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LINEAR MAPS PRESERVING THE LORENTZ SPECTRUM: THE 2× 2 CASE∗

M. I. BUENO† , SUSANA FURTADO‡ , AELITA KLAUSMEIER§ , AND JOEY VELTRI¶

Abstract. In this paper, a complete description of the linear maps φ : Wn → Wn that preserve the Lorentz spectrum is

given when n = 2, and Wn is the space Mn of n×n real matrices or the subspace Sn of Mn formed by the symmetric matrices.

In both cases, it has been shown that φ(A) = PAP−1 for all A ∈W2, where P is a matrix with a certain structure. It was also

shown that such preservers do not change the nature of the Lorentz eigenvalues (that is, the fact that they are associated with

Lorentz eigenvectors in the interior or on the boundary of the Lorentz cone). These results extend to n = 2 those for n ≥ 3

obtained by Bueno, Furtado, and Sivakumar (2021). The case n = 2 has some specificities, when compared to the case n ≥ 3,

due to the fact that the Lorentz cone in R2 is polyedral, contrary to what happens when it is contained in Rn with n ≥ 3. Thus,

the study of the Lorentz spectrum preservers on Wn = Mn also follows from the known description of the Pareto spectrum

preservers on Mn.
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1. Introduction. Given a matrix A in Mn, the algebra of n × n matrices with real entries, and a

closed convex cone K ⊆ Rn, the eigenvalue complementarity problem consists of finding a scalar λ ∈ R and

a nonzero vector x ∈ Rn such that

x ∈ K, Ax− λx ∈ K∗, xT (A− λIn)x = 0,

where

K∗ := {y ∈ Rn : xT y ≥ 0, ∀x ∈ K}

denotes the (positive) dual cone of K. If K = Rn, then the eigenvalue complementarity problem reduces to

the usual eigenvalue problem for the matrix A.

The eigenvalue complementarity problem originally arose in the solution of a contact problem in me-

chanics and has since been used in other applications in physics, economics, and engineering, including, for

example, the stability of dynamical systems [4].

In this work, we consider the complementarity eigenvalue problem associated with the Lorentz cone,

defined, for n ≥ 2, by

Kn := {(x, xn) ∈ Rn−1 × R : ||x|| ≤ xn},

∗Received by the editors on January 30, 2022. Accepted for publication on May 16, 2022. Handling Editor: K.C. Sivakumar.

Corresponding Author: Susana Furtado
†Department of Mathematics, University of California Santa Barbara, Santa Barbara, CA 93106, USA (mbueno@ucsb.edu).

The work of the first, third, and fourth authors was partially supported by the NSF grant DMS-1850663. This publication is

also part of the “Proyecto de I+D+i PID2019-106362GB-I00 financiado por MCIN/AEI/10.13039/501100011033”.
‡CEAFEL and Faculdade de Economia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-464 Porto, Portugal,

(sbf@fep.up.pt). The work of the second author was partially supported by FCT-Fundação para a Ciência e Tecnologia, under

project UIDB/04721/2020.
§Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA (aelita@umich.edu).
¶Department of Mathematics, Purdue University, West Lafayette, IN 47906, USA (jveltri@purdue.edu).

mailto:mbueno@ucsb.edu
mailto:sbf@fep.up.pt
mailto:aelita@umich.edu
mailto:jveltri@purdue.edu


Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 317-330, May 2022.

M.I. Bueno et al. 318

also known as the ice-cream cone. By ||x|| we denote the 2-norm of x. If n is clear from the context, we may

simply write K instead of Kn. The Lorentz cone is widely used in optimization theory as an instance of a

second-order cone, which has special importance in linear and quadratic programming [1].

It is well known that the Lorentz cone is self-dual, that is, (Kn)∗ = Kn. Therefore, for A ∈ Mn, the

eigenvalue complementarity problem relative to Kn consists of finding a scalar λ ∈ R and a nonzero vector

x ∈ Rn such that

(1.1) x ∈ Kn, (A− λI)x ∈ Kn, xT (A− λI)x = 0,

where, here and throughout, I denotes the identity matrix of the appropriate order. By Corollary 2.1 in [5],

it is guaranteed that (1.1) always admits a solution.

If a scalar λ and a nonzero vector x satisfy (1.1), we call λ a Lorentz eigenvalue of A and x an associated

Lorentz eigenvector of A. We call the set of all Lorentz eigenvalues of A the Lorentz spectrum of A and denote

it by σK(A). For brevity, we write L-eigenvalue, L-eigenvector, and L-spectrum instead of Lorentz eigenvalue,

Lorentz eigenvector, and Lorentz spectrum, respectively. We classify the L-eigenvalues of a matrix A ∈Mn

by whether they correspond to L-eigenvectors in the interior or on the boundary of the Lorentz cone. In the

first case, we call them interior L-eigenvalues, and in the second case, we call them boundary L-eigenvalues.

We denote the set of interior L-eigenvalues by σintK (A) and the set of boundary L-eigenvalues by σbdK (A).

The roots of the characteristic polynomial of a matrix A ∈ Mn will be called the standard eigenvalues

of A, to distinguish them from the L-eigenvalues.

