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COMPATIBILITY AND COMPANIONS FOR LEONARD PAIRS∗

KAZUMASA NOMURA† AND PAUL TERWILLIGER‡

Abstract. In this paper, we introduce the concepts of compatibility and companion for Leonard pairs. These concepts

are roughly described as follows. Let F denote a field, and let V denote a vector space over F with finite positive dimension. A

Leonard pair on V is an ordered pair of diagonalizable F-linear maps A : V → V and A∗ : V → V that each act in an irreducible

tridiagonal fashion on an eigenbasis for the other one. Leonard pairs A,A∗ and B,B∗ on V are said to be compatible whenever

A∗ = B∗ and [A,A∗] = [B,B∗], where [r, s] = rs − sr. For a Leonard pair A,A∗ on V , by a companion of A,A∗ we mean

an F-linear map K : V → V such that K is a polynomial in A∗ and A − K,A∗ is a Leonard pair on V . The concepts of

compatibility and companion are related as follows. For compatible Leonard pairs A,A∗ and B,B∗ on V , define K = A− B.

Then K is a companion of A,A∗. For a Leonard pair A,A∗ on V and a companion K of A,A∗, define B = A−K and B∗ = A∗.

Then B,B∗ is a Leonard pair on V that is compatible with A,A∗. Let A,A∗ denote a Leonard pair on V . We find all the

Leonard pairs B,B∗ on V that are compatible with A,A∗. For each solution B,B∗, we describe the corresponding companion

K = A−B.

Key words. Leonard system, Parameter array, Compatibility, Companion, Bond relation.
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1. Introduction. The notion of a Leonard pair was introduced by the second author in [47]. We

will recall the definition after a few comments. A square matrix is said to be tridiagonal whenever each

nonzero entry lies on the diagonal, the subdiagonal, or the superdiagonal. A tridiagonal matrix is said to

be irreducible whenever each entry on the subdiagonal is nonzero and each entry on the superdiagonal is

nonzero. Let F denote a field, and let V denote a vector space over F with finite positive dimension. A

Leonard pair on V is an ordered pair of F-linear maps A : V → V and A∗ : V → V that satisfy (i) and (ii)

below:

(i) there exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal

and the matrix representing A∗ is diagonal;

(ii) there exists a basis for V with respect to which the matrix representing A∗ is irreducible tridiagonal

and the matrix representing A is diagonal.

We have some historical remarks about Leonard pairs. The concept of a Leonard pair originated in

Algebraic Combinatorics, in the study of Q-polynomial distance-regular graphs [3, 15, 19]. The origin story

begins with the 1973 thesis of Philippe Delsarte [20]. In that thesis, Delsarte showed that a Q-polynomial

distance-regular graph yields two sequences of orthogonal polynomials that are related by what is now called

Askey–Wilson duality [51, p. 261]. Motivated by Delsarte’s thesis and Eiichi Bannai’s lectures at Ohio State

University, Douglas Leonard showed in 1982 that the q-Racah polynomials give the most general orthogonal

polynomial system that satisfies Askey–Wilson duality [34]. In their 1984 book [3, Theorem 5.1], Bannai and

Ito give a comprehensive version of Leonard’s theorem that treats all the limiting cases. This version gives
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a complete classification of the orthogonal polynomial systems that satisfy Askey–Wilson duality. It shows

that the orthogonal polynomial systems that satisfy Askey–Wilson duality all come from the terminating

branch of the Askey scheme (see [31] and [54, Section 1].) The Leonard theorem [3, Theorem 5.1] is a bit

complicated. To simplify and clarify the theorem, the second author introduced the notion of a Leonard

pair and Leonard system [47]. The Leonard systems are classified up to isomorphism in [47, Theorem 1.9].

This result gives a linear algebraic version of Leonard’s theorem. For more information on Leonard pairs

and orthogonal polynomials, see [47, Appendix A] and [51, 53].

We just mentioned how Leonard pairs are related to orthogonal polynomials. Leonard pairs have appli-

cations to many other areas of mathematics and physics, such as Lie theory [25, 39, 4, 21, 22, 29], quantum

groups [1, 12, 28, 30, 13, 2, 14, 26], spin models [17, 41, 18, 16], double affine Hecke algebras [40, 23, 24, 32, 33],

partially ordered sets [35, 45, 55, 36], and exactly solvable models in statistical mechanics [5, 6, 7, 8, 9, 10, 11].

For more information about Leonard pairs and related topics, see [48, 46, 39, 42, 44].

Next, we recall some basic facts about Leonard pairs. Let A,A∗ denote a Leonard pair on V . By the

construction, each of A and A∗ is diagonalizable. By [47, Lemma 1.3], the eigenspaces of A and A∗ all have

dimension one. Let d+1 denote the dimension of V , and let {θi}di=0 denote an ordering of the eigenvalues of

A. For 0 ≤ i ≤ d let vi denote an eigenvector for A corresponding to θi. The ordering {θi}di=0 is said to be

standard whenever the matrix representing A∗ with respect to the basis {vi}di=0 is irreducible tridiagonal.

For a standard ordering {θi}di=0 of the eigenvalues of A, the ordering {θd−i}di=0 is standard and no further

ordering is standard. Similar comments apply to the orderings of the eigenvalues for A∗. The Leonard pair

A,A∗ is often described using some data called a parameter array [51, Definition 17.1]. This is a sequence

of scalars:

(1.1) ({θi}di=0; {θ∗i }di=0; {φi}di=1; {ϕi}di=1),

such that: (i) there exists a basis for V with respect to which the matrices representing A and A∗ are

A :



θ0 0

1 θ1
1 θ2

· ·
· ·

0 1 θd


, A∗ :



θ∗0 φ1 0

θ∗1 φ2

θ∗1 ·
· ·

· φd

0 θ∗d


;

(ii) there exists a basis for V with respect to which the matrices representing A and A∗ are

A :



θd 0

1 θd−1

1 θd−2

· ·
· ·

0 1 θ0


, A∗ :



θ∗0 ϕ1 0

θ∗1 ϕ2

θ∗1 ·
· ·

· ϕd

0 θ∗d


.

We are using the description in [54, Theorem 18.1]. For the above parameter array, the sequence {θi}di=0 (resp.

{θ∗i }di=0) is an ordering of the eigenvalues of A (resp. A∗). These orderings are standard [47, Theorem 3.2].
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We comment on the uniqueness of the parameter array. Consider a parameter array (1.1) of A,A∗. Then

by [47, Theorem 1.11], each of the following is a parameter array of A,A∗:

({θi}di=0; {θ∗i }di=0; {φi}di=1; {ϕi}di=1),

({θi}di=0; {θ∗d−i}di=0; {ϕd−i+1}di=1; {φd−i+1}di=1),

({θd−i}di=0; {θ∗i }di=0; {ϕi}di=1; {φi}di=1),

({θd−i}di=0; {θ∗d−i}di=0; {φd−i+1}di=1; {ϕd−i+1}di=1).

Moreover, A,A∗ has no further parameter array. By [49, Lemma 12.4], two Leonard pairs over F are

isomorphic if and only if they have a common parameter array. Now consider a parameter array (1.1) of

A,A∗. By [47, Theorem 1.9] the expressions:

θi−2 − θi+1

θi−1 − θi
,

θ∗i−2 − θ∗i+1

θ∗i−1 − θ∗i
,(1.2)

are equal and independent of i for 2 ≤ i ≤ d − 1. For the rest of this paragraph, assume that d ≥ 3. Let

β + 1 denote the common value of (1.2). The scalar β is called the fundamental constant of A,A∗. For a

parameter array of A,A∗, the entries satisfy numerous relations [47, Theorem 1.9]. In [52], the solutions are

given in closed form, in terms of seven free variables in addition to d and β. These seven variables are called

basic. The closed forms depend on the nature of β, as we now describe. The Leonard pair A,A∗ is said

to have type I whenever β ̸= ±2; type II whenever β = 2 and Char(F) ̸= 2; type III+ whenever β = −2,

Char(F) ̸= 2, and d is even; type III− whenever β = −2, Char(F) ̸= 2, and d is odd; type IV whenever β = 2

and Char(F) = 2. For each type, the solutions are given in [52, Section 5].

We now describe our goals for the present paper. We introduce the concepts of compatibility and

companion for Leonard pairs. These concepts are described as follows. Leonard pairs A,A∗ and B,B∗ on

V are said to be compatible whenever A∗ = B∗ and [A,A∗] = [B,B∗], where [r, s] = rs− sr. For a Leonard

pair A,A∗ on V , by a companion of A,A∗ we mean an F-linear map K : V → V such that K is a polynomial

in A∗ and A −K,A∗ is a Leonard pair on V . The concepts of compatibility and companion are related as

follows. For compatible Leonard pairs A,A∗ and B,B∗ on V , define K = A−B. Then K is a companion of

A,A∗. For a Leonard pair A,A∗ on V and a companion K of A,A∗, define B = A−K and B∗ = A∗. Then

B,B∗ is a Leonard pair on V that is compatible with A,A∗. Let A,A∗ denote a Leonard pair on V . In this

paper, we find all the Leonard pairs B,B∗ on V that are compatible with A,A∗. For each solution B,B∗,

we describe the corresponding companion K = A−B.

We will describe our main results after a few comments. Consider a Leonard pair A,A∗ on V with a

parameter array (1.1). We will show that for d ≥ 3, the scalar

κ = (θi−1 − θi+1)
2 + (β + 2)(θi − θi−1)(θi − θi+1),

is independent of i for 1 ≤ i ≤ d− 1. We call κ the invariant value for A,A∗.

As we will see, every Leonard pair can be represented by an ordered pair of matrices, such that the first

matrix is irreducible tridiagonal with all entries 1 on the subdiagonal, and the second matrix is diagonal.

