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GRAPH DEGENERACY AND ORTHOGONAL VECTOR REPRESENTATIONS∗

LON MITCHELL†

Abstract. We apply a technique of Sinkovic and van der Holst for constructing orthogonal vector representations of a

graph whose complement has given treewidth to graphs whose complement has given degeneracy.
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We will only consider finite simple graphs G = (V,E) and assume knowledge of some standard graph

theory definitions [5]. For notation, |G| is the number of vertices of G, NG(v) is the set of neighbors of the

vertex v in G, and ∆(G) and δ(G) are the maximum and minimum degrees, respectively, over the vertices

of G.

A graph G is d-degenerate if none of its subgraphs has minimum degree larger than d. The degeneracy

of G is the smallest integer k such that G is k-degenerate [10].

The coloring number of G, col(G), is the smallest positive integer k for which there exists an ordering

v1, v2, . . . , vn of the vertices of G such that every vi has fewer than k neighbors vj ∈ NG(vi) with j < i [6].

The coloring number and degeneracy are connected as col(G) is equal to one more than the degeneracy of

G [13].

The graph of a real symmetric n-by-n matrix M = [mij ] has vertices 1, 2, . . . , n and edges ij when i 6= j

and mij 6= 0. Given a graph G, let P (G) be the set of positive semidefinite matrices whose graph is G.

A positive semidefinite matrixA ∈ P (G) satisfies the Strong Arnold Hypothesis if the only real symmetric

matrix X satisfying AX = A ◦ X = I ◦ X = 0 is the zero matrix, where ◦ is the entrywise product and

I is the identity matrix. The Colin de Verdière parameter ν(G) is defined as the maximum nullity among

matrices in P (G) that satisfy the Strong Arnold Hypothesis [4].

Given vectors ~v1, ~v2, . . . , ~vn in Rm, their Gram matrix is A = [aij ] where aij = ~vi · ~vj is the standard

dot product of the vectors [8]. The vectors comprise a faithful orthogonal vector representation (just vector

representation hereafter) of a graph G if their Gram matrix is in P (G) [11, 14].

Sinkovic and van der Holst [12] proved that if a graph G is the complement of a partial k-tree, then

ν(G) ≥ |G| − k − 2. The proof involved the construction of a vector representation whose Gram matrix

satisfies the Strong Arnold Hypothesis. They were able to apply their result to prove, for certain graphs,

the Graph Complement Conjecture [7] for ν, that ν(G) + ν(G) ≥ |G| − 2.

In this note, we apply Sinkovic and van der Holst’s idea to graphs whose complement G has degeneracy

l. Our main result is that ν(G) ≥ |G| − 2l − 1 for all such graphs G.
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1. Main Results.

Theorem 1. For any graph G whose complement G has degeneracy l, ν(G) ≥ |G| − 2l − 1.

Proof. We will prove a stronger statement: Let G be a graph whose complement G is l-degenerate.

Then there exists a vector representation of G in R2l+1 such that the vectors representing any l+ 1 vertices

are linearly independent. Further, if A is the Gram matrix of the resulting vector representation, then A

satisfies the Strong Arnold Hypothesis.

Let n = |G|. Since the graph G is l-degenerate, we may choose an ordering v1, v2, . . . , vn of the vertices

of G such that every vi has at most l neighbors vj with j < i. For each i with 1 ≤ i ≤ n, let Gi be the

subgraph of G induced by the vertices v1, v2, . . . , vi.

Let m = min{n, 2l + 1}. Begin by choosing a positive definite m-by-m matrix A for Gm (for example,

choose A = L(G)+I, where L(G) is the Laplacian matrix of G and I is the identity matrix) and let B =
√
A.

Then the columns of B are linearly independent and give the desired vector representation of Gm. Since A

is positive definite, it also satisfies the Strong Arnold Hypothesis. If n ≤ 2l + 1, we are done.

If n > 2l + 1, assume for some k with k < n we have already constructed a vector representation

~v1, ~v2, . . . , ~vk of Gk in R2l+1 that meets the given conditions and such that the Gram matrix of the vectors

~v1, ~v2, . . . , ~vk satisfies the Strong Arnold Hypothesis.

Let Q be the set of vectors representing the vertices of NGk+1
(vk+1), and let L = span(Q)⊥.

We claim all of the following subspaces are proper subspaces of L:

• L ∩ span(~w)⊥ for each w ∈ V (Gk) \NGk+1
(vk+1),

• L ∩ span(X) for each set X of vectors representing l vertices.

To prove the claim, consider first a vertex w such that w ∈ V (Gk)\NGk+1
(vk+1). Since any l+1 vectors

from ~v1, ~v2, . . . , ~vk are linearly independent by the induction hypothesis and since Q has at most l vectors

because G has degeneracy l, the vector ~w representing vertex w is not in span(Q). Thus, L∩ span(~w)⊥ 6= L.

Second, again by the induction hypothesis, if X is a set of vectors representing l vertices, then span(X) is

l-dimensional. From above, |Q| ≤ l and the vectors of Q are linearly independent, so that L has dimension

2l + 1− |Q| ≥ l + 1 as a subspace of R2l+1. Thus, L ∩ span(X) 6= L.

Having established the claim, we can choose ~v ∈ L so that ~v does not belong to any of those (finitely

many) proper subspaces.