In [3] the authors focused on the problem of studying the linear maps φ : Wn → Wn that preserve the

L-spectrum, that is, such that σK(φ(A)) = σK(A), for all A ∈Wn, where Wn is a subspace of Mn and n ≥ 3.

The authors started by characterizing such maps φ for the following subspaces Wn of Mn: the subspace of

diagonal matrices; the subspace of block-diagonal matrices Ã⊕ [a], where Ã ∈Mn−1 is symmetric; and the

subspace of block-diagonal matrices Ã⊕ [a], where Ã ∈Mn−1 is a generic matrix. In each of these cases, it

was shown that the maps should be what were called standard maps, that is, maps of the form φ(A) = PAQ

for all A ∈Wn or φ(A) = PATQ for all A ∈Wn, for some matrices P,Q ∈Mn. However, when Wn is either

Mn or the subspace Sn of symmetric matrices in Mn, just the standard linear maps φ : Wn → Wn that

preserve the L-spectrum were described, and it was conjectured that linear maps that are not standard do

not preserve the L-spectrum. (See also the recent paper [7] in which the linear preservers φ : Mn →Mn are

investigated.)

The goal of this paper is to consider the case n = 2. The main differentiating feature between the cases

n ≥ 3 and n = 2 is that the Lorentz cone in R2 is polyhedral, i.e., it can be expressed as the intersection of a

finite number of half-spaces. This implies that the L-spectrum of a matrix in M2 is always finite, contrary

to what happens for matrices of order n ≥ 3, which can have infinite L-spectrum.

To our knowledge, the only polyhedral cone whose spectral linear preservers on Mn have been studied

in depth in the literature is the Pareto cone [2]. It can be easily verified that, for n = 2, the Pareto cone is

a clockwise rotation of the Lorentz cone by an angle of π
4 . So, a description of the L-spectrum preservers on

M2 follows from the one of the Pareto spectrum preservers on Mn given in [2], taking n = 2, and reciprocally.

In this paper, we give an independent proof of the characterization of the linear maps φ : W2 →W2 that

preserve the L-spectrum when W2 = M2 and, in addition, consider the new case W2 = S2, the subspace of

M2 of symmetric matrices. Also, for both cases of W2, we show that the nature of the L-eigenvalues (being
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associated with L-eigenvectors in the interior or on the boundary of the Lorentz cone) is not changed by

the L-spectrum preservers. To prove our results, we introduce techniques that explore the knowledge of the

Lorentz spectrum of matrices in M2 and hope that the ideas behind our proofs can be extended to complete

the study of the L-spectrum preservers studied in [3] for matrices in Mn, with n ≥ 3, in which case no

connection exists with the Pareto cone. It follows from our characterization that such preservers on M2 are

standard and that, in the case W2 = M2, their form is less restrictive than the one for n ≥ 3. (See Theorem

2.4 where the result for n ≥ 3 is recalled.)

We next give the main results of this paper. Recall that M2 denotes the space of 2× 2 real matrices and

S2 denotes the subspace of M2 of symmetric matrices.

Theorem 1.1. Let φ : W2 → W2 be a linear map, with W2 ∈ {M2, S2}. Then, φ preserves the L-

spectrum if and only if φ(A) = PAP−1 for all A ∈W2, or φ(A) = QAQ−1 for all A ∈W2, where

(1.2) P =

[
α β

β α

]
and Q =

[
−α −β
β α

]
,

for some α, β ∈ R with α2 − β2 = 1, and β = 0 if W2 = S2.

Corollary 1.2. Let φ : W2 →W2 be a linear map. If φ preserves the L-spectrum, then, for all A ∈W2,

σintK (A) = σintK (φ(A)) and σbdK (A) = σbdK (φ(A)).

The paper is organized as follows. In Section 2, we introduce some known results in the literature

regarding the L-spectrum of a matrix A ∈Mn and its linear preservers. In Section 3, we obtain a description

of the L-eigenvalues of a generic matrix in M2 and give some related results that will be helpful in the proof

of Theorem 1.1. In Section 4, we deduce some conditions that should be satisfied by the images of matrices

in certain bases for S2 and M2, respectively, under an L-spectrum linear preserver. Finally, in Section 5, we

prove Theorem 1.1 and Corollary 1.2. We conclude the paper with some final remarks in Section 6.

2. Background. In this section, we present some results known in the literature concerning the char-

acterization of the L-spectrum of a matrix in Mn and properties of linear preservers of the L-spectrum. We

also introduce some related useful concepts and notation.

2.1. L-spectrum of a matrix. We first observe that

σK(A) = σintK (A) ∪ σbdK (A),

where this union is not necessarily disjoint. (Recall the definitions of interior and boundary eigenvalues in

the introduction.)

We also note that any L-eigenvector [x xn]T of A ∈ Mn, with xn ∈ R, can be normalized to have

xn = 1 while remaining in the Lorentz cone. Such a normalized L-eigenvector corresponds to an interior

L-eigenvalue if ||x|| < 1 and to a boundary L-eigenvalue if ||x|| = 1.

The next characterization of interior and boundary L-eigenvalues of a matrix A ∈Mn is known [6].

Proposition 2.1. Let A ∈Mn. Then,

1. λ is an interior L-eigenvalue of A if and only if λ is a standard eigenvalue of A associated with an

eigenvector in the interior of Kn.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 317-330, May 2022.