Motivated by this fact, we consider the following setup. Fix a diagonal matrix:

A∗ = diag(θ∗0 , θ
∗
1 , . . . , θ

∗
d),

with {θ∗i }di=0 mutually distinct scalars in F. An irreducible tridiagonal matrix is said to be normalized

whenever it has all entries 1 on the subdiagonal. Let the set Ω consist of the normalized irreducible tridiagonal
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matrices A such that A,A∗ is a Leonard pair on Fd+1. For the moment let A ∈ Ω. As we will see in Lemma

9.3, the set Ω contains all the matrices B such that B,A∗ is a Leonard pair on Fd+1 that is compatible with

A,A∗. For the rest of this section, fix matrices A and B in Ω, and let

({θi}di=0; {θ∗i }di=0; {φi}di=1; {ϕi}di=1), ({θ′i}di=0; {θ∗i }di=0; {φ′
i}di=1; {ϕ′

i}di=1),

denote a parameter array of A,A∗ and B,A∗, respectively.

We now describe our first main result. The Leonard pairs A,A∗ and B,A∗ are compatible if and only if

φiϕi = φ′
iϕ

′
i (1 ≤ i ≤ d).

Our second main result is as follows. For the case d = 1, A,A∗ and B,A∗ are compatible if and only

if φ1ϕ1 = φ′
1ϕ

′
1. For the case d = 2, A,A∗ and B,A∗ are compatible if and only if φ1ϕ1 = φ′

1ϕ
′
1 and

φ2ϕ2 = φ′
2ϕ

′
2. For the case d ≥ 3, A,A∗ and B,A∗ are compatible if and only if

κ = κ′, φ1ϕ1 = φ′
1ϕ

′
1, φdϕd = φ′

dϕ
′
d,(1.3)

where κ (resp. κ′) is the invariant value for A,A∗ (resp. B,A∗). We now describe our further main results.

Assume that d ≥ 3. Note that A,A∗ and B,A∗ have the same fundamental constant and the same type.

For each type, we describe the conditions (1.3) in terms of the basic variables for A,A∗ and B,A∗. These

descriptions are given in Theorems 17.1, 20.1, 23.1, 26.1, and 29.1. We solve the resulting equations in terms

of the basic variables of A,A∗. Our solutions are listed in Theorems 17.2, 17.3, 20.2, 23.2, 26.2, and 29.2.

For each solution, we describe the corresponding companion K = A − B. These descriptions can be found

in Theorems 18.1, 18.2, 18.3, 18.4, 21.1, 21.2, 24.1, 27.1, and 30.1.

We mention some examples of compatible Leonard pairs. Let A, B ∈ Ω as above. We mentioned earlier

that A,A∗ and B,A∗ are compatible if and only if φiϕi = φ′
iϕ

′
i for 1 ≤ i ≤ d. This condition is satisfied if

one of the following (i)–(iv) holds:

(i) φ′
i = φi and ϕ′

i = ϕi (1 ≤ i ≤ d);

(ii) φ′
i = ϕi and ϕ′

i = φi (1 ≤ i ≤ d);

(iii) φ′
i = −φi and ϕ′

i = −ϕi (1 ≤ i ≤ d);

(iv) φ′
i = −ϕi and ϕ′

i = −φi (1 ≤ i ≤ d).

As we will see in Proposition 12.3, the condition (i) or (ii) holds if and only if there exists ζ ∈ F such that

B = A+ζI. Here, I denotes the identity matrix. Define A∨ = −SAS−1, where S denotes the diagonal matrix

that has (i, i)-entry (−1)i for 0 ≤ i ≤ d. Then, A∨ ∈ Ω (see Lemma 10.1.) As we will see in Proposition

12.4, the condition (iii) or (iv) holds if and only if there exists ζ ∈ F such that B = A∨ + ζI. In the main

body of the paper, we interpret conditions (iii) and (iv) using a symmetric binary relation called the bond

relation.

The paper is organized as follows. In Section 2, we fix our notation and recall some materials from linear

algebra. In Sections 3 and 4, we obtain some results about tridiagonal matrices that will be used later in

the paper. In Section 4, we discuss the normalization of an irreducible tridiagonal matrix. In Section 5, we

introduce the bond relation. In Section 6, we recall some basic facts about Leonard pairs. In Section 7,

we apply the bond relation to Leonard pairs. In Section 8, we introduce the concepts of compatibility and

companion for Leonard pairs. In Section 9, we introduce the set Ω. In Section 10, we consider the bond

relation on Ω. In Section 11, we consider the compatibility relation on Ω. In Section 12, we prove our first
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main result. In Section 13, we describe some basic facts about the type of a Leonard pair. In Section 14, we

display a formula that will be used in the proof of our second main result. In Section 15, we describe the

companions of a Leonard pair for d = 1, 2. In Sections 16–30, we consider Leonard pairs with d ≥ 3. For

each type I–IV, we describe the parameter array in terms of the basic variables and prove the formula from

Section 14 (Sections 16, 19, 22, 25, and 28); we represent condition (1.3) in terms of the basic variables and

give the solutions (Sections 17, 20, 23, 26, and 29); and we describe the companions of the given Leonard

pair (Sections 18, 21, 24, 27, and 30).

2. Preliminaries. The following notational conventions hold throughout the paper. Let F denote a

field. Every vector space and algebra discussed in this paper is over F. Fix an integer d ≥ 0. The notation

{xi}di=0 refers to the sequence x0, x1, . . . , xd. Let Matd+1(F) denote the algebra consisting of the d + 1

by d + 1 matrices that have all entries in F. We index the rows and columns by 0, 1, . . . , d. The identity

element of Matd+1(F) is denoted by I. Let Fd+1 denote the vector space consisting of the column vectors

with d + 1 rows and all entries in F. We index the rows by 0, 1, . . . , d. The algebra Matd+1(F) acts on

Fd+1 by left multiplication. Let V denote a vector space with dimension d + 1. Let End(V ) denote the

algebra consisting of the F-linear maps V → V . The identity element of End(V ) is denoted by I. We

recall how each basis {vi}di=0 of V gives an algebra isomorphism End(V ) → Matd+1(F). For A ∈ End(V )

and M ∈ Matd+1(F), we say that M represents A with respect to {vi}di=0 whenever Avj =
∑d

i=0 Mi,jvi for

0 ≤ j ≤ d. The isomorphism sends A to the unique matrix in Matd+1(F) that represents A with respect

to {vi}di=0. Let A ∈ End(V ). By an eigenspace of A, we mean a subspace W ⊆ V such that W ̸= 0 and

there exists θ ∈ F such that W = {v ∈ V |Av = θv}; in this case, θ is the eigenvalue of A associated with

W . We say that A is diagonalizable whenever V is spanned by the eigenspaces of A. We say that A is

multiplicity-free whenever A is diagonalizable and its eigenspaces all have dimension one. Assume that A

is multiplicity-free. Let {θi}di=0 denote an ordering of the eigenvalues of A. For 0 ≤ i ≤ d let Vi, denote

the eigenspace of A associated with θi and define Ei ∈ End(V ) such that (Ei − I)Vi = 0 and EiVj = 0 for

j ̸= i (0 ≤ j ≤ d). We call Ei the primitive idempotent of A associated with θi. We have (i) EiEj = δi,jEi

(0 ≤ i, j ≤ d); (ii) I =
∑d

i=0 Ei; (iii) AEi = θiEi = EiA (0 ≤ i ≤ d); (iv) A =
∑d

i=0 θiEi; (v) Vi = EiV

(0 ≤ i ≤ d); (vi) rank(Ei) = 1 (0 ≤ i ≤ d); and (vii) tr(Ei) = 1 (0 ≤ i ≤ d), where tr means trace.

Moreover,

Ei =
∏

0 ≤ j ≤ d

j ̸= i

A− θjI

θi − θj
(0 ≤ i ≤ d).

Let ⟨A⟩ denote the subalgebra of End(V ) generated by A. The algebra ⟨A⟩ is commutative. The elements

{Ai}di=0 form a basis of ⟨A⟩ and
∏d

i=0(A− θiI) = 0. Moreover, {Ei}di=0 form a basis of ⟨A⟩.

Lemma 2.1. Assume that A ∈ End(V ) is multiplicity-free with primitive idempotents {Ei}di=0. Then for

H ∈ End(V ), the following (i)–(iii) are equivalent:

(i) H ∈ ⟨A⟩;
(ii) H commutes with A;

(iii) H commutes with Ei for 0 ≤ i ≤ d.

Proof. This is a reformulation of the fact that a matrix M ∈ Matd+1(F) commutes with each diagonal

matrix in Matd+1(F) if and only if M diagonal.
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Lemma 2.2 (Skolem-Noether, see [43, Corollary 7.125]). For a map σ : End(V ) → End(V ), the

following are equivalent:

(i) σ is an algebra isomorphism;

(ii) there exists an invertible S ∈ End(V ) such that Xσ = SXS−1 for all X ∈ End(V ).

3. Tridiagonal matrices and diagonal equivalence. Recall the algebra Matd+1(F). In this section,

we describe an equivalence relation on Matd+1(F) called diagonal equivalence. We investigate this equivalence

relation on the set of irreducible tridiagonal matrices in Matd+1(F).

Definition 3.1. Matrices A and B in Matd+1(F) are said to be diagonally equivalent whenever there

exists an invertible diagonal matrix S ∈ Matd+1(F) such that B = SAS−1.

Note that diagonal equivalence is an equivalence relation on Matd+1(F).

Lemma 3.2. For a matrix A ∈ Matd+1(F) and an invertible diagonal matrix,

S = diag(s0, s1, . . . , sd),

the matrix SAS−1 has (i, j)-entry sis
−1
j Ai,j for 0 ≤ i, j ≤ d.

Proof. By matrix multiplication.

Corollary 3.3. For diagonally equivalent matrices A, B in Matd+1(F),

Ai,i = Bi,i (0 ≤ i ≤ d),(3.1)

Ai,jAj,i = Bi,jBj,i (0 ≤ i, j ≤ d).(3.2)

Proof. Use Lemma 3.2.

