.5)

Proof. Let H2h = DNG(1, 1, . . . , 1; 1, 1, . . . , 1) be a half graph. According to [3, Theorem 3.5], the

Laplacian characteristic polynomial of H2h up to sign is

t

h∏
i=1

(t− d∗i )(t− dh+1−i)

 1

p1
+ t

h∑
j=2

1

(t− dh+2−j)pj
+

1

t− d1

 ,

where d∗i = di = h + 1 − i, 1 ≤ i ≤ h and pj = (d∗j − t)(t − dh+1−j) = (h + 1 − j − t)(t − j). Taking into

account that ϕL(H2h)(t) = ϕD+A(t) · ϕD−A(t) and ϕD−A(t) =
∏

0≤i≤h

i̸=⌈h
2
⌉
(t− i) (by Theorem 4.6) we obtain
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ϕD+A(t) =
−t

∏h
i=1(t− (h+ 1− i))(t− i)

(
1

(h−t)(t−1) + t
∑h

j=2
1

(t−(j−1))(h+1−j−t)(t−j) +
1

t−h

)
∏

0≤i≤h

i̸=⌈h
2
⌉
(t− i)

=
−t

∏h
i=1(t− i)2

(
− t

(t−1)(t−h) − t
∑h

j=2
1

(t−(j−1))(t−j)(t−(h+1−j))

)
∏

0≤i≤h

i̸=⌈h
2
⌉
(t− i)

= t
(
t−

⌈h
2

⌉) h∏
i=1

(t− i)

 1

(t− 1)(t− h)
−

h∑
j=2

1

(t− (j − 1))(t− j)(t− (h+ 1− j))

 ,

as claimed.

Theorem 4.8. Let D,A be the matrices of order h ≥ 1 given in (4.4). Then:

• For any i ∈ {1, 2, . . . , ⌈h
2 ⌉ − 1, ⌈h

2 ⌉ + 2, . . . , h}, the matrix D + A has an eigenvalue in the interval

(i− 1, i);

• If h is an odd number, then D +A has an eigenvalue in the interval (⌈h
2 ⌉, ⌈

h
2 ⌉+ 1);

• If h is an even number, then D +A has an eigenvalue in the interval (⌈h
2 ⌉ − 1, ⌈h

2 ⌉);
• The largest eigenvalue of D +A is greater than h.

Proof. Any h ≥ 1 is of the form h = 2k or h = 2k − 1, for some k ≥ 1. Hence, ⌈h
2 ⌉ = k. We compute

the values of ϕD+A(t) at 0, 1, . . . , h using (4.5):

• ϕD+A(0) = (−1)h(2k)(h− 1)!;

• ϕD+A(1) = 2(−1)h−1(k − 1)(h− 3)!;

• For any 2 ≤ ℓ ≤ k − 1,

ϕD+A(ℓ) = 2ℓ(−1)h−ℓ(k − ℓ)

ℓ−2∏
i=1

(ℓ− i)

h−1−ℓ∏
i=ℓ+2

(i− ℓ)

h∏
i=h+2−ℓ

(i− ℓ);

• ϕD+A(k) = (−1)kk!(h− k)!;

• For any k + 1 ≤ ℓ ≤ h− 1,

ϕD+A(ℓ) = 2ℓ(−1)h−ℓ+1(ℓ− k)

h−1−ℓ∏
i=1

(ℓ− i)

ℓ−2∏
i=h+2−ℓ

(ℓ− i)

h∏
i=ℓ+2

(i− ℓ);

• ϕD+A(h) = (−2)(h− k)(h− 2)!.

Based on the obtained values, we conclude that ϕD+A(0), ϕD+A(1), . . . , ϕD+A(k − 1) alternate in sign.

Therefore, for any i ∈ {1, 2, . . . , k − 1}, we have ϕD+A(t) = 0, for some t ∈ (i − 1, i). A similar argument

holds for ϕD+A(k+1), ϕD+A(k+2), . . . , ϕD+A(h) and consequently for any i ∈ {k+2, k+3, . . . , h}, we have
ϕD+A(t) = 0, for some t ∈ (i − 1, i). Also, if h is odd, then ϕD+A(k) and ϕD+A(k + 1) differ in sign. If

h is even, the same holds for ϕD+A(k − 1) and ϕD+A(k). Therefore, there is an eigenvalue in the interval

(k, k + 1) (resp. (k − 1, k)) if h is odd (resp. if h is even).

So far, we proved that, for any h, D + A has h − 1 eigenvalues less than h. Since ϕD+A(t) is a monic

polynomial and ϕD+A(h) < 0, we easily conclude that the largest eigenvalue of D +A is greater than h.

Taking into account Theorems 4.6 and 4.8, we conclude that H2h has no multiple Laplacian eigenvalues.