M.I. Bueno et al. 320

2. λ is a boundary L-eigenvalue of A if and only if there is some s ≥ 0 and a vector x ∈ Rn−1, with

||x|| = 1, such that

(A− λI)

[
x

1

]
= s

[
−x
1

]
.

From Proposition 2.1, we have the following useful observation.

Corollary 2.2. Let A ∈Mn. Then, λ ∈ σintK (A) if and only if −λ ∈ σintK (−A).

In contrast with interior L-eigenvalues, a boundary L-eigenvalue may or may not be a standard eigen-

value. A surprising fact, compared with the classical eigenvalue problem, is that a matrix may have infinitely

many boundary L-eigenvalues, though this does not occur in the 2× 2 case since the Lorentz cone for n = 2

is a polyhedral cone. (See [6] for a proof that there are only finitely many complementarity eigenvalues

relative to a polyhedral cone.)

2.2. Linear preservers of the L-spectrum. In [3] the following important result was shown for

matrices of size n ≥ 3, although the presented proof is also valid for 2× 2 matrices. By Wn we denote any

of the spaces Mn or Sn, the subspace of symmetric matrices.

Proposition 2.3 ([3]). Let n ≥ 2. If φ : Wn →Wn is a linear map preserving the L-spectrum, then φ

is bijective and φ(I) = I.

An immediate consequence of Proposition 2.3 is that if φ : Wn → Wn is a linear map preserving the

L-spectrum, then φ−1 also preserves the L-spectrum.

For completeness and for purpose of comparison with our main result, Theorem 1.1, we next state the

characterization obtained in [3] of the standard linear maps φ : Wn → Wn that preserve the L-spectum,

when n ≥ 3.

Theorem 2.4 ([3]). Let n ≥ 3 and let φ : Wn → Wn be a standard map. Then, φ preserves the

L-spectrum if and only if there exists an orthogonal matrix Q ∈Mn−1 such that

φ(A) = (Q⊕ [1])A(QT ⊕ [1]),

for all A ∈Wn.

3. L-spectrum of 2 × 2 matrices. In the next theorem, we present a characterization of the L-

eigenvalues of 2× 2 matrices and then we give some related properties.

Theorem 3.1. Let

(3.3) A =

[
a b

c d

]
∈M2.

Then,

1. a is an interior L-eigenvalue of A if and only if b = 0 and either a = d or |a− d| < |c|;
2. λ ∈ R \ {a} is an interior L-eigenvalue of A if and only if

λ ∈
{
a+d±

√
(a−d)2+4bc

2

}
⊆ R and |b| < |a− λ|;

3. λ is a boundary L-eigenvalue of A if and only if one of the following holds:
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(a) λ = (a+d)+(b+c)
2 and a− d ≤ c− b,

(b) λ = (a+d)−(b+c)
2 and a− d ≤ b− c.

Proof. Conditions 1 and 2 follow immediately from the fact that, by Proposition 2.1, λ is an interior

L-eigenvalue of A if and only if there is some x ∈ R, with |x| < 1, such that

(3.4) 0 = (A− λI)

[
x

1

]
=

[
(a− λ)x+ b

cx+ (d− λ)

]
.

Now we show Condition 3. By Proposition 2.1, we have that λ is a boundary L-eigenvalue of A if and only

if there is some s ≥ 0 and x ∈ {−1, 1} such that[
a− λ b

c d− λ

] [
x

1

]
= s

[
−x
1

]
⇔

[
(a− λ+ s)x+ b

cx+ (d− λ− s)

]
= 0.

When x = 1, this is equivalent to {
λ = a+ b+ s

λ = c+ d− s for some s ≥ 0,

that is,

λ =
a+ b+ c+ d

2
and a− d ≤ c− b.

When x = −1, we get {
λ = a− b+ s

λ = d− c− s for some s ≥ 0,

that is,

λ =
a+ d− b− c

2
and a− d ≤ b− c.

Based on the characterization of the boundary L-eigenvalues of a matrix in M2 given in Theorem 3.1,

we introduce the following definitions.

Definition 3.2. Let A ∈ M2. We say that λ is a type + boundary L-eigenvalue of A (resp. a type –

boundary L-eigenvalue of A) if Condition 3a (resp. Condition 3b) in Theorem 3.1 holds.

Moreover, we say that a boundary L-eigenvalue λ of A is strict if λ is of type + and a− d < c− b, or if

λ is of type − and a− d < b− c. If λ is a boundary L-eigenvalue of both type + and type −, then λ is strict

if at least one of the previous strict inequalities holds.

We next present some immediate consequences of Theorem 3.1. We first introduce two useful concepts.

Definition 3.3. Let A ∈M2 be as in (3.3). The trace of A, denoted by tr(A), is the sum of the diagonal

entries of A, that is, tr(A) = a+d. The anti-trace of A, denoted by antitr(A), is the sum of the antidiagonal

entries of A, that is, antitr(A) = b+ c.

Corollary 3.4. Let A ∈ M2. If A has a type + boundary L-eigenvalue λ1 and a type − boundary

L-eigenvalue λ2, then

1. λ1 + λ2 = tr(A).