We have a comment about Corollary 3.3. Suppose that A, B in Matd+1(F) satisfy (3.1), (3.2). It is

natural to conjecture that A and B are diagonally equivalent. This conjecture is not true in general; a

counterexample is

A =

0 1 2

1 0 1

2 1 0

 , B =

0 1 4

1 0 1

1 1 0

 .

We now consider a class of matrices for which the conjecture is true.

A matrix M ∈ Matd+1(F) is said to be tridiagonal whenever the (i, j)-entry Mi,j = 0 if |i − j| > 1

(0 ≤ i, j ≤ d). Assume that M is tridiagonal. Then, M is said to be irreducible whenever Mi,j ̸= 0 if

|i− j| = 1 (0 ≤ i, j ≤ d).

Next, we give a variation on Lemma 3.2.

Lemma 3.4. For a tridiagonal matrix A ∈ Matd+1(F) and an invertible diagonal matrix:

S = diag(s0, s1, . . . , sd),

the matrix SAS−1 is tridiagonal with entries:

(i, i)-entry (i, i− 1)-entry (i− 1, i)-entry

Ai,i sis
−1
i−1Ai,i−1 si−1s

−1
i Ai−1,i

.
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Proof. Use Lemma 3.2.

We emphasize a few points from Lemma 3.4.

Lemma 3.5. For diagonally equivalent matrices A, B in Matd+1(F), A is tridiagonal if and only if B is

tridiagonal. In this case, A is irreducible if and only if B is irreducible.

Proof. Use Lemmas 3.2 and 3.4.

We now establish the converse of Corollary 3.3 for irreducible tridiagonal matrices.

Lemma 3.6. For irreducible tridiagonal matrices A and B in Matd+1(F), assume that

Ai,i = Bi,i (0 ≤ i ≤ d), Ai,i−1Ai−1,i = Bi,i−1Bi−1,i (1 ≤ i ≤ d).(3.3)

Define a diagonal matrix S ∈ Matd+1(F) that has diagonal entries:

Si,i =
B1,0B2,1 · · ·Bi,i−1

A1,0A2,1 · · ·Ai,i−1
(0 ≤ i ≤ d).(3.4)

Then B = SAS−1.

Proof. For 0 ≤ i ≤ d abbreviate si = Si,i. By (3.3) and (3.4),

si
si−1

=
Bi,i−1

Ai,i−1
=

Ai−1,i

Bi−1,i
(1 ≤ i ≤ d).(3.5)

The matrices SAS−1 and B are tridiagonal. By Lemma 3.2 and (3.3),

(SAS−1)i,i = Ai,i = Bi,i (0 ≤ i ≤ d).

By Lemma 3.2 and (3.5),

(SAS−1)i,i−1 = sis
−1
i−1Ai,i−1 = Bi,i−1 (1 ≤ i ≤ d),

(SAS−1)i−1,i = si−1s
−1
i Ai−1,i = Bi−1,i (1 ≤ i ≤ d).

By these comments, SAS−1 = B.

Lemma 3.7. For an irreducible tridiagonal matrix A ∈ Matd+1(F) and an invertible diagonal matrix

S ∈ Matd+1(F), define B = SAS−1. Then the following (i)–(v) are equivalent:

(i) Ai,i−1 = Bi,i−1 for 1 ≤ i ≤ d;

(ii) Ai−1,i = Bi−1,i for 1 ≤ i ≤ d;

(iii) A−B is diagonal;

(iv) A = B;

(v) Si,i = S0,0 for 0 ≤ i ≤ d.

Proof. Note that B is irreducible tridiagonal.

(i) ⇔ (ii) By (3.2).

(i),(ii) ⇔ (iii) Since B is tridiagonal.

(i),(ii) ⇒ (iv) By (3.1) and since B is tridiagonal.

(iv) ⇒ (iii) Clear.

(i) ⇔ (v) For 0 ≤ i ≤ d abbreviate si = Si,i. By Lemma 3.4, Bi,i−1 = sis
−1
i−1Ai,i−1 for 1 ≤ i ≤ d. So (i)

holds if and only if sis
−1
i−1 = 1 (1 ≤ i ≤ d) if and only if si = s0 (0 ≤ i ≤ d).
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4. A normalization. In this section, we introduce a type of irreducible tridiagonal matrix, said to be

normalized.

Definition 4.1. An irreducible tridiagonal matrix A ∈ Matd+1(F) is said to be normalized whenever

Ai,i−1 = 1 for 1 ≤ i ≤ d.

Lemma 4.2. Every irreducible tridiagonal matrix in Matd+1(F) is diagonally equivalent to a unique

normalized irreducible tridiagonal matrix in Matd+1(F).

Proof. Consider an irreducible tridiagonal matrix A ∈ Matd+1(F). We first show the existence of a nor-

malized irreducible tridiagonal matrix in Matd+1(F) that is diagonally equivalent to A. Define an irreducible

tridiagonal matrix B ∈ Matd+1(F) such that Bi,i = Ai,i for 0 ≤ i ≤ d and Bi,i−1 = 1, Bi−1,i = Ai,i−1Ai−1,i

for 1 ≤ i ≤ d. By Lemma 3.6, there exists an invertible diagonal matrix S ∈ Matd+1(F) such that

B = SAS−1. Then B is a normalized irreducible tridiagonal matrix that is diagonally equivalent to A.

We have shown the existence. Next, we show the uniqueness. Consider normalized irreducible tridiagonal

matrices B1 and B2 in Matd+1(F) each of which is diagonally equivalent to A. Then B1 and B2 are diag-

onally equivalent. We apply Lemma 3.7 to B1 and B2. We have (B1)i,i−1 = (B2)i,i−1 for 1 ≤ i ≤ d. So

Lemma 3.7(i) holds. By this and Lemma 3.7(iv), we obtain B1 = B2. We have shown the uniqueness.

5. The bond relation. In this section, we introduce a symmetric binary relation on the set of irre-

ducible tridiagonal matrices in Matd+1(F). We call this relation the bond relation. To motivate things, we

mention a variation on Lemma 3.7.

Lemma 5.1. For an irreducible tridiagonal matrix A ∈ Matd+1(F) and an invertible diagonal matrix

S ∈ Matd+1(F), define B = SAS−1. Then the following (i)–(iv) are equivalent:

(i) Ai,i−1 = −Bi,i−1 for 1 ≤ i ≤ d;

(ii) Ai−1,i = −Bi−1,i for 1 ≤ i ≤ d;

(iii) A+B is diagonal;

(iv) Si,i = (−1)iS0,0 for 0 ≤ i ≤ d.

Moreover, if (i)–(iv) hold then A+B has (i, i)-entry 2Ai,i for 0 ≤ i ≤ d.

Proof. Note by Lemma 3.5 that B is irreducible tridiagonal.

(i) ⇔ (ii) By (3.2).

(i),(ii) ⇔ (iii) Since B is tridiagonal.

(i) ⇔ (iv) For 0 ≤ i ≤ d abbreviate si = Si,i. By Lemma 3.4, Bi,i−1 = sis
−1
i−1Ai,i−1 for 1 ≤ i ≤ d. So (i)

holds if and only if sis
−1
i−1 = −1 (1 ≤ i ≤ d) if and only if si = (−1)is0 (0 ≤ i ≤ d).

Suppose (i)–(iv) hold. By Corollary 3.3, we have Ai,i = Bi,i for 0 ≤ i ≤ d. So the matrix A + B has

(i, i)-entry 2Ai,i for 0 ≤ i ≤ d.

In view of Lemma 5.1, we make a definition.

Definition 5.2. For an irreducible tridiagonal matrix A ∈ Matd+1(F), define A∨ = −SAS−1, where

S ∈ Matd+1(F) is diagonal with (i, i)-entry (−1)i for 0 ≤ i ≤ d. Note that A∨ is irreducible tridiagonal and

diagonally equivalent to −A.
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Note 5.3. For an irreducible tridiagonal matrix A ∈ Matd+1(F), (A∨)∨ = A.

Note 5.4. Referring to Definition 5.2, assume that Char(F) = 2. Then S = I and A∨ = A.

Definition 5.5. Irreducible tridiagonal matrices A and B in Matd+1(F) are said to be bonded whenever

B = A∨.

Note 5.6. The bond relation is a symmetric binary relation on the set of all irreducible tridiagonal

matrices Matd+1(F).

Lemma 5.7. For an irreducible tridiagonal matrix A ∈ Matd+1(F), there exists a unique irreducible

tridiagonal matrix in Matd+1(F) that is bonded to A.

Proof. By the construction.

Lemma 5.8. Consider irreducible tridiagonal matrices A, B in Matd+1(F). Then A and B are bonded

if and only if the following (i)–(iii) hold:

(i) Ai,i−1 = Bi,i−1 for 1 ≤ i ≤ d;

(ii) Ai−1,i = Bi−1,i for 1 ≤ i ≤ d;

(iii) Ai,i = −Bi,i for 0 ≤ i ≤ d.

Proof. Use Lemma 3.4.

Lemma 5.9. For irreducible tridiagonal matrices A and B in Matd+1(F), assume that A and B are

bonded. Then A is normalized if and only if B is normalized.

Proof. By Lemma 5.8(i).

In the next two results, we characterize the bond relation in various ways.

Lemma 5.10. Consider irreducible tridiagonal matrices A, B in Matd+1(F). Then the following (i)–(iii)

are equivalent:

(i) A and B are bonded;

(ii) A−B is diagonal with (i, i)-entry 2Ai,i for 0 ≤ i ≤ d;

(iii) B −A is diagonal with (i, i)-entry 2Bi,i for 0 ≤ i ≤ d.

Proof. Use Lemma 5.8.

Lemma 5.11. For an irreducible tridiagonal matrix A ∈ Matd+1(F) and a diagonal matrix K ∈ Matd+1

(F), the following are equivalent:

(i) A and A−K are bonded;

(ii) Ki,i = 2Ai,i for 0 ≤ i ≤ d.

