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PARTIAL ISOMETRIES AND EP ELEMENTS
IN RINGS WITH INVOLUTION∗

DIJANA MOSIĆ† AND DRAGAN S. DJORDJEVIĆ†

Abstract. If R is a ring with involution, and a† is the Moore-Penrose inverse of a ∈ R, then

the element a is called: EP, if aa† = a†a; partial isometry, if a∗ = a†; star-dagger, if a∗a† = a†a∗.

In this paper, characterizations of partial isometries, EP elements and star-dagger elements in rings

with involution are given. Thus, some well-known results are extended to more general settings.

Key words. Partial isometry, Moore-Penrose inverse, Group inverse, EP elements, Star-dagger

elements, Ring with involution.

AMS subject classifications. 16B99, 16W10, 15A09, 46L05.

1. Introduction. Let R be an associative ring with the unit 1, and let a ∈ R.
Then a is group invertible if there is a# ∈ R such that

aa#a = a, a#aa# = a#, aa# = a#a.

Recall that a# is uniquely determined by these equations [2]. We use R# to denote
the set of all group invertible elements of R. If a is invertible, then a# coincides with
the ordinary inverse of a.

An involution a �→ a∗ in a ring R is an anti-isomorphism of degree 2, that is,

(a∗)∗ = a, (a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

An element a ∈ R satisfying aa∗ = a∗a is called normal. An element a ∈ R satisfying
a = a∗ is called Hermitian (or symmetric). In the rest of the paper, we assume that
R is a ring with involution.
We say that b = a† is the Moore–Penrose inverse (or MP-inverse) of a, if the

following hold [10]:

aba = a, bab = b, (ab)∗ = ab, (ba)∗ = ba.
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There is at most one b such that above conditions hold (see [5, 7, 10]), and such b is
denoted by a†. The set of all Moore–Penrose invertible elements of R will be denoted
by R†. If a is invertible, then a† coincides with the ordinary inverse of a.

An element a ∈ R† satisfying a∗ = a† is called a partial isometry. An element
a ∈ R† satisfying a∗a† = a†a∗ is called star–dagger [6].

Definition 1.1. [8] An element a ∈ R is *-cancelable if
a∗ax = 0⇒ ax = 0 and xaa∗ = 0⇒ xa = 0.(1.1)

Applying the involution to (1.1), we observe that a is *-cancelable if and only if
a∗ is *-cancelable. In C∗-algebras, all elements are *-cancelable.

Theorem 1.2. [8] Let a ∈ R. Then a ∈ R† if and only if a is *-cancelable and
a∗a is group invertible.

Theorem 1.3. [4, 9] For any a ∈ R†, the following are satisfied:

(a) (a†)† = a;
(b) (a∗)† = (a†)∗;
(c) (a∗a)† = a†(a†)∗;
(d) (aa∗)† = (a†)∗a†;
(f) a∗ = a†aa∗ = a∗aa†;
(g) a† = (a∗a)†a∗ = a∗(aa∗)† = (a∗a)#a∗ = a∗(aa∗)#;
(h) (a∗)† = a(a∗a)† = (aa∗)†a.

In this paper, we will use the following definition of EP elements [8].

Definition 1.4. An element a of a ring R with involution is said to be EP if
a ∈ R# ∩R† and a# = a†.

Lemma 1.5. An element a ∈ R is EP if and only if a ∈ R† and aa† = a†a.

We observe that a ∈ R# ∩ R† if and only if a∗ ∈ R# ∩ R† (see [8]) and a is EP
if and only if a∗ is EP. In [8], the equality (a∗)# = (a#)∗ is proved.

Theorem 1.6. [8] An element a ∈ R is EP if and only if a is group invertible
and a#a is symmetric.

In particular, if a ∈ R†, then (aa∗)† = (aa∗)# and aa∗ is EP.

Previous results are also contained in [4].

Lemma 1.7. [9] If a ∈ R† is normal, then a is EP.

Theorem 1.8. [9] Suppose that a ∈ R†. Then a is normal if and only if a ∈ R#
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and one of the following equivalent conditions holds:

(i) aa∗a# = a#aa∗;
(ii) aaa∗ = aa∗a.