2. |λ1 − λ2| = | antitr(A)|.
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Corollary 3.5. Let A ∈ M2 be as in (3.3) and let λ be a boundary L-eigenvalue of A. Then, λ is a

standard eigenvalue of A if and only if A has a non-strict boundary L-eigenvalue.

Proof. By Theorem 3.1, if λ is a type + boundary L-eigenvalue of A, then

λ =
a+ d+ b+ c

2
and a− d ≤ c− b,

and if λ is a type − boundary L-eigenvalue of A, then

λ =
a+ d− b− c

2
and a− d ≤ b− c.

An elementary calculation shows that, in any case,

det(A− λI) =
1

4

(
(b− c)2 − (a− d)2

)
,

which is zero if and only if |a− d| = |b− c|. Thus, the claim follows.

The next result says that if we change the signs of both b and c in a matrix A as in (3.3), then the

interior and the boundary L-eigenvalues of A get preserved.

Corollary 3.6. Let A ∈M2 and B = TAT , where

(3.5) T = [−1]⊕ [1] .

Then A and B have the same L-spectrum. Moreover, we have σintK (A) = σintK (B) and σbdK (A) = σbdK (B).

Additionally, λ is a type + boundary L-eigenvalue of A if and only if λ is a type − boundary L-eigenvalue

of B.

By using Theorem 3.1, we next give the explicit L-spectrum of the matrices in a basis of M2 and S2,

which will be used in the characterization of the linear maps preserving the L-spectrum. In each case,

the L-spectrum is presented as the union of two sets, namely, σintK (A) ∪ σbdK (A). Here and throughout, for

i, j ∈ {1, 2}, Eij denotes the 2× 2 matrix with all entries 0 except the one in position (i, j) which is 1.

Corollary 3.7. We have

• σK(E11) = {0} ∪ ∅
• σK(E21) = {0} ∪ {1/2}
• σK(E22) = {1} ∪ {1/2}
• σK(E12 + E21) = ∅ ∪ {−1, 1}

4. Images of matrices in a basis of W2 under an L-spectrum preserver. Let us consider a linear

map φ : W2 →W2 preserving the L-spectrum, with W2 ∈ {M2, S2}. In this section, we obtain a generic form

that φ(A) should have when A is a matrix in a specific basis of W2, namely, the basis {E11, E22, E12 +E21}
if W2 = S2, and the basis {E11, E22, E21, E12 +E21} if W2 = M2. For E12 +E21, the possible images under

φ are exactly determined.

We begin with a result which shows that under certain conditions, a linear preserver of the L-spectrum

preserves the interior and boundary L-eigenvalues. This will be key in proving the remaining results.

Lemma 4.1. Let φ : W2 →W2 be a linear map that preserves the L-spectrum. If A ∈W2 has two distinct

strict boundary L-eigenvalues, then

(4.6) σintK (A) = σintK (φ(A)) 6= ∅ and σbdK (A) = σbdK (φ(A)).
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Proof. Let A be as in (3.3). Since A has two distinct strict boundary L-eigenvalues, say λ1 and λ2, by

Theorem 3.1 we have a − d < c − b and a − d < b − c. This implies that −A does not have any boundary

L-eigenvalues and, consequently, has at least one interior L-eigenvalue since every matrix has a nonempty

L-spectrum. Hence, we have

σbdK (A) = {λ1, λ2}, σintK (−A) 6= ∅, and σbdK (−A) = ∅.

Taking into account Corollary 2.2 and the fact that, by Corollary 3.5, λ1 and λ2 are not standard eigenvalues

of A, we have

σintK (A) = −σintK (−A), σintK (A) 6= ∅, and σintK (A) ∩ {λ1, λ2} = ∅.

Since φ preserves the L-spectrum, for i ∈ {1, 2} we should have λi ∈ σbdK (φ(A)), as otherwise λi ∈ σintK (φ(A)),

which implies, by Corollary 2.2, that −λi ∈ σintK (φ(−A)), a contradiction since −λi is not an L-eigenvalue

of −A. Then, since φ(A) has two boundary L-eigenvalues, which are the boundary L-eigenvalues of A, it

follows that the interior L-eigenvalues of A are also interior L-eigenvalues of φ(A).

Before we fulfill the main purpose of this section, we state a simple consequence of Lemma 4.1 that will

be used in the proof of Theorem 1.1 in the next section.

Lemma 4.2. Let φ : W2 → W2 be a linear map that preserves the L-spectrum. Then, φ(E11 + E21) is

singular.

Proof. Let ε > 0 and Aε := (−1 − ε)E11 − E21. The matrix Aε has two distinct strict boundary L-

eigenvalues, implying, by Lemma 4.1, that φ(Aε) has the same interior L-eigenvalues as Aε. Since 0 is an

interior L-eigenvalue of Aε, φ(Aε) is singular. By continuity, φ(−E11 − E21) is singular, and hence, so is

φ(E11 + E21).