Proof. Define B = A−K and use Lemma 5.10.

Lemma 5.12. Let A ∈ Matd+1(F) be irreducible tridiagonal. If Char(F) = 2, then A is bonded to A. If

Char(F) ̸= 2, then the following are equivalent:

(i) A is bonded to A;

(ii) Ai,i = 0 for 0 ≤ i ≤ d.

Proof. First assume that Char(F) = 2. Then A is bonded to A by Note 5.4. Next assume that Char(F) ̸=
2. In Lemma 5.11, set K = 0 to get the equivalence of (i), (ii).
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6. Leonard pairs and Leonard systems. In this section, we briefly recall the notion of a Leonard

pair and a Leonard system.

Definition 6.1 (See [47, Definition 1.1]). By a Leonard pair on V , we mean an ordered pair A,A∗ of

elements in End(V ) that satisfy (i) and (ii) below:

(i) there exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal

and the matrix representing A∗ is diagonal;

(ii) there exists a basis for V with respect to which the matrix representing A∗ is irreducible tridiagonal

and the matrix representing A is diagonal.

Note 6.2. By a common notational convention, A∗ denotes the conjugate-transpose of A. We are not

using this convention. In a Leonard pair A,A∗, the elements A and A∗ are arbitrary subject to (i) and (ii)

above.

Note 6.3. Assume that d = 0. Then any ordered pair of elements in End(V ) form a Leonard pair on

V .

For the rest of this paper, we assume d ≥ 1.

Consider a Leonard pair A,A∗ on V and a Leonard pair B,B∗ on a vector space V ′. By an isomorphism

of Leonard pairs from A,A∗ to B,B∗ we mean an algebra isomorphism End(V ) → End(V ′) that sends

A 7→ B and A∗ 7→ B∗. The Leonard pairs A,A∗ and B,B∗ are said to be isomorphic whenever there exists

an isomorphism of Leonard pairs from A,A∗ to B,B∗.

Lemma 6.4. For a Leonard pair A,A∗ on V and a pair B,B∗ of elements in End(V ), the following are

equivalent:

(i) B,B∗ is a Leonard pair on V that is isomorphic to A,A∗;

(ii) there exists an invertible S ∈ End(V ) such that B = SAS−1 and B∗ = SA∗S−1.

Proof. Routine verification using Lemma 2.2.

Lemma 6.5 (See [38, Lemma 5.1]). For a Leonard pair A,A∗ on V and scalars ξ, ξ∗, ζ, ζ∗ in F with

ξξ∗ ̸= 0, the pair ξA+ ζI, ξ∗A∗ + ζ∗I is a Leonard pair on V .

When working with a Leonard pair, it is often convenient to consider a closely related object called a

Leonard system. In order to define this, we first make an observation about Leonard pairs.

Lemma 6.6 (See [47, Lemma 3.1]). For a Leonard pair A,A∗ on V , each of A, A∗ is multiplicity-free.

A Leonard system is defined as follows.

Definition 6.7 (See [47, Definition 1.4]). By a Leonard system on V , we mean a sequence:

(6.1) Φ = (A; {Ei}di=0;A
∗; {E∗

i }di=0),

of elements in End(V ) that satisfy the following (i)–(v):

(i) each of A,A∗ is multiplicity-free;

(ii) {Ei}di=0 is an ordering of the primitive idempotents of A;

(iii) {E∗
i }di=0 is an ordering of the primitive idempotents of A∗;
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(iv) E∗
i AE

∗
j =

{
0 if |i− j| > 1,

̸= 0 if |i− j| = 1
(0 ≤ i, j ≤ d);

(v) EiA
∗Ej =

{
0 if |i− j| > 1,

̸= 0 if |i− j| = 1
(0 ≤ i, j ≤ d).

We say that Φ is over F.

Leonard systems are related to Leonard pairs as follows. For the Leonard system Φ from (6.1), by [51,

Section 3] the pair A,A∗ is a Leonard pair on V . Conversely, for a Leonard pair A,A∗ on V , each of A,A∗

is multiplicity-free by Lemma 6.6. Moreover, there exists an ordering {Ei}di=0 of the primitive idempotents

of A and an ordering of {E∗
i }di=0 of the primitive idempotents of A∗ such that (A; {Ei}di=0;A

∗; {E∗
i }di=0) is

a Leonard system on V (see [51, Lemma 3.3].)

Consider the Leonard system Φ from (6.1) and a Leonard system:

Φ′ = (B; {E′
i}di=0;B

∗; {E∗′
i }di=0),

on a vector space V ′. By an isomorphism of Leonard systems from Φ to Φ′, we mean an algebra isomorphism

End(V ) → End(V ′) that sends A 7→ B, A∗ 7→ B∗ and Ei 7→ E′
i, E

∗
i 7→ E∗′

i for 0 ≤ i ≤ d. The Leonard

systems Φ and Φ′ are said to be isomorphic whenever there exists an isomorphism of Leonard systems from

Φ to Φ′.

Lemma 6.8. Consider the Leonard system Φ from (6.1) and a sequence:

Φ′ = (B; {E′
i}di=0;B

∗; {E∗′
i }di=0),

of elements in End(V ). Then the following are equivalent:

(i) Φ′ is a Leonard system on V that is isomorphic to Φ;

(ii) there exists an invertible S ∈ End(V ) such that SAS−1 = B, SA∗S−1 = B∗, and SEiS
−1 = E′

i,

SE∗
i S

−1 = E∗′
i for 0 ≤ i ≤ d.

Proof. Routine verification using Lemma 2.2.

Definition 6.9. Consider a Leonard pair A,A∗ on V . An ordering {Ei}di=0 of the primitive idempotents

of A is said to be standard whenever it satisfies Definition 6.7(v). A standard ordering of the primitive

idempotents of A∗ is similarly defined.

Referring to Definition 6.9, for a standard ordering {Ei}di=0 of the primitive idempotents of A, the

ordering {Ed−i}di=0 is standard and no further ordering is standard. A similar comment applies to the

primitive idempotents of A∗.

For the Leonard system Φ from (6.1), each of the following is a Leonard system on V :

Φ∗ = (A∗; {E∗
i }di=0;A; {Ei}di=0),

Φ↓ = (A; {Ei}di=0;A
∗; {E∗

d−i}di=0),

Φ⇓ = (A; {Ed−i}di=0;A
∗; {E∗

i }di=0).

For g ∈ {∗, ↓,⇓} and an object f associated with Φ, let fg denote the corresponding object associated with

Φg.

The Leonard system Φ from (6.1) and the Leonard pair A,A∗ are said to be associated.
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Lemma 6.10 (See [49, Section 3]). Let A,A∗ denote a Leonard pair on V . If Φ is a Leonard system

associated with A,A∗, then so is Φ↓, Φ⇓, Φ↓⇓. No further Leonard system is associated with A,A∗.

Definition 6.11. Consider the Leonard system Φ from (6.1). For 0 ≤ i ≤ d let θi (resp. θ∗i ) denote

the eigenvalue of A (resp. A∗) associated with Ei (resp. E
∗
i ). We call {θi}di=0 (resp. {θ∗i }di=0) the eigenvalue

sequence (resp. dual eigenvalue sequence) of Φ.

Lemma 6.12 (See [47, Theorem 3.2]). Referring to Definition 6.11, there exists a sequence {φi}di=1 of

scalars in F and a basis of V with respect to which the matrices representing A and A∗ are

A :



θ0 0

1 θ1
1 θ2

· ·
· ·

0 1 θd


, A∗ :



θ∗0 φ1 0

θ∗1 φ2

θ∗1 ·
· ·

· φd

0 θ∗d


.

The sequence {φi}di=1 is uniquely determined by Φ. Moreover, φi ̸= 0 for 1 ≤ i ≤ d.

Definition 6.13 (See [47, Definition 3.10]). Referring to Lemma 6.12, we call {φi}di=1 the first split

sequence of Φ. Let {ϕi}di=1 denote the first split sequence of Φ⇓. We call {ϕi}di=1 the second split sequence

of Φ.

Definition 6.14 (See [53, Definition 22.3]). For the Leonard system Φ from (6.1), by the parameter

array of Φ we mean the sequence:

({θi}di=0; {θ∗i }di=0; {φi}di=1; {ϕi}di=1),

where {θi}di=0 (resp. {θ∗i }di=0) is the eigenvalue sequence (resp. dual eigenvalue sequence) of Φ, and {φi}di=1

(resp. {ϕi}di=1) is the first split sequence (resp. second split sequence) of Φ.

Lemma 6.15 (See [47, Theorem 1.9]). Consider a sequence

(6.2) ({θi}di=0; {θ∗i }di=0; {φi}di=1; {ϕi}di=1),

of scalars taken from F. Then there exists a Leonard system Φ over F with parameter array (6.2) if and only

if the following conditions (i)–(v) hold:

(i) θi ̸= θj , θ∗i ̸= θ∗j if i ̸= j (0 ≤ i, j ≤ d);

(ii) φi ̸= 0, ϕi ̸= 0 (1 ≤ i ≤ d);

(iii) φi = ϕ1

∑i−1
ℓ=0

θℓ−θd−ℓ

θ0−θd
+ (θ∗i − θ∗0)(θi−1 − θd) (1 ≤ i ≤ d);

(iv) ϕi = φ1

∑i−1
ℓ=0

θℓ−θd−ℓ

θ0−θd
+ (θ∗i − θ∗0)(θd−i+1 − θ0) (1 ≤ i ≤ d);

(v) the expressions

(6.3)
θi−2 − θi+1

θi−1 − θi
,

θ∗i−2 − θ∗i+1

θ∗i−1 − θ∗i
,

are equal and independent of i for 2 ≤ i ≤ d− 1.

Moreover, if (i)–(v) hold, then Φ is uniquely determined up to isomorphism of Leonard systems.