In paper [1], O.M. Baksalary, G.P.H. Styan and G. Trenkler used the representa-
tion of complex matrices provided in [6] to explore various classes of matrices, such as
partial isometries, EP and star-dagger elements. Inspired by [1], in this paper we use
a different approach, exploiting the structure of rings with involution to investigate
partial isometries, EP and star-dagger elements. We give several characterizations,
and the proofs are based on ring theory only. The paper is organized as follows: In
Section 2, characterizations of MP-invertible or both MP-invertible and group invert-
ible partial isometries in rings with involution are given. In Section 3, star-dagger,
group invertible and EP elements in rings with involution are investigated.

2. Characterizations of partial isometries. In the following theorem, we
present some equivalent conditions for the Moore-Penrose invertible element a of a
ring with involution to be a partial isometry.

Theorem 2.1. Suppose that a ∈ R†. The following statements are equivalent:

(i) a is a partial isometry;
(ii) aa∗ = aa†;
(iii) a∗a = a†a.

Proof. (i) ⇒ (ii): If a is a partial isometry, then a∗ = a†. So, aa∗ = aa† and the
condition (ii) holds.

(ii) ⇒ (iii): Suppose that aa∗ = aa†. Then we get the following:

a∗a = a†(aa∗)a = a†aa†a = a†a.

Hence, the condition (iii) is satisfied.

(iii) ⇒ (i): Applying the equality a∗a = a†a, we obtain

a∗ = a∗aa† = a†aa† = a†.

Thus, the element a is a partial isometry.

Since for a ∈ R†, the equalities a∗ = a∗aa† = a†aa∗ hold, we deduce that a is a
partial isometry if and only if a∗aa† = a†, or if and only if a†aa∗ = a†.

In the following theorem, we assume that the element a is both Moore–Penrose
invertible and group invertible. Then, we study the conditions involving a†, a# and a∗

to ensure that a is a partial isometry. Theorems 2.1 and 2.2 are inspired by Theorem
1 in [1].
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Theorem 2.2. Suppose that a ∈ R† ∩ R#. Then a is a partial isometry if and
only if one of the following equivalent conditions holds:

(i) a∗a# = a†a#;
(ii) a#a∗ = a#a†;
(iii) aa∗a# = a#;
(iv) a#a∗a = a#.

Proof. If a is a partial isometry, then a∗ = a†. It is not difficult to verify that
conditions (i)-(iv) hold.

Conversely, to conclude that a is a partial isometry, we show that either the
condition a∗ = a† is satisfied, or one of the preceding already established condition of
this theorem holds.

(i) By the equality a∗a# = a†a#, we get

a∗ = a∗aa† = a∗aa#aa† = a∗a#aaa† = a†a#aaa† = a†aa† = a†.

(ii) The equality a#a∗ = a#a† gives

a∗ = a†aa∗ = a†aaa#a∗ = a†aaa#a† = a†aa† = a†.

(iii) Multiplying aa∗a# = a# by a† from the left side, we obtain

a∗a# = a†a#.

Thus, the condition (i) is satisfied, so a is a partial isometry.

(iii) Multiplying a#a∗a = a# by a† from the right side, we get

a#a∗ = a#a†.

Hence, the equality (ii) holds, and a is a partial isometry.

In the following theorem, we give necessary and sufficient conditions for an el-
ement a of a ring with involution to be a partial isometry and EP. It should be
mentioned that the following result generalizes Theorem 2 in [1].

Theorem 2.3. Suppose that a ∈ R†. Then a is a partial isometry and EP if and
only if a ∈ R# and one of the following equivalent conditions holds:

(i) a is a partial isometry and normal;
(ii) a∗ = a#;
(iii) aa∗ = a†a;
(iv) a∗a = aa†;
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(v) aa∗ = aa#;
(vi) a∗a = aa#;
(vii) a∗a† = a†a#;
(viii) a†a∗ = a#a†;
(ix) a†a∗ = a†a#;
(x) a∗a† = a#a†;
(xi) a∗a# = a#a†;
(xii) a∗a† = a#a#;
(xiii) a∗a# = a†a†;
(xiv) a∗a# = a#a#;
(xv) aa∗a† = a†;
(xvi) aa∗a† = a#;
(xvii) aa∗a# = a†;
(xviii) aa†a∗ = a†;
(xix) a∗a2 = a;
(xx) a2a∗ = a;
(xxi) aa†a∗ = a#;
(xxii) a∗a†a = a#.