4.1. Necessary forms for the images of a basis.

Lemma 4.3. Let φ : W2 →W2 be a linear map that preserves the L-spectrum. Then,

φ(E11) =

[
1− a ∓

√
a2 − a

±
√
a2 − a a

]
, φ(E22) =

[
a ±

√
a2 − a

∓
√
a2 − a 1− a

]
,

for some a ≤ 0, and

φ(E12 + E21) =

[
m r

−r ± 2 −m

]
,

for some m, r ∈ R. In particular, if W2 = S2, then

φ(E11) = E11, φ(E22) = E22,

and

φ(E12 + E21) =

[
m r

r −m

]
,

for some m ∈ R and r ∈ {−1, 1}.

Proof. For ε ∈ R \ {0}, let Gε := E22 + ε(E12 +E21), whose standard eigenvalues are (1±
√

1 + 4ε2)/2.

By Theorem 3.1,

σintK (Gε) =

{
1 +
√

1 + 4ε2

2

}
and σbdK (Gε) =

{
1

2
± ε
}
,
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and both boundary L-eigenvalues are strict. Thus, by Lemma 4.1, (4.6) holds with A replaced by Gε. Let

φ(E22) :=

[
a b

c d

]
and φ(E12 + E21) :=

[
m r

p q

]
.

Then, by Corollary 3.4 applied to φ(Gε),

a+ d+ ε(m+ q) = 1, b+ c+ ε(r + p) = ±2ε.

Since ε 6= 0 is arbitrary, we have

a+ d = 1, m+ q = 0, b+ c = 0, r + p = ±2.

Hence,

φ(E22) =

[
a b

−b 1− a

]
and φ(E12 + E21) =

[
m r

−r ± 2 −m

]
.

From the obtained form of φ(E22), we conclude, by Theorem 3.1, that 1 is not a boundary L-eigenvalue of

φ(E22). Since σK(φ(E22)) = σK(E22) = {1, 1/2}, it follows that 1 is an interior L-eigenvalue of φ(E22). This

implies that

det(φ(E22)− I) = b2 − a2 + a = 0.

By Theorem 3.1, b 6= 0. Moreover, |b| < |a− 1|, i.e., b2 < (a− 1)2. Since b2 = a(a− 1) ≥ 0, we get a ≤ 0,

φ(E22) =

[
a ±

√
a2 − a

∓
√
a2 − a 1− a

]
, and

(4.7) φ(E11) = φ(I − E22) = I − φ(E22) =

[
1− a ∓

√
a2 − a

±
√
a2 − a a

]
,

where the second equality in (4.7) follows from Proposition 2.3.

The particular claim in the statement for W2 = S2 follows since φ(E11) and φ(E12 +E21) are symmetric

and a ≤ 0.

Notice that, if φ : W2 →W2 is a linear map preserving the L-spectrum, by Lemma 4.3, φ preserves the

trace of E11, E22, and E12 +E21, and therefore it preserves the trace of all matrices in S2. Also, observe that

φ preserves the modulus of the anti-trace of E11, E22, and E12 +E21. Moreover, if φ preserves the anti-trace

of E12 + E21, then φ preserves the anti-trace of all matrices in S2; otherwise, the anti-traces of A and φ(A)

have opposite signs for all A ∈ S2. These results are contained in the following corollary and extended to

the case φ : M2 →M2.

Corollary 4.4. Let φ : W2 →W2 be a linear map that preserves the L-spectrum. Then,

tr(A) = tr(φ(A)) for all A ∈W2,

and either

antitr(A) = antitr(φ(A)) for all A ∈W2,

or

antitr(A) = − antitr(φ(A)) for all A ∈W2.
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Proof. Let A be as in (3.3) and let

φ(A) :=

[
r s

p q

]
.

Let δ be an arbitrary real number such that

a− d < δ + c− b, a− d < δ + b− c, and b+ c 6= 2δ.

Let Aδ = A+ δE22 − δ(E12 + E21). Notice that Aδ has two strict boundary L-eigenvalues, namely

(4.8) λ1 =
a+ d+ b+ c− δ

2
and λ2 =

a+ d− b− c+ 3δ

2
,

which are distinct since b + c 6= 2δ. Thus, by Lemma 4.1, λ1 and λ2 are also boundary L-eigenvalues of

φ(Aδ). Taking into account the form of φ(δE22− δ(E12 +E21)) that follows from Lemma 4.3, the boundary

L-eigenvalues of φ(Aδ) are

(4.9) β1 =
r + q + s+ p− δ

2
, β2 =

r + q − s− p+ 3δ

2
,

if antitr(φ(E12 + E21)) = 2, and

(4.10) β1 =
r + q + s+ p+ 3δ

2
, β2 =

r + q − s− p− δ
2

,

if antitr(φ(E12 + E21)) = −2. As {λ1, λ2} = {β1, β2}, we have

λ1 + λ2 = β1 + β2,

and

λ1 − λ2 = β1 − β2 or λ1 − λ2 = −(β1 − β2).

Since λ1 + λ2 = a+ d+ δ and β1 + β2 = r + q + δ, we get a+ d = r + q. We also have λ1 − λ2 = b+ c− 2δ.

Moreover, β1 − β2 = s + p − 2δ if (4.9) holds, and β1 − β2 = s + p + 2δ if (4.10) holds. In the first case,

λ1 − λ2 = −(β1 − β2) only for δ = b+c+s+p
4 . Thus, for δ 6= b+c+s+p

4 , we have λ1 − λ2 = β1 − β2, implying

b+ c = s+ p. In the second case, λ1 − λ2 = β1 − β2 only for δ = b+c−s−p
4 . Thus, for δ 6= b+c−s−p

4 , we have

λ1 − λ2 = −(β1 − β2), implying b+ c = −(s+ p). Since δ is an arbitrary number satisfying (4.8), it ranges

over an infinite set, and hence the claim follows.