Definition 6.16. By a parameter array over F we mean a sequence

({θi}di=0; {θ∗i }di=0; {φi}di=1; {ϕi}di=1),

of scalars taken from F that satisfy conditions (i)–(v) in Lemma 6.15.
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Definition 6.17. Referring to Definition 6.16, assume that d ≥ 3. Define β ∈ F such that β+1 is equal

to the common value of the two fractions in (6.3). We call β the fundamental constant of the parameter

array (6.2).

Definition 6.18. Assume that d ≥ 3. Then the fundamental constant of a given Leonard system is the

fundamental constant of the associated parameter array.

Referring to Definition 6.18, observe that for a Leonard pair on V the associated Leonard systems have

the same fundamental constant.

Definition 6.19. Assume that d ≥ 3. The fundamental constant of a given Leonard pair is the funda-

mental constant of an associated Leonard system.

In the next result, we emphasize some relations from Lemma 6.15 for later use.

Lemma 6.20. Referring to Definition 6.16,

φ1 − ϕ1 = (θ∗1 − θ∗0)(θ0 − θd),(6.4)

φd − ϕ1 = (θ∗d − θ∗0)(θd−1 − θd),(6.5)

ϕd − φ1 = (θ∗d − θ∗0)(θ1 − θ0).(6.6)

Proof. In Lemma 6.15(iii),(iv) set i = 1 and i = d.

Lemma 6.21 (See [27, Theorem 11.1]). Assume that d ≥ 3. Consider a parameter array (6.2) over F
with fundamental constant β. Then there exist scalars γ, ϱ such that

γ = θi−1 − βθi + θi+1 (1 ≤ i ≤ d− 1),

ϱ = θ2i−1 − βθi−1θi + θ2i − γ(θi−1 + θi) (1 ≤ i ≤ d).

For a Leonard pair A,A∗ on V , consider the scalars γ and β for the parameter array of a Leonard system

associated with A,A∗. Observe that the scalars γ and ϱ are determined by A,A∗.

Definition 6.22. Assume that d ≥ 3. Referring to Lemma 6.21, define

(6.7) κ = γ2 + (2− β)ϱ.

We call κ the invariant value for the parameter array (6.2).

Definition 6.23. Assume that d ≥ 3. Let Φ denote a Leonard system on V . By the invariant value for

Φ, we mean the invariant value for the parameter array of Φ.

For a Leonard pair A,A∗ on V , consider a Leonard system Φ associated with A,A∗. Observe that the

invariant value for Φ is determined by A,A∗, and independent of the choice of an associated Leonard system.

Definition 6.24. Assume that d ≥ 3. Let A,A∗ denote a Leonard pair on V . By the invariant value

for A,A∗, we mean the invariant value of a Leonard system associated with A,A∗.

Lemma 6.25. Referring to Definition 6.22,

κ = (θi−1 − θi+1)
2 + (β + 2)(θi − θi−1)(θi − θi+1) (1 ≤ i ≤ d− 1).

Proof. In (6.7), eliminate γ and ϱ using Lemma 6.21 and rearrange the terms.
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Lemma 6.26 (See [54, Lemma 19.13]). Referring to Definition 6.16,

θℓ − θd−ℓ

θ0 − θd
=

θ∗ℓ − θ∗d−ℓ

θ∗0 − θ∗d
(0 ≤ ℓ ≤ d).

Notation 6.27. Let Φ = (A; {Ei}di=0;A
∗; {E∗

i }di=0) denote a Leonard system on V with parameter array

({θi}di=0; {θ∗i }di=0; {φi}di=1; {ϕi}di=1).

Lemma 6.28 (See [47, Theorem 1.11]). Referring to Notation 6.27, the following (i)–(iii) hold:

(i) The parameter array of Φ∗ is ({θ∗i }di=0; {θi}di=0; {φi}di=1; {ϕd−i+1}di=1).

(ii) The parameter array of Φ↓ is ({θi}di=0; {θ∗d−i}di=0; {ϕd−i+1}di=1; {φd−i+1}di=1).

(iii) The parameter array of Φ⇓ is ({θd−i}di=0; {θ∗i }di=0; {ϕi}di=1; {φi}di=1).

Lemma 6.29 (See [38, Lemmas 5.1, 6.1]). Referring to Notation 6.27, for scalars ξ, ξ∗, ζ, ζ∗ in F with

ξξ∗ ̸= 0, the sequence

(ξA+ ζI; {Ei}di=0; ξ
∗A∗ + ζ∗I; {E∗

i }di=0),

is a Leonard system on V with parameter array:

({ξθi + ζ}di=0; {ξ∗θ∗i + ζ∗}di=0; {ξξ∗φi}di=1; {ξξ∗ϕi}di=1).

Definition 6.30 (See [51, Definition 7.1]). Referring to Notation 6.27, define

ai = tr(AE∗
i ) (0 ≤ i ≤ d).

Lemma 6.31. Referring to Notation 6.27,
∑d

i=0 ai =
∑d

i=0 θi.

Proof. Using
∑d

i=0 E
∗
i = I, we find that

∑d
i=0 ai = tr(A). The result follows.

Lemma 6.32. Referring to Notation 6.27, the following hold: for 0 ≤ i ≤ d:

(i) a↓i = ad−i;

(ii) a⇓i = ai.

Proof. By Definition 6.30.

Lemma 6.33 (See [51, Lemma 10.2]). Referring to Notation 6.27, for 0 ̸= u ∈ E0V the vectors {E∗
i v}di=0

form a basis of V .

Our next goal is to describe the action of A, A∗ on the above basis.

Lemma 6.34 (See [51, Lemma 9.2]). Referring to Notation 6.27, tr(E∗
i E0) ̸= 0 for 0 ≤ i ≤ d.

Definition 6.35 (See [51, Lemma 11.5]). Referring to Notation 6.27, define

bi =
tr(E∗

i AE∗
i+1E0)

tr(E∗
i E0)

(0 ≤ i ≤ d− 1),

ci =
tr(E∗

i AE∗
i−1E0)

tr(E∗
i E0)

(1 ≤ i ≤ d).
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Lemma 6.36 (See [51, Lemma 10.2, Definition 11.1]). Referring to Notation 6.27, with respect to the

basis in Lemma 6.33, the matrices representing A and A∗ are

A :



a0 b0 0

c1 a1 b1
c2 · ·

· · ·
· · bd−1

0 cd ad


, A∗ : diag(θ∗0 , θ

∗
1 , . . . , θ

∗
d).

Lemma 6.37 (See [51, Lemma 11.2]). Referring to Notation 6.27, the following (i)–(iii) hold:

(i) bi ̸= 0 (0 ≤ i ≤ d− 1);

(ii) ci ̸= 0 (1 ≤ i ≤ d);

(iii) ci + ai + bi = θ0 (0 ≤ i ≤ d), where c0 = 0 and bd = 0.

Definition 6.38 (See [55, Definition 9.1]). Referring to Notation 6.27, we call the scalars {ai}di=0,

{bi}d−1
i=0 , {ci}di=1 the intersection numbers of Φ.

Definition 6.39 (See [51, Definition 7.1]). Referring to Notation 6.27, define

xi = tr(E∗
i AE∗

i−1A) (1 ≤ i ≤ d).

Lemma 6.40. Referring to Notation 6.27, the following hold for 1 ≤ i ≤ d:

(i) x↓
i = xd−i+1;

(ii) x⇓
i = xi.

Proof. By Definition 6.39.

Lemma 6.41 (See [51, Lemma 7.2]). Referring to Notation 6.27, let M ∈ Matd+1(F) represent A with

respect to a basis of V that satisfies Definition 6.1(i). Then

Mi,i = ai (0 ≤ i ≤ d), Mi,i−1Mi−1,i = xi (1 ≤ i ≤ d).

Corollary 6.42. Referring to Lemma 6.41, assume that M is normalized. Then

M =



a0 x1 0

1 a1 x2

1 · ·
· · ·

· · xd

0 1 ad


.

Proof. We have Mi,i−1 = 1 for 1 ≤ i ≤ d, since M is normalized. By this and Lemma 6.41, we get the

result.

Lemma 6.43 (See [51, Theorems 7.3, 7.4]). Referring to Notation 6.27, for 0 ̸= v ∈ E∗
0V the vec-

tors {E∗
i A

iv}di=0 form a basis of V that satisfies Definition 6.1(i). With respect to this basis, the matrix

representing A is normalized.

Lemma 6.44 (See [51, Lemma 11.2]). Referring to Notation 6.27, xi = bi−1ci for 1 ≤ i ≤ d.
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Lemma 6.45 (See [51, Theorem 17.8]). Referring to Notation 6.27,

a0 = θ0 +
φ1

θ∗0 − θ∗1
,(6.8)

ai = θi +
φi

θ∗i − θ∗i−1

+
φi+1

θ∗i − θ∗i+1

(1 ≤ i ≤ d− 1),(6.9)

ad = θd +
φd

θ∗d − θ∗d−1

.(6.10)

Lemma 6.46 (See [50, Lemma 10.3]). Referring to Notation 6.27,

a0 = θd +
ϕ1

θ∗0 − θ∗1
,(6.11)

ai = θd−i +
ϕi

θ∗i − θ∗i−1

+
ϕi+1

θ∗i − θ∗i+1

(1 ≤ i ≤ d− 1),(6.12)

ad = θ0 +
ϕd

θ∗d − θ∗d−1

.(6.13)

In the next result, we express each of φ1, ϕ1, φd, ϕd, and ad in terms of a0.

Lemma 6.47. Referring to Notation 6.27,

φ1 = (a0 − θ0)(θ
∗
0 − θ∗1),(6.14)

ϕ1 = (a0 − θd)(θ
∗
0 − θ∗1),(6.15)

φd = (ad − θd)(θ
∗
d − θ∗d−1),(6.16)

ϕd = (ad − θ0)(θ
∗
d − θ∗d−1),(6.17)

ad =
a0(θ

∗
0 − θ∗1) + θd(θ

∗
1 − θ∗d−1) + θd−1(θ

∗
d − θ∗0)

θ∗d − θ∗d−1

.(6.18)

Proof. Lines (6.14)–(6.17) come from (6.8), (6.11), (6.10), and (6.13), respectively. To get (6.18), evaluate

(6.15) and (6.16) using (6.5).