Proof. If a ∈ R† is a partial isometry and EP, then a ∈ R# and a∗ = a† = a#.
It is not difficult to verify that conditions (i)-(xxii) hold.

Conversely, we assume that a ∈ R#. We known that a ∈ R# ∩ R† if and only
if a∗ ∈ R# ∩ R†, and a is EP if and only if a∗ is EP. We will prove that a is a
partial isometry and EP, or we will show that the element a or a∗ satisfies one of
the preceding already established conditions of this theorem. If a∗ satisfies one of the
preceding already established conditions of the theorem, then a∗ is a partial isometry
and EP and so a is a partial isometry and EP.

(i) If a is a partial isometry and normal, then by Lemma 1.7, a is a partial
isometry and EP.

(ii) From the condition a∗ = a#, we obtain

aa∗ = aa# = a#a = a∗a.

So, element a is normal. Then, by Lemma 1.7, a is EP and, by definition, a# = a†.
Hence, a∗ = a# = a†, i.e., a is a partial isometry.

(iii) Suppose that aa∗ = a†a. Then

a#aa∗ = a#a†a = (a#)2aa†a = (a#)2a = a#,(2.1)

which implies

aa∗a# = a(a#aa∗)a# = aa#a# = a#.(2.2)
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From the equalities (2.1) and (2.2), we get aa∗a# = a#aa∗. Now, by Theorem 1.8, a
is normal. Then a is EP by Lemma 1.7, and

aa† = a†a = aa∗,

by (iii). Thus, by the condition (ii) of Theorem 2.1, a is a partial isometry.

(iv) Applying the involution to a∗a = aa†, we obtain

a∗(a∗)∗ = (a†)∗a∗ = (a∗)†a∗,

by Theorem 1.3. Hence, a∗ satisfies the condition (iii).

(v) The equality aa∗ = aa# yields

aaa∗ = aaa# = aa#a = aa∗a.

Therefore, a is normal by Theorem 1.8. From Lemma 1.7, a is EP and, by definition,
a# = a†. Now, by (v), aa∗ = aa† and, by the condition (ii) of Theorem 2.1, a is a
partial isometry.

(vi) Applying the involution to a∗a = aa#, we get

a∗(a∗)∗ = (a#)∗a∗ = (a∗)#a∗ = a∗(a∗)#,

by the equality (a#)∗ = (a∗)# [8]. Thus, a∗ satisfies the equality (v).

(vii) Assume that a∗a† = a†a#. Then

aa# = aa(a#)2 = aaa†a(a#)2 = a2(a†a#) = a2a∗a†

= a2(a∗a†)aa† = a2a†a#aa† = aaa†aa#a†

= a2a#a† = aa†.

Since aa† is symmetric, aa# is symmetric too. By Theorem 1.6, a is EP and a# = a†.
Then, by (vii), a∗a# = a†a#, i.e., the condition (i) of Theorem 2.2 is satisfied. Hence,
a is a partial isometry.

(viii) Applying the involution to a†a∗ = a#a†, we have

(a∗)∗(a†)∗ = (a†)∗(a#)∗,

i.e.,

(a∗)∗(a∗)† = (a∗)†(a∗)#.

So, a∗ satisfies the condition (vii).
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(ix) The condition a†a∗ = a†a# implies

aa# = aa(a#)2 = aaa†a(a#)2 = a2(a†a#) = a2a†a∗

= a2(a†a∗)aa† = a2a†a#aa† = aaa†aa#a†

= a2a#a† = aa†.

Thus, aa# is symmetric, and by Theorem 1.6 a is EP. From a† = a# and (ix) we get
a†a∗ = a#a†, i.e., the equality (viii) holds.

(x) Applying the involution to a∗a† = a#a†, we get

(a†)∗(a∗)∗ = (a†)∗(a#)∗,

which gives

(a∗)†(a∗)∗ = (a∗)†(a∗)#,

i.e., a∗ satisfies the condition (ix).

(xi) Using the assumption a∗a# = a#a†, we have

a∗a = (a∗a#)a2 = a#a†a2 = (a#)2aa†a2 = (a#)2a2 = a#a = aa#.

Hence, the condition (vi) is satisfied.

(xii) If a∗a† = a#a#, then (x) holds, since

a∗a† = (a∗a†)aa† = a#a#aa† = a#a†.