We next describe the generic structure of the image of E21 under a linear map preserving the L-spectrum.

Lemma 4.5. Let φ : M2 →M2 be a linear map that preserves the L-spectrum. Then,

φ(E21) =

[
±
√
b2 + b ∓b

±(b+ 1) ∓
√
b2 + b

]
, b ≥ 0.

Proof. By Corollary 4.4,

φ(E21) =

[
a b

−b± 1 −a

]
,

for some a, b ∈ R. By Theorem 3.1, this implies σbdK (φ(E21)) ⊆ {−1/2, 1/2}. On the other hand, by Corollary

3.7, σK(E21) = {0, 1/2} . Thus, since φ preserves the L-spectrum, 0 is an interior L-eigenvalue of φ(E21).

Hence, by Theorem 3.1, either a = b = 0, or |b| < |a| (i.e., b2 < a2). Since φ(E21) is singular, we also have

a2 = b2 ∓ b. Thus, a2 = b2 + b if b > 0 and a2 = b2 − b if b < 0, implying the claim.
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4.2. Explicit image of E12 +E21. The following two lemmas will be used in determining φ(E12 +E21)

under a linear L-spectrum preserver φ. By || · ||F we denote the Frobenius norm of a matrix.

Lemma 4.6. Let A ∈ M2 be as in (3.3). Suppose A has two distinct standard real eigenvalues and at

least one of them, say λA, is an interior L-eigenvalue. Moreover, suppose that λA 6= a. Then, for any ε > 0,

there is some δ > 0 such that any B ∈ M2 with ||B − A||F < δ has an interior L-eigenvalue λB satisfying

|λA − λB | < ε. That is, sufficiently small perturbations of A have an interior L-eigenvalue arbitrarily close

to λA.

Proof. Suppose that λA is an interior L-eigenvalue of A. By Theorem 3.1, since λA 6= a, we have

|b| < |a−λA|, that is, b2− (a−λA)2 < 0. Since λA depends continuously on the entries of A, any sufficiently

small perturbation of A, say

Aε :=

[
aε bε
cε dε

]
,

has a real eigenvalue λεA arbitrarily close to λA and such that λεA 6= aε and |bε| < |aε−λεA|. Note that, since

A has distinct real eigenvalues, for ε sufficiently small, both eigenvalues of Aε are also distinct and real. By

Theorem 3.1, λεA is an interior L-eigenvalue of Aε.

Lemma 4.7. Let λ ∈ {−1, 1}. Then, there is some ε > 0 such that, in any neighborhood of E12 + E21,

there is a matrix with no L-eigenvalue at distance from λ smaller than ε.

Proof. Let H := E12 + E21. For any δ ∈ R, the matrices

(4.11) Hδ := H + δ

[
1 0

0 −1

]
,

and −Hδ have standard eigenvalues β1 = −
√
δ2 + 1 and β2 =

√
δ2 + 1. Notice that, for i ∈ {1, 2},

(4.12) 1 ≥ (δ − βi)2 ⇔ 1− δ2 − β2
i ≥ −2δβi ⇔ δ2 ≤ δβi,

where the last inequality follows from the second one by noting that β2
i = δ2 + 1.

Suppose that λ = 1 and let δ > 0. From (4.12), |1| ≥ |δ − β2|, implying by Theorem 3.1 that β2 is

not an interior L-eigenvalue of Hδ. On the other hand, Hδ has no boundary L-eigenvalues. Hence, the only

L-eigenvalue of Hδ is β1 whose distance from 1 is at least 2, regardless of the value of δ > 0.

With a similar argument, we can see that, for δ < 0, the only L-eigenvalue of −Hδ is β2 whose distance

from −1 is at least 2, regardless of the value of δ < 0.

Thus, for each λ ∈ {1,−1}, there is some δ ∈ R such that one of the matrices Hδ or −Hδ has no

L-eigenvalues arbitrarily close to λ.

Lemma 4.8. Suppose that φ : W2 →W2 is a linear map that preserves the L-spectrum. Then

φ(E12 + E21) = E12 + E21 or φ(E12 + E21) = −(E12 + E21).

Proof. Let H := E12 + E21. By Corollary 3.7 and Corollary 3.6, we have σK(H) = σK(−H) = {−1, 1}.

We start by proving that 1 and −1 are not interior L-eigenvalues of φ(H). To show this fact, suppose first

that λ ∈ {−1, 1} is an interior L-eigenvalue of φ(H). Then, since by Corollary 4.4, tr(φ(H)) = tr(H) = 0,

and interior L-eigenvalues are standard eigenvalues, φ(H) has distinct standard eigenvalues 1 and −1.
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We first show that the entry in position (1,1) of φ(H) is different from λ. This is clear by Theorem 3.1,

if the entry in position (1, 2) of φ(H) is nonzero. If the entry in position (1, 2) of φ(H) is zero, then φ(H)

is a lower triangular matrix with main diagonal entries 1 and −1, and the (2, 1) entry of φ(H) has modulus

2 (since by Corollary 4.4, the modulus of the anti-trace is preserved). Then, the entry in position (1, 1) of

φ(H) is different from λ, as otherwise, by Theorem 3.1, λ would not be an interior L-eigenvalue of φ(H).