Let x denote an indeterminate, and let F[x] denote the algebra consisting of the polynomials in x that

have all coefficients in F. Referring to Notation 6.27, for 0 ≤ i ≤ d define polynomials in F[x]:

τi = (x− θ0)(x− θ1) · · · (x− θi−1),

ηi = (x− θd)(x− θd−1) · · · (x− θd−i+1),

τ∗i = (x− θ∗0)(x− θ∗1) · · · (x− θ∗i−1),

η∗i = (x− θ∗d)(x− θ∗d−1) · · · (x− θ∗d−i+1).

Lemma 6.48 (See [51, Theorem 17.9]). Referring to Notation 6.27,

xi = φiϕi

τ∗i−1(θ
∗
i−1)η

∗
d−i(θ

∗
i )

τ∗i (θ
∗
i )η

∗
d−i+1(θ

∗
i−1)

(1 ≤ i ≤ d).

Lemma 6.49. Referring to Notation 6.27, consider a Leonard system Φ′ = (B; {E′
i}di=0;A

∗; {E∗
i }di=0) on

V with parameter array ({θ′i}di=0; {θ∗i }di=0; {φ′
i}di=1; {ϕ′

i}di=1). Let the scalars {x′
i}di=1 be from Definition 6.39

for Φ′. Then the following are equivalent:
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(i) xi = x′
i (1 ≤ i ≤ d);

(ii) φiϕi = φ′
iϕ

′
i (1 ≤ i ≤ d).

Proof. Use Lemma 6.48.

For parameter arrays

({θi}di=0; {θ∗i }di=0; {φi}di=1; {ϕi}di=1). ({θ′i}di=0; {θ∗i }di=0; {φ′
i}di=1; {ϕ′

i}di=1),(6.19)

over F, we will consider two special cases of the condition (ii) in Lemma 6.49. One special case is described

in Lemma 6.50. The other special case is described in Lemma 7.22.

Lemma 6.50. For parameter arrays (6.19) over F, the following hold:

(i) Assume that φ′
i = φi and ϕ′

i = ϕi for 1 ≤ i ≤ d. Then there exists ζ ∈ F such that θ′i = θi + ζ for

0 ≤ i ≤ d.

(ii) Assume that φ′
i = ϕi and ϕ′

i = φi for 1 ≤ i ≤ d. Then there exists ζ ∈ F such that θ′i = θd−i + ζ for

0 ≤ i ≤ d.

Proof. By Lemma 6.26 we find that for 1 ≤ i ≤ d,

i−1∑
ℓ=0

θℓ − θd−ℓ

θ0 − θd
=

i−1∑
ℓ=0

θ∗ℓ − θ∗d−ℓ

θ∗0 − θ∗d
.

Denote this common value by ϑi. By Lemma 6.15,

φi = ϕ1ϑi + (θ∗i − θ∗0)(θi−1 − θd),(6.20)

ϕi = φ1ϑi + (θ∗i − θ∗0)(θd−i+1 − θ0).(6.21)

Using (6.20), we obtain

φ′
i = ϕ′

1ϑi + (θ∗i − θ∗0)(θ
′
i−1 − θ′d).(6.22)

(i) By φ′
i = φi (1 ≤ i ≤ d), ϕ′

1 = ϕ1, and (6.20), (6.22),

θ′i−1 − θ′d = θi−1 − θd (1 ≤ i ≤ d).

This implies θ′i = θi + ζ for 0 ≤ i ≤ d, where ζ = θ′d − θd.

(ii) By φ′
i = ϕi (1 ≤ i ≤ d), ϕ′

1 = φ1, and (6.21), (6.22),

θ′i−1 − θ′d = θd−i+1 − θ0 (1 ≤ i ≤ d).

This implies θ′i = θd−i + ζ for 0 ≤ i ≤ d, where ζ = θ′d − θ0.

We recall the bipartite property for Leonard pairs and Leonard systems. Recall the scalars {ai}di=0 from

Definition 6.30.

Definition 6.51 (See [37, Section 1]). A Leonard system Φ on V is said to be bipartite whenever ai = 0

for 0 ≤ i ≤ d.

Lemma 6.52. Let Φ denote a bipartite Leonard system on V . Then each of Φ↓, Φ⇓, Φ↓⇓ is bipartite.

Proof. By Lemma 6.32.
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In view of Lemmas 6.10 and 6.52, we make a definition.

Definition 6.53 (See [37, Section 1]). A Leonard pair on V is said to be bipartite whenever an

associated Leonard system is bipartite.

We mention a lemma for later use.

Lemma 6.54. Referring to Notation 6.27, assume that d = 2. Then,

a1 = θ0 + θ2 − a0 +
(a0 − θ1)(θ

∗
0 − θ∗1)

θ∗1 − θ∗2
,(6.23)

a2 =
θ1(θ

∗
0 − θ∗2)− a0(θ

∗
0 − θ∗1)

θ∗1 − θ∗2
.(6.24)

Proof. Set d = 2 in (6.18) to get (6.24). To get (6.23), use Lemma 6.31 and (6.24).

7. The bond relation for Leonard pairs and Leonard systems. In Section 5, we considered the

bond relation for irreducible tridiagonal matrices. In this section, we consider a version of the bond relation

that applies to Leonard pairs and Leonard systems. We first consider the bond relation for Leonard systems.

Definition 7.1. For a Leonard system Φ = (A; {Ei}di=0;A
∗; {E∗

i }di=0) on V , define S =
∑d

i=0(−1)iE∗
i .

Note 7.2. Referring to Definition 7.1, S2 = I.

Lemma 7.3. Referring to Definition 7.1, the sequence

Φ∨ = (−SAS−1; {SEiS−1}di=0;A
∗; {E∗

i }di=0),

is a Leonard system on V . Moreover the Leonard system Φ∨ is isomorphic to the Leonard system

(−A; {Ei}di=0;A
∗; {E∗

i }di=0).

Proof. We have SA∗S−1 = A∗ and SE∗
i S−1 = E∗

i for 0 ≤ i ≤ d. By this and Lemma 6.8, we get the

result.

Note 7.4. Referring to Lemma 7.3, we have (Φ∨)∨ = Φ.

Note 7.5. Referring to Lemma 7.3, assume that Char(F) = 2. Then S = I and Φ∨ = Φ.

Definition 7.6. Leonard systems Φ and Φ′ on V are said to be bonded whenever Φ′ = Φ∨.

Note 7.7. The bond relation is a symmetric binary relation on the set of all Leonard systems on V .

Note 7.8. For a Leonard system Φ on V , there exists a unique Leonard system on V that is bonded to

Φ.

Lemma 7.9. Let Φ denote a Leonard system on V . If Char(F) = 2 then Φ is bonded to itself. If

Char(F) ̸= 2, the the following are equivalent:

(i) Φ is bonded to itself;

(ii) Φ is bipartite.

Proof. By Lemma 5.12.
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Lemma 7.10. For the Leonard system Φ in Definition 7.1 and the Leonard system Φ∨ in Lemma 7.3,

their parameter arrays are related as follows:

Leonard system Parameter array

Φ ({θi}di=0; {θ∗i }di=0; {φi}di=1; {ϕi}di=1)

Φ∨ ({−θi}di=0; {θ∗i }di=0; {−φi}di=1; {−ϕi}di=1)

Proof. By Lemmas 6.29 and 7.3.

We now introduce the bond relation for Leonard pairs.

Lemma 7.11. Referring to Definition 7.1, S↓ = (−1)d S and S⇓ = S.

Proof. By Definition 7.1.

Lemma 7.12. Let A,A∗ denote a Leonard pair on V . Let Φ denote an associated Leonard system and

let S be from Definition 7.1. Then the map End(V ) → End(V ), X 7→ SXS−1 is independent of the choice

of Φ.

Proof. By Lemmas 6.10 and 7.11.

In view of Lemma 7.12, we make a definition.

Definition 7.13. Let A,A∗ denote a Leonard pair on V , and let Φ denote an associated Leonard system.

Define A∨ = −SAS−1, where S is from Definition 7.1. Note that A∨ is independent of the choice of Φ.

Note 7.14. Referring to Definition 7.13, we have (A∨)∨ = A.

Note 7.15. Referring to Definition 7.13, assume that Char(F) = 2. Then A∨ = A.

Lemma 7.16. Let A,A∗ denote a Leonard pair on V . Then the pair A∨, A∗ is a Leonard pair on V that

is isomorphic to the Leonard pair −A,A∗.

Proof. Use Lemma 7.3.

Note 7.17. Referring to Lemma 7.3 and Definition 7.13, the Leonard system Φ∨ and the Leonrd pair

A∨, A∗ are associated.

Definition 7.18. Leonard pairs A,A∗ and B,B∗ on V are said to be bonded whenever A∗ = B∗ and

B = A∨.

Note 7.19. The bond relation is a symmetric binary relation on the set of all Leonard pairs on V .

Note 7.20. For a Leonard pair A,A∗ on V , there exists a unique Leonard pair on V that is bonded to

A,A∗.

Lemma 7.21. Let A,A∗ denote a Leonard pair on V . If Char(F) = 2 then A,A∗ is bonded to itself. If

Char(F) ̸= 2 the the following are equivalent:

(i) A,A∗ is bonded to itself;

(ii) the Leonard pair A,A∗ is bipartite.

Proof. By Lemma 5.12.

Consider parameter arrays (6.19) over F. In Lemma 6.50, we described a special case of the condition

(ii) in Lemma 6.49. Here is another special case.
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Lemma 7.22. For parameter arrays (6.19) over F, the following hold:

(i) Assume that φ′
i = −φi and ϕ′

i = −ϕi for 1 ≤ i ≤ d. Then there exists ζ ∈ F such that θ′i = ζ − θi
for 0 ≤ i ≤ d.