(xiii) By the equality a∗a# = a†a†, we obtain

a∗aa#a† = (a∗a#)aa† = a†a†aa† = a†a† = a∗a# = a∗a(a#)2,

which implies

a∗a(a#a† − (a#)2) = 0.(2.3)

Since a ∈ R†, a is *-cancelable by Theorem 1.2. From (2.3) and *-cancellation, we
get a(a#a† − (a#)2) = 0, i.e.,

aa#a† = a#.(2.4)

Multiplying (2.4) by a from the left side, we have

aa† = aa#.
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Therefore, aa# is symmetric, so a is EP by Theorem 1.6. Now, from a† = a# and
(xiii) we get a∗a# = a#a†, i.e., the condition (xi) is satisfied.

(xiv) The assumption a∗a# = a#a# gives

a∗a = (a∗a#)aa = a#a#aa = a#a = aa#.

So, the equality (vi) holds.

(xv) From aa∗a† = a†, we get

aa∗ = a#aaa∗ = a#(aa∗a∗)∗ = a#(aa∗a†aa∗)∗

= a#(a†aa∗)∗ = a#(a∗)∗ = a#a = aa#.

Thus, the equality (v) is satisfied.

(xvi) Multiplying aa∗a† = a# by a† from the left side, we get

a∗a† = a†a#.

Therefore, the condition (vii) holds.

(xvii) Multiplying aa∗a# = a† by a† from the left side, we obtain the condition
(xiii).

(xviii) Suppose that aa†a∗ = a†. Then

aa†a†a = aa†(a†a)∗ = (aa†a∗)(a†)∗ = a†(a†)∗

= a†(aa†a∗)∗ = a†a(aa†)∗ = a†aaa†.

Now, from this equality and (xviii), we have

a#a∗ = a#a#aa∗ = (a#)2aa(a#)2aa∗ = (a#)2a(a†aaa†)a(a#)2aa∗

= a#aa†a†aa#aa∗ = a#aa†a†aa∗ = a#(aa†a∗) = a#a†.

Hence, the equality (ii) of Theorem 2.2 holds and a is a partial isometry. From a∗ = a†

and (xviii), we obtain

aa∗a† = aa†a∗ = a†,

i.e., the equality (xv) is satisfied.

(xix) Multiplying a∗a2 = a by a# from the right side, we get

a∗a = aa#.

So, the condition (vi) holds.
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(xx) Multiplying a2a∗ = a by a# from the left side, we have

aa∗ = a#a = aa#.

Thus, the equality (v) is satisfied.

(xxi) Multiplying aa†a∗ = a# by a† from the left side, we obtain

a†a∗ = a†a#.

Hence, a satisfies the condition (ix).

(xxii) Multiplying a∗a†a = a# by a† from the right side, we get

a∗a† = a#a†.

Therefore, the condition (x) holds.

The following result is well-known for complex matrices (see [1, Theorem 1]).
However, we are not in a position to prove this result for elements of a ring with
involution, so we state it as a conjecture.

Conjecture. Suppose that a ∈ R†. Then a is a partial isometry if and only if one of
the following equivalent conditions holds:

(i) a∗aa∗ = a†;
(ii) aa∗aa∗a = a.

3. EP, star-dagger and group-invertible elements. First, we state the fol-
lowing result concerning sufficient conditions for Moore-Penrose invertible element a

in ring with involution to be star–dagger. This result is proved for complex matrices
in [1].

Theorem 3.1. Suppose that a ∈ R†. Then each of the following conditions is
sufficient for a to be star–dagger:

(i) a∗ = a∗a†;
(ii) a∗ = a†a∗;
(iii) a† = a†a†;
(iv) a∗ = a†a†;
(v) a† = a∗a∗.

Proof. (i) Using the equation a∗ = a∗a†, we get

a∗aa† = a∗ = a∗a† = a∗aa†a†,
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i.e.,

a∗a(a† − a†a†) = 0.(3.1)

From a ∈ R†, by Theorem 1.2, we know that a is *-cancelable. Then, by (3.1) and
*-cancelation, we have

a(a† − a†a†) = 0,

which gives

aa† = aa†a†.(3.2)

Now, by (i) and (3.2),

a∗a† = a∗ = a†aa∗ = a†(aa†)aa∗ = a†aa†a†aa∗ = a†a∗.

(ii) Applying the involution to a∗ = a†a∗, we obtain

(a∗)∗ = (a∗)∗(a†)∗ = (a∗)∗(a∗)†.