By Lemma 4.6, any matrix B in a sufficiently small neighborhood of φ(H) has an interior L-eigenvalue

arbitrarily close to λ. By the continuity of φ−1, and since φ−1 preserves the L-spectrum, any matrix in

a sufficiently small neighborhood of H has an L-eigenvalue arbitrarily close to λ, which is impossible by

Lemma 4.7.

Thus, 1 and −1 are not interior L-eigenvalues of φ(H). By Corollary 2.2, neither 1 nor −1 is an interior

L-eigenvalue of −φ(H). Since σK(H) = σK(−H) = {1,−1}, we conclude that 1 and −1 are boundary

L-eigenvalues of both φ(H) and −φ(H). By Corollary 3.4, there are x, y ∈ R such that

1) φ(H) =

[
x y

2− y −x

]
or 2) φ(H) =

[
x y

−2− y −x

]
.

Suppose that Case 1 holds. Then, by Condition 3 of Theorem 3.1, applied to both φ(H) and −φ(H),

we have

x+ y = −x+ 2− y and

x− y = −x− (2− y),

implying that

x = 0 and y = 1.

A similar argument applied to Case 2 yields x = 0 and y = −1. Thus, the claim follows.

5. Proof of the main results.

Theorem 1.1.

Proof. Let φ : W2 → W2 be a linear map that preserves the L-spectrum. By Corollary 4.4, either A

and φ(A) have the same anti-trace for all A ∈ W2, or A and φ(A) have opposite anti-traces for all A ∈ W2.

When proving Theorem 1.1, we only consider the case in which φ preserves the anti-trace. The case when the

anti-trace of A and φ(A) are opposite for all A ∈W2 can be obtained by considering the orthogonal similarity

via the matrix T = [−1] ⊕ [1] . More precisely, assume that A and φ(A) have opposite anti-traces. Then,

π(A) = Tφ(A)T, for A ∈ W2, is a linear map that preserves the anti-trace and symmetry, and, taking into

account Corollary 3.6, π preserves the L-spectrum if and only if φ does. Hence, by the result that we next

show, π preserves the L-spectrum if and only if there is some P ∈M2, as in (1.2), such that π(A) = PAP−1

for any A ∈W2, that is, φ(A) = (TP )A(TP )−1 for any A ∈W2. Thus, the claim follows with Q = TP.

Necessity: Suppose that φ preserves the anti-trace. For u, v ∈ R, let

P (u, v) :=

[
u v

v u

]
.

Case 1: Assume that W2 = S2. By Lemmas 4.3 and 4.8, we have φ(E11) = E11, φ(E22) = E22, and

φ(E12 + E21) = E12 + E21. Thus, φ(A) = PAP−1 for all A ∈ S2, where P = P (1, 0) = I.
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Case 2: Assume now that W2 = M2. By Lemma 4.3, for some a ≤ 0, we have

φ(E11) =

[
1− a ∓

√
a2 − a

±
√
a2 − a a

]
=:

[
α2 −αβ
αβ −β2

]
= P (α, β)E11P

−1(α, β).

Without loss of generality, we assume α ≥ 0, implying α ≥ 1 since α2 = 1− a and a ≤ 0.

By Lemma 4.5 and taking into account that φ preserves the anti-trace, for some b ≥ 0, we have

φ(E21) =

[
±
√
b2 + b −b
b+ 1 ∓

√
b2 + b

]
=:

[
γδ −δ2
γ2 −γδ

]
= P (γ, δ)E21P

−1(γ, δ).

As above, we assume γ ≥ 0, implying γ ≥ 1.

Then

φ(E11 + E21) =

[
α2 −αβ
αβ −β2

]
+

[
γδ −δ2
γ2 −γδ

]
=

[
α2 + γδ −αβ − δ2
αβ + γ2 −β2 − γδ

]
.

Since, by Lemma 4.2, φ(E11 + E21) is singular, we have

det(φ(E11 + E21)) = (αγ − βδ) (βγ − αδ) = 0.

Note that αγ − βγ 6= 0, as otherwise (αγ)2 = (βδ)2, or equivalently, a = 1 + b, a contradiction since a ≤ 0

and 1 + b > 0. Thus,

(5.13) βγ = αδ,

implying

0 = (αδ)2 − (βγ)2 = (1− a)b+ a(1 + b) = a+ b.

Hence, a = −b which yields α = γ. Since α and γ are nonzero, from (5.13) we get β = δ. Now let

P := P (α, β). Then,

φ(E11) = PE11P
−1 and φ(E21) = PE21P

−1,

implying

φ(E22) = I − φ(E11) = I − PE11P
−1

= P (I − E11)P−1 = PE22P
−1.

Moreover, taking into account Lemma 4.8 and the fact that φ preserves the anti-trace, we have

φ(E12 + E21) = E12 + E21 = P (E12 + E21)P−1.