(ii) Assume that φ′
i = −ϕi and ϕ′

i = −φi for 1 ≤ i ≤ d. Then there exists ζ ∈ F such that θ′i = ζ − θd−i

for 0 ≤ i ≤ d.

Proof. Let Φ (resp. Φ′) denote a Leonard system on V that has parameter array on the left (resp. right)

in (6.19). Now apply Lemma 6.50 to Φ∨ and Φ′ using Lemma 7.10.

We describe how the bond relation for Leonard pairs and Leonard systems is related to the bond relation

for irreducible tridiagonal matrices. Let Φ = (A; {Ei}di=0;A
∗; {E∗

i }di=0) denote a Leonard system on V . Fix

a basis {vi}di=0 of V that satisfies Definition 6.1(i). For X ∈ End(V ), let X♭ ∈ Matd+1(F) represent X

with respect to {vi}di=0. The map ♭ : End(V ) → Matd+1(F), X 7→ X♭ is an algebra isomorphism. Recall

the matrix S ∈ Matd+1(F) from Definition 5.2 and the element S ∈ End(V ) from Definition 7.1. Then the

isomorphism ♭ sends S 7→ S. Moreover, (A♭)∨ = (A∨)♭, where (A♭)∨ is computed using Definition 5.2 and

A∨ is from Definition 7.13.

8. Compatibility and companions for Leonard pairs. In this section, we introduce the notion of

compatibility and companion for Leonard pairs.

Definition 8.1. Leonard pairs A,A∗ and B,B∗ on V are said to be compatible whenever A∗ = B∗ and

[A,A∗] = [B,B∗].

Definition 8.2. For a Leonard pair A,A∗ on V , by a companion of A,A∗ we mean an element K ∈ ⟨A∗⟩
such that A−K,A∗ is a Leonard pair on V .

The Definitions 8.1 and 8.2 are related as follows.

Lemma 8.3. For a Leonard pair A,A∗ on V , the following hold:

(i) For a companion K of A,A∗, define B = A − K. Then B,A∗ is a Leonard pair on V that is

compatible with A,A∗.

(ii) For a Leonard pair B,A∗ on V that is compatible with A,A∗, define K = A − B. Then K is a

companion of A,A∗.

Proof. Use Lemma 2.1.

Example 8.4. Let A,A∗ denote a Leonard pair on V . Then A,A∗ is compatible with itself. Moreover,

K = 0 is a companion of A,A∗.

Let A,A∗ denote a Leonard pair on V . In this paper, we find every Leonard pair B,A∗ on V that is

compatible with A,A∗. By Lemma 8.3, this is equivalent to finding all the companions of A,A∗.

Lemma 8.5. For Leonard pairs A,A∗ and B,A∗ on V , the following (i)–(iii) are equivalent:

(i) A,A∗ and B,A∗ are compatible;

(ii) A−B ∈ ⟨A∗⟩;
(iii) A−B commutes with A∗.

Proof. Use Lemma 2.1.

Lemma 8.6. For Leonard pairs A,A∗ and B,A∗ on V , define K = A − B. Then the following (i)–(iii)
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are equivalent:

(i) K commutes with A∗;

(ii) K is a companion of A,A∗;

(iii) −K is a companion of B,A∗.

Proof. (i)⇒ (ii) We haveK ∈ ⟨A∗⟩ by Lemma 2.1. The pair A−K,A∗ is a Leonard pair since B = A−K.

By these comments and Definition 8.2, K is a companion of A,A∗.

(ii) ⇒ (i) Since K ∈ ⟨A∗⟩ by Definition 8.2.

(i) ⇔ (iii) Similar to the proof of (i) ⇔ (ii).

Lemma 8.7. The compatible relation is an equivalence relation on the set of all Leonard pairs on V .

Proof. By Definition 8.1.

Lemma 8.8. For compatible Leonard pairs A,A∗ and B,A∗ on V , and for scalars ξ, ζ, ξ∗, ζ∗ in F with

ξξ∗ ̸= 0, the Leonard pairs ξA+ ζI, ξ∗A∗ + ζ∗I and ξB + ζI, ξ∗A∗ + ζ∗I are compatible.

Proof. By Definition 8.1.

Lemma 8.9. Let A,A∗ denote a Leonard pair on V , and let K denote a companion of A,A∗. Then

K + ζI is companion of A,A∗ for ζ ∈ F.

Proof. By Lemma 6.5 and Definition 8.2.

9. The set Ω. In our main results, we find it illuminating to represent a Leonard pair as an ordered

pair of matrices, the first one normalized irreducible tridiagonal and the second one diagonal. Such a

representation is guaranteed by Lemma 6.43. To describe our main results using such a representation, we

introduce a certain set of matrices denoted Ω. In this section, we define Ω and give some basic facts about

it.

Notation 9.1. Assume that V = Fd+1. Let {θ∗i }di=0 denote mutually distinct scalars in F, and define

A∗ ∈ Matd+1(F) by:
A∗ = diag(θ∗0 , θ

∗
1 , . . . , θ

∗
d).

Note that A∗ is multiplicity-free, and ⟨A∗⟩ consists of the diagonal matrices in Matd+1(F). For 0 ≤ i ≤ d let

E∗
i denote the diagonal matrix in Matd+1(F) that has (i, i)-entry 1 and all other entries 0. Note that E∗

i is

the primitive idempotent of A∗ associated with θ∗i .

For the rest of this section, Notation 9.1 is in effect.

Definition 9.2. Let the set Ω consist of the matrices A ∈ Matd+1(F) such that:

(i) A is normalized irreducible tridiagonal;

(ii) A,A∗ is a Leonard pair on V .

Lemma 9.3. Let A ∈ Ω. Let B ∈ Matd+1(F) such that B,A∗ is a Leonard pair on V that is compatible

with A,A∗. Then B ∈ Ω.

Proof. By Lemma 8.5, A−B ∈ ⟨A∗⟩ and so A−B is diagonal. Thus ,Ai,j = Bi,j if i ̸= j (0 ≤ i, j ≤ d).

By this and since A is normalized irreducible tridiagonal, we find that B is normalized irreducible tridiagonal.

Thus, B ∈ Ω.

Lemma 9.4. For A ∈ Ω and ζ ∈ F, the matrix A+ ζI is contained in Ω.
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Proof. The matrix A + ζI is normalized irreducible tridiagonal. By Lemma 6.5, the pair A + ζI, A∗ is

a Leonard pair. The result follows.

Lemma 9.5. For A, B ∈ Ω the following are equivalent:

(i) the Leonard pairs A,A∗ and B,A∗ are isomorphic;

(ii) A = B.

Proof. (i) ⇒ (ii) By Lemma 6.4, there exists an invertible S ∈ Matd+1(F) such that SAS−1 = B and

SA∗S−1 = A∗. The matrix S is diagonal by Lemma 2.1, so A and B are diagonally equivalent. Consequently,

A = B in view of Lemma 4.2.

(ii) ⇒ (i) Clear.

10. The bond relation on Ω. In the last paragraph of Section 7, we explained how the bond relation

for Leonard pairs and systems is related to the bond relation for irreducible tridiagonal matrices. In this

section, we discuss these bond relations in the context of the set Ω.

Throughout this section, Notation 9.1 is in effect.

Lemma 10.1. For A ∈ Ω, the following are the same:

(i) the matrix A∨ from Definition 5.2;

(ii) the matrix A∨ from Definition 7.13.

Moreover, A∨ ∈ Ω.

Proof. The matrices (i) and (ii) are the same by the last paragraph of Section 7. We now show that

A∨ ∈ Ω. By Definition 5.2, A∨ is irreducible tridiagonal. By Lemma 5.9, A∨ is normalized. By Lemma

7.16, the pair A∨, A∗ is a Leonard pair. By these comments and Definition 9.2, A∨ ∈ Ω.

Lemma 10.2. For A, B ∈ Ω, the following are equivalent:

(i) A and B are bonded in the sense of Definition 5.5;

(ii) the Leonard pairs A,A∗ and B,A∗ are bonded in the sense of Definition 7.18.

Proof. By Lemma 10.1.

We mention a result for later use.

Lemma 10.3. For A, B ∈ Ω let K = A−B. Then the following are equivalent:

(i) A and B are bonded;

(ii) K is diagonal with diagonal entries Ki,i = 2Ai,i for 0 ≤ i ≤ d.

Proof. By Lemma 5.8.

11. The compatibility relation on Ω. In Section 8, we introduced the compatibility relation for

Leonard pairs. In this section, we discuss this relation in the context of the set Ω.

Throughout this section, Notation 9.1 is in effect.

Definition 11.1. Matrices A and B in Ω are said to be compatible whenever the Leonard pairs A,A∗

and B,A∗ are compatible in the sense of Definition 8.1.

Definition 11.2. For A ∈ Ω, by a companion of A, we mean a companion of the Leonard pair A,A∗.
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Lemma 11.3. For A ∈ Ω, the following hold:

(i) For a companion K of A, define B = A−K. Then B is contained in Ω and compatible with A.

(ii) For B ∈ Ω that is compatible with A, define K = A−B. Then K is a companion of A.

Proof. (i) By Lemma 8.3(i), the pair B,A∗ is a Leonard pair on V that is compatible with A,A∗.

By this and Lemma 9.3, B ∈ Ω. By these comments and Definition 11.1, B is compatible with A.

(ii) By Lemma 8.3(ii) and Definition 11.2.

Example 11.4. Every matrix A ∈ Ω is compatible with A, and K = 0 is a companion of A.

Lemma 11.5. For A, B ∈ Ω, the following (i)–(iii) are equivalent:

(i) A and B are compatible;

(ii) A−B is diagonal;

(iii) Ai−1,i = Bi−1,i for 1 ≤ i ≤ d.