Since the condition (i) holds for a∗, we deduce that a∗ is star–dagger. Thus,
(a∗)∗(a∗)† = (a∗)†(a∗)∗, i.e.,

a(a†)∗ = (a†)∗a.(3.3)

Applying the involution to (3.3), we get a†a∗ = a∗a†.

(iii) The condition a† = a†a† implies

a∗a† = a∗a(a†a†) = a∗aa† = a∗ = a†aa∗ = a†a†aa∗ = a†a∗.

(iv) From the equality a∗ = a†a†, we have

a∗a† = a∗a(a†a†) = a∗aa∗ = a†a†aa∗ = a†a∗.

(v) If a† = a∗a∗, then

a∗a† = a∗a∗a∗ = a†a∗.

Now, we prove an alternative characterization of the group inverse in a ring. This
result is proved for complex matrices in [1], where the authors use the rank of a
matrix.
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Theorem 3.2. Let R be an associative ring with the unit 1, and let a ∈ R. Then
b ∈ R is the group inverse of a if and only if

ba2 = a, a2b = a, bR = baR.

Proof. If b = a#, then, by definition, a = ba2 = a2b. It is clear that baR ⊆ bR.
To show that bR ⊆ baR, we assume that y ∈ bR. Then y = bx for some x ∈ R. Since
bab = b, we have y = bx = babx ∈ baR. Hence, bR = baR.
Suppose that ba2 = a, a2b = a, bR = baR. Now, ab = ba2b = ba and aba = baa =

a. Since b = b1 ∈ bR = baR, then b = bax for some x ∈ R. Thus, b = bax = ba2bx =
ba(bax) = bab and b = a#.

Finally, we prove the result involving EP elements in a ring.

Theorem 3.3. Suppose that a, b ∈ R. Then the following statements are equiv-
alent:

(i) aba = a and a is EP;
(ii) a ∈ R† ∩R# and a† = a†ba;
(iii) a ∈ R† ∩R# and a∗ = a∗ba;
(iv) a ∈ R† ∩R# and a∗ = aba∗;
(v) a ∈ R† ∩R# and a† = aba†.

Proof. (i) ⇒ (ii): Let aba = a and let a be EP. We get

a† = a# = (a#)2a = (a#)2aba = a#ba = a†ba,

i.e., the condition (ii) holds.

(ii) ⇒ (iii): From a† = a†ba, we get

a∗ = a∗aa† = a∗aa†ba = a∗ba.

Therefore, the condition (iii) is satisfied.

(iii) ⇒ (ii): The condition a∗ = a∗ba is equivalent to

a∗aa† = a∗aa†ba,

which implies

a∗a(a† − a†ba) = 0.(3.4)

From a ∈ R† and Theorem 1.2, it follows that a is *-cancelable. Thus, by (3.4) and
*-cancelation, a(a† − a†ba) = 0 which yields

aa† = aa†ba.(3.5)
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Multiplying (3.5) by a† from the left side, we obtain a† = a†ba. So, the condition (ii)
holds.

(ii) ⇒ (i): If a† = a†ba, then

aa# = aa†aa# = aa†baaa# = aa†ba = aa†.

Hence, aa# is symmetric. By Theorem 1.6, a is EP and a# = a†. Now, by (ii) we get
a# = a#ba, and consequently, a = a2a# = a2a#ba = aba. Thus, the condition (i) is
satisfied.

(i) ⇒ (iv) ⇒ (v) ⇒ (i): These implications can be proved analogously.
Notice that in the case of complex matrices, the equivalencies (i)⇔(iii)⇔(iv) are

proved in [3], and the equivalencies (i)⇔(ii)⇔(v) are proved in [1].

4. Conclusions. In this paper we consider Moore-Penrose invertible or both
Moore-Penrose invertible and group invertible elements in rings with involution to
characterize partial isometries, EP and star-dagger elements in terms of equations
involving their adjoints, Moore-Penrose and group inverses. All of these results are
already known for complex matrices. However, we demonstrated a new technique
in proving the results. In the theory of complex matrices, various authors used an
elegant representation of complex matrices and the matrix rank to characterize partial
isometries, EP elements and star-dagger. In this paper, we applied a purely algebraic
technique, involving different characterizations of the Moore-Penrose inverse.
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