Thus, since φ(A) = PAP−1 for all the matrices A in a basis for M2, we have φ(A) = PAP−1 for all A ∈M2.

Sufficiency: Let A ∈W2 and let P be as in (1.2) with α2−β2 = 1. We assume that α > 0 as, otherwise,

since PAP−1 = (−P )A(−P )−1, we may consider −P instead of P . It is enough to prove σK(A) ⊆ σK(φ(A)),
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since by applying this result to φ−1, we get σK(φ(A)) ⊆ σK(A). (Note that φ−1(A) = P−1AP, where P−1

still has the form of P in (1.2), with β replaced by −β.)

We show that if (λ, x) is an L-eigenpair of A, then (λ, Px) is an L-eigenpair of φ(A) = PAP−1. For this

purpose, we start by proving two facts. First, P preserves the Lorentz cone, that is, if x ∈ K, then Px ∈ K.

Second, P preserves orthogonality, that is, if xT y = 0, then (Px)T (Py) = 0, for x, y ∈ K.

Let x = [x1 x2]T ∈ K and

(5.14) [z1 z2]T := Px = [x1α+ x2β, x1β + x2α]T .

Then, Px ∈ K if and only if

|z1| = |x1α+ x2β| ≤ x1β + x2α = z2.

Since |β| < α and |x1| ≤ x2, it follows that z2 = x1β + x2α ≥ 0. Also, because of

(5.15) z21 − z22 = x21 − x22 ≤ 0,

we get that Px ∈ K.

Now note that, if x and y are nonzero orthogonal vectors in K, then they lie on the boundary of K. More

specifically, one is a positive multiple of [1 1]T and the other one is a positive multiple of [−1 1]T . Since

P [1 1]T = [α+ β, α+ β]T and P [−1 1]T = [−α+ β, α− β]T ,

are orthogonal, it follows that P also preserves orthogonality.

Suppose that (λ, x) is an L-eigenpair of A, that is,

x 6= 0, x ∈ K, (A− λI)x ∈ K, and xT (A− λI)x = 0.

Since P is invertible, we have Px 6= 0. Moreover, as P preserves the Lorentz cone, we have y := Px ∈ K and

(φ(A)− λI)y = P (A− λI)P−1Px = P [(A− λI)x] ∈ K.

From the orthogonality of x and (A − λI)x and the fact that P preserves orthogonality, it follows that

yT (φ(A)− λI)y = 0. Thus, (λ, Px) is an L-eigenpair of φ(A).

Corollary 1.2.

Proof. By Theorem 1.1, and arguing as in its proof, we may assume that φ preserves the anti-trace, that

is, φ(A) = PAP−1 for P as in (1.2) with α2 − β2 = 1. Moreover, we may assume that α > 0, as otherwise

we consider −P instead of P .

Assume that (λ, x) is an L-eigenpair of A, with x = [x1 x2]T . Let z = [z1 z2]T be as in (5.14). It was

shown in the sufficiency part of the proof of Theorem 1.1 that (λ, z) is an L-eigenpair of φ(A). Since by

(5.15), |x1| < x2 if and only if |z1| < z2, it follows that z is an L-eigenvector of φ(A) in the interior of K if

and only if x is an L-eigenvector of A in the interior of K. Since A and φ(A) have the same L-spectrum, the

claim follows.
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6. Conclusions. Let Mn denote the space of n × n real matrices and Sn denote the subspace of

Mn formed by the symmetric matrices. In this paper, for W2 ∈ {M2, S2}, we described the linear maps

φ : W2 → W2 that preserve the Lorentz spectrum (L-spectrum for short), that is, those maps φ for which

A and φ(A) have the same L-spectrum for all A ∈ W2. We have shown that φ(A) = PAP−1, where P is a

matrix with a certain structure. In the case W2 = S2, P is a diagonal orthogonal matrix. In addition, we

proved that such preservers on W2 do not change the nature (interior or boundary) of the L-eigenvalues.

In the case n ≥ 3, the characterization of the linear maps φ : Wn → Wn that preserve the L-spectrum

and are standard was given in [3]. (See [7] in which the case Wn = Mn was also studied.) Recall that a

linear map φ : Wn → Wn is said to be standard if there exist matrices P,Q ∈ Mn such that φ(A) = PAQ

for all A ∈Wn or φ(A) = PATQ for all A ∈Wn. In [3], a conjecture was made that all maps φ : Wn →Wn

that preserve the L-spectrum are, in fact, standard, as has been shown here to happen for n = 2. We also

have seen here that these preservers on W2 = S2 have the same form as the standard ones on Sn, for n ≥ 3.

However, if W2 = M2, they have a more general form than those on Mn for n ≥ 3.

Contrary to what happens when n ≥ 3, the Lorentz cone in Rn with n = 2 is a polyhedral cone, which

is a rotation of the Pareto cone. Thus, our characterization of the linear maps φ : M2 → M2 also follows

from the characterization of the linear maps that preserve the Pareto spectrum [2]. However, we gave here

an independent proof hoping that it gives tools that may be helpful in proving the still open conjecture

stated in [3] that any linear preservers of the L-spectrum on Sn or Mn, for n ≥ 3, are standard maps, which,

together with the results in that reference, would complete the description of such linear preservers.
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