By construction, ~v is orthogonal to ~q for each q ∈ Q. For any w ∈ V (Gk) \ NGk
(vk), since ~v /∈

L ∩ span(~w)⊥, ~w · ~v 6= 0. Thus, ~v1, ~v2, . . . , ~vk, ~v is a vector representation of Gk+1.

By the induction hypothesis, any l+1 of these vectors not including ~v are linearly independent. If X ∪~v
is a set of l + 1 vectors, the vectors of X are linearly independent by the induction hypothesis and ~v is not

in their span since ~v ∈ L and ~v /∈ L∩ span(X). Thus, the vectors of X ∪~v are linearly independent for every

such X.

Finally, let B be the matrix with column vectors ~v1, ~v2, . . . , ~vk, ~v so that A = BTB is the Gram matrix of

those vectors. By the induction hypothesis, the Gram matrix of the vectors ~v1, ~v2, . . . , ~vk satisfies the Strong

Arnold Hypothesis. Thus, if A does not satisfy the Strong Arnold Hypothesis, the nonzero symmetric matrix

X with AX = A ◦X = I ◦X = 0 must have a nonzero row and column corresponding to vk. Since AX = 0
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implies XBTBX = 0 implies BX = 0, that the column of X corresponding to vk is nonzero then implies

there is a non-trivial zero linear combination of ~v and the vectors of Q. But that is at most l + 1 vectors,

contradicting that they were constructed to be linearly independent.

For a graph G whose complement G has treewidth k and degeneracy l, Theorem 1 improves on the

bound of Sinkovic and van der Holst when k > 2l − 1:

Example 2. The square grid graph Ln,n = Pn � Pn (where Pn is the path on n vertices and � is the

cartesian product of graphs) has treewidth n [3] and degeneracy 2 (order the vertices lexicographically). In

particular, ν(Ln,n) ≥ n2 − 5.

A graph H has Hadwiger number h(H) at most three if and only if its treewidth is at most two [1], and

the Hadwiger number of a planar graph is at most four, so h(Ln,n) = 4 for n ≥ 3. Since, ν(G) is at least

h(G)−1 by minor monotonicity, ν(Ln,n) ≥ 3 for n ≥ 3. Thus, all of the Ln,n satisfy the Graph Complement

Conjecture.

We next show that the bound of Theorem 1 is best possible in terms of degeneracy.

Example 3. For a given positive integer l, let Hl be the graph constructed as follows (see Figure 1 for

examples): Start with a clique on vertices c1, c2, . . . , cl; add vertices u1, u2, . . . , ul+1 each adjacent to all of

the previous vertices c1, c2, . . . , cl; end by adding vertices w1, w2, . . . , wl+1 with each wi adjacent to all of

the u1, u2, . . . , ul+1 except ui.

The ordering c1, c2, . . . , cl, u1, u2, . . . , ul+1, w1, w2, . . . , wl+1 shows that Hl has degeneracy at most l.

Since δ(Hl) = l, the degeneracy of Hl is exactly l.

We claim that ν(Hl) = |Hl| − 2l − 1. From Theorem 1, ν(Hl) ≥ |Hl| − 2l − 1. For the other inequality,

consider a vector representation of Hl. The vectors representing c1, c2, . . . , cl must be mutually orthogonal,

and the vectors representing u1, u2, . . . , ul+1 must each be orthogonal to the span of the vectors representing

c1, c2, . . . , cl. Finally, for each i with 1 ≤ i ≤ l + 1, the vector representing ui cannot be in the span

of the vectors representing the other u vertices because those vectors are each orthogonal to the vector

representing vertex wi while the vector representing vertex ui cannot be. Since any set of vectors such that

any vector is not in the span of the others is linearly independent (any non-trivial zero linear combination

will place one vector in the span of the others), the vectors representing the vertices u1, u2, . . . , ul+1 are

linearly independent. Thus, any vector representation of Hl must include 2l+ 1 linearly independent vectors

representing the vertices c1, c2, . . . , cl, u1, u2, . . . , ul+1.

As a result, for any given degeneracy l, there is a graph Hl whose complement has degeneracy l and

that achieves equality in the inequality of Theorem 1.

For l > 1, we also note that contracting the edges uiwi+1 for 1 ≤ i ≤ l and ul+1w1 in Hl results in a

complete graph on 2l+1 vertices. Thus, ν(Hl) ≥ 2l for l > 1 and all of the Hl satisfy the Graph Complement

Conjecture.

Finally, since adding all possible edges among the ui results in a chordal graph with maximum clique size

2l+ 1, each Hl with l > 1 has treewidth 2l. Thus, the Hl (for l > 1) also provide a family where Theorem 1

improves on the bound of Sinkovic and van der Holst.

We can also relate ν(G) and δ(G) using Theorem 1:
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Fig. 1. The graphs H1 and H2 of Example 3.

Theorem 4. For any graph G, ν(G) ≥ 2δ(G)− |G|+ 1.

Proof. In general, col(G) ≤ ∆(G)+1 [9, p. 78], col(G) = l+1 in Theorem 1, and δ(G)+∆(G) = |G|−1.

Unfortunately, Theorem 4 is only nontrival when δ(G) > |G|/2, perhaps only interesting if δ(G) is close

to |G| and seems far from the conjectured ν(G) ≥ δ(G) (the “delta conjecture” [2]).

Finally, note that, although we established Theorem 1 is best possible (for degeneracy) in Example 3,

the graphs Hl from Example 3 do satisfy ν(Hl) = l + 1 = δ(Hl).
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