The structure of the corresponding eigenvectors is given in the following theorem.
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Theorem 4.9. Let G = H2h, h ≥ 1 be a half graph, D and A matrices given in (4.4). Then the

eigenvectors of L(G) are either of the form α(v⊺
j ,v

⊺
j )

⊺, where vj is an eigenvector of D−A, or α(v⊺
c ,−v⊺

c )
⊺

where vc is an eigenvector of D +A, for α ∈ R \ {0}.

Remark 4.10. In what follows we point out that the integral part of the spectrum of half graphs of order

2h coincides with the spectrum of antiregular graphs of order h. The set of vertex degrees of an antiregular

graph of order h consists of h − 1 distinct integers. Let Tn be an antiregular graph of order n. Then Tn

is a threshold graph that is generated either by the binary sequence (01)(01) · · · (01)︸ ︷︷ ︸
k

if n = 2k or by the

binary sequence (021)(01) · · · (01)︸ ︷︷ ︸
k

if n = 2k+1. (For more details on the generating procedure, spectral and

structural properties of threshold graphs, the reader is referred to [2, 5]). According to the vertex ordering,

where the vertices are ordered according to their vertex degrees in non-increasing order, the Laplacian matrix

of Tn is

L(Tn) = D′
2k −

[
Jk − Ik Ak

Ak Ok

]
,(4.6)

where D′
2k = diag(2k − 1, . . . , k, k, . . . 2, 1), if n = 2k. Otherwise,

L(Tn) = D′
2k+1 −

[
Jk − Ik A′

k×(k+1)

A′⊺
k×(k+1) Ok+1

]
,(4.7)

where A′
k×(k+1) =


1 1 . . . 1 1

1 1 . . . 1
...

... . .
.

1 1

 and D′
2k+1 = diag(2k, . . . , k, k, . . . 2, 1), if n = 2k+1. It is easy to see

that if G = H2h, then D−A = L(Th). Therefore, all the Laplacian eigenvalues of Th are also the eigenvalues

of H2h and the corresponding eigenvectors are of the form (v⊺,v⊺)⊺, where v is the eigenvector of Th for the

same eigenvalue. In the light of this connection, we see that the results of Theorem 4.6 coincide with those

obtained in [1], taking into account the different vertex ordering.

In [29] one can find how the Laplacian spectrum and eigenspaces of a threshold graph are modified

by (0, 1)-operations in its binary generating procedure. Also [21] explains how to identify the Laplacian

eigenvalues of a threshold graph from its Laplacian matrix.

Lemma 4.11. Let G = H2h and v = (v1, v2, . . . , v2h)
⊺ be an eigenvector of G associated with µ ∈

σ(D +A). Then v⌈h+1
2 ⌉ ̸= 0.

Proof. According to Theorem 4.9, we may assume that v = (x⊺,−x⊺)⊺, where x = (x1, x2, . . . , xh) ̸= 0

and (D + A)x = µx. Suppose on the contrary that x⌈h+1
2 ⌉ = 0. From (D + A)x = µx we obtain x =

A−1(µI −D)x, i.e., x is an eigenvector of the antibidiagonal matrix A−1(µI −D) for the eigenvalue λ = 1.

Taking into account that
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A−1(µI −D) =



µ− 1

µ− 2 −(µ− 1)

. .
.

. .
.

µ− (h− 1)

µ− h −(µ− (h− 1))


,

and that µ /∈ Z, it follows that µ− i ̸= 0. Now the result follows by Theorem 3.1.

Finally, we are in the position to prove the main result of this section.

Theorem 4.12. Let G = H2h be a half graph. Then the system (4.2) modeled by G is a single leader

controllable, with vertices of degree ⌈h
2 ⌉ representing the leaders.

Proof. If µ is an integer eigenvalue of G and (x⊺,x⊺)⊺ is the corresponding eigenvector, then according

to Theorem 4.6 we have x⌈h+1
2 ⌉ ̸= 0. If µ is a non-integer eigenvalue, then by Lemma 4.11, the ⌈h+1

2 ⌉th entry

in the corresponding eigenvector is nonzero. By Lemma 4.2 we conclude that the system (4.2) modeled by

G is a single leader controllable with vertices of degrees⌈h
2 ⌉ in the role of leaders.

Example 4.13. For G = H10, the system (4.2) is a single leader controllable. The leader ℓ can be any of

the vertices u3, v3. In Figure 2 the leader is ℓ = u3 and it is connected to the followers v1, v2, v3.

u1

u2

ℓ = u3

u4

u5

v1

v2

v3

v4

v5

Figure 2. A single leader controllable system modelled by H10.
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[15] C.M. da Fonseca and E. Kılıç. A new type of Sylvester–Kac matrix and its spectrum. Linear Multilinear Algebra,

69:1072–1082, 2021.
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