Proof. (i) ⇔ (ii) By Lemma 8.5.

(ii) ⇔ (iii) Use the fact that each of A and B is normalized irreducible tridiagonal.

Lemma 11.6. For A, B ∈ Ω let K = A−B. Then the following (i)–(iii) are equivalent:

(i) K is diagonal;

(ii) K is a companion of A;

(iii) −K is a companion of B.

Proof. By Lemma 8.6.

Lemma 11.7. The compatibility relation on Ω is an equivalence relation.

Proof. By Lemma 8.7.

Lemma 11.8. For compatible matrices A, B ∈ Ω and ζ ∈ F, the matrices A+ζI and B+ζI are contained

in Ω. Moreover, these matrices are compatible.

Proof. By Lemma 9.3, the matrices A+ζI and B+ζI are contained in Ω. These matrices are compatible

by Lemma 8.8.

Lemma 11.9. For A ∈ Ω, let K denote a companion of A. Then K + ζI is a companion of A for ζ ∈ F.

Proof. By Lemma 8.9.

12. A characterization of the compatibility relation and the bond relation in terms of the

parameter array. In this section, we characterize the compatibility relation and the bond relation in terms

of the parameter array. Throughout this section, the following notation is in effect.

Notation 12.1. Assume that V = Fd+1. Let {θ∗i }di=0 denote mutually distinct scalars in F, and define

A∗ ∈ Matd+1(F) by:

A∗ = diag(θ∗0 , θ
∗
1 , . . . , θ

∗
d).

For 0 ≤ i ≤ d, let E∗
i denote the matrix in Matd+1(F) that has (i, i)-entry 1 and all other entries 0. Let

the set Ω be from Definition 9.2. Let A and B denote matrices in Ω. Let {Ei}di=0 (resp. {E′
i}di=0) denote
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a standard ordering of the primitive idempotents of A (resp. B) for the Leonard pair A,A∗ (resp. B,A∗).

Define

Φ = (A; {Ei}di=0;A
∗; {E∗

i }di=0), Φ′ = (B; {E′
i}di=0;A

∗; {E∗
i }di=0),

and observe that each of Φ and Φ′ is a Leonard system on V . Let

({θi}di=0; {θ∗i }di=0; {φi}di=1; {ϕi}di=1), ({θ′i}di=0; {θ∗i }di=0; {φ′
i}di=1; {ϕ′

i}di=1),

denote the parameter array of Φ and Φ′, respectively. Let the scalars {ai}di=0, {xi}di=1 (resp. {a′i}di=0, {x′
i}di=1)

be from Definitions 6.30, 6.39 for Φ (resp. Φ′). For the case of d ≥ 3, let κ (resp. κ′) denote the invariant

value for A,A∗ (resp. B,A∗).

We now present our first main result, in which we characterize the compatibility relation in terms of the

parameter array.

Theorem 12.2. The following (i)–(iii) are equivalent:

(i) A and B are compatible;

(ii) xi = x′
i (1 ≤ i ≤ d).

(iii) φiϕi = φ′
iϕ

′
i (1 ≤ i ≤ d).

Proof. (i) ⇒ (ii) By Lemma 11.5, Ai−1,i = Bi−1,i for 1 ≤ i ≤ d. By this and Corollary 6.42, we get (ii).

(ii) ⇒ (i) By the construction, Bi,i−1 = Ai,i−1 = 1 for 1 ≤ i ≤ d. By Corollary 6.42 and (ii), we have

Bi−1,i = Ai−1,i for 1 ≤ i ≤ d. Now use Lemma 11.5.

(ii) ⇔ (iii) By Lemma 6.49.

Next, we consider some special cases of Theorem 12.2.

Proposition 12.3. The following are equivalent:

(i) there exists ζ ∈ F such that B = A+ ζI;

(ii) one of the following (12.1) and (12.2) holds:

φ′
i = φi, ϕ′

i = ϕi (1 ≤ i ≤ d),(12.1)

φ′
i = ϕi, ϕ′

i = φi (1 ≤ i ≤ d).(12.2)

Proof. (i) ⇒ (ii) Consider the Leonard system:

(12.3) (A+ ζI; {Ei}di=0;A
∗; {E∗

i }di=0).

By Lemma 6.29, the Leonard system (12.3) has parameter array:

({θi + ζ}di=0; {θ∗i }di=0; {φi}di=1; {ϕi}di=1).

The Leonard system (12.3) is associated with B,A∗ and is therefore equal to one of Φ′, Φ′⇓ by Lemma

6.10. First assume that the Leonard system (12.3) is equal to Φ′. Then (12.1) holds. Next assume that the

Leonard system (12.3) is equal to Φ′⇓. By Lemma 6.28, Φ′⇓ has parameter array:

({θ′d−i}di=0; {θ∗i }di=0; {ϕ′
i}di=1; {φ′

i}di=1).
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By these comments, (12.2) holds.

(ii) ⇒ (i) First assume that (12.1) holds. By Lemma 6.50(i), there exists ζ ∈ F such that θ′i = θi + ζ for

0 ≤ i ≤ d. So the parameter array of Φ′ is

({θi + ζ}di=0; {θ∗i }di=0; {φi}di=1; {ϕi}di=1).

By this and Lemma 6.29, the Leonard system (A+ ζI; {Ei}di=0;A
∗; {E∗

i }di=0) has the same parameter array

as Φ′ and is therefore isomorphic to Φ′ by Lemma 6.15. Thus, the Leonard pair B,A∗ is isomorphic to

A+ ζI, A∗. By this and Lemma 9.5, B = A+ ζI. Next assume that (12.2) holds. By Lemma 6.50(ii), there

exists ζ ∈ F such that θ′i = θd−i + ζ for 0 ≤ i ≤ d. So the parameter array of Φ′ is

({θd−i + ζ}di=0; {θ∗i }di=0; {ϕi}di=1; {φi}di=1).

By Lemma 6.28(iii), the parameter array of (A; {Ed−i}di=0;A
∗; {E∗

i }di=0) is

({θd−i}di=0; {θ∗i }di=0; {ϕi}di=1; {φi}di=1).

By these comments and Lemma 6.29, the Leonard system (A + ζI; {Ed−i}di=0;A
∗; {E∗

i }di=0) has the same

parameter array as Φ′ and is therefore isomorphic to Φ′ by Lemma 6.15. Thus, the Leonard pair B,A∗ is

isomorphic to A+ ζI, A∗. By this and Lemma 9.5, B = A+ ζI.

Proposition 12.4. The following are equivalent:

(i) there exists ζ ∈ F such that B = A∨ + ζI;

(ii) one of the following (12.4) and (12.5) holds:

φ′
i = −φi, ϕ′

i = −ϕi (1 ≤ i ≤ d),(12.4)

φ′
i = −ϕi, ϕ′

i = −φi (1 ≤ i ≤ d).(12.5)

Proof. The result is obtained by applying Proposition 12.3 to Φ∨ and Φ′ using Lemma 7.10. The result

can also be obtained using Lemma 7.22.

13. The type of a Leonard pair and Leonard system. For the rest of this paper, we assume that

F is algebraically closed. In this section, we recall from [37] the type of a Leonard pair and Leonard system.

Consider a parameter array over F:

(13.1) ({θi}di=0; {θ∗i }di=0; {φi}di=1; {ϕi}di=1).

For the case d ≥ 3, let β denote the fundamental constant of (13.1).

Definition 13.1 (See [37, Section 4]). To the parameter array (13.1), we assign the type as follows.

Type Description

O 1 ≤ d ≤ 2

I d ≥ 3, β ̸= 2, β ̸= −2

II d ≥ 3, β = 2, Char(F) ̸= 2

III+ d ≥ 3, β = −2, Char(F) ̸= 2, d even

III− d ≥ 3, β = −2, Char(F) ̸= 2, d odd

IV d ≥ 3, β = 2, Char(F) = 2
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Definition 13.2. The type of a given Leonard system is the type of the associated parameter array. The

type of a given Leonard pair is the type of an associated Leonard system.

Lemma 13.3 (See [47, Lemma 9.3]). The following (i)–(v) hold:

(i) For type I, q2i ̸= 1 for 1 ≤ i ≤ d, where β = q2 + q−2.

(ii) For type II, Char(F) is equal to 0 or greater than d.

(iii) For type III+, Char(F ) is equal to 0 or greater than d/2.

(iv) For type III−, Char(F ) is equal to 0 or greater than (d− 1)/2.

(v) For type IV, d = 3.

14. A refinement of Theorem 12.2. In this section, we present our second main result, which is

Theorem 14.3. This result is a refinement of Theorem 12.2. The following proposition will be used to prove

Theorem 14.3.

Proposition 14.1. Assume that d ≥ 3. Let

(14.1) ({θi}di=0; {θ∗i }di=0; {φi}di=1; {ϕi}di=1),

denote a parameter array over F with fundamental constant β. Then for 1 ≤ i ≤ d, we have

φiϕi

(θ∗i−1 − θ∗d)(θ
∗
i − θ∗0)

=
Riφ1ϕ1

(θ∗i − θ∗0)(θ
∗
0 − θ∗d)

+
Siφdϕd

(θ∗d − θ∗i−1)(θ
∗
0 − θ∗d)

+ Tiκ,(14.2)

where κ is the invariant value for (14.1), and Ri, Si, and Ti are given below:

Type I:

Ri =
(qi − q−i)2(qd−i − qi−d)(qd−i+1 − qi−d−1)

(q − q−1)2(qd − q−d)(qd−1 − q1−d)
,(14.3)

Si =
(qd−i+1 − qi−d−1)2(qi − q−i)(qi−1 − q1−i)

(q − q−1)2(qd − q−d)(qd−1 − q1−d)
,(14.4)

Ti =
(qi − q−i)(qi−1 − q1−i)(qd−i − qi−d)(qd−i+1 − qi−d−1)

(q − q−1)2(q2 − q−2)2
,(14.5)

where β = q2 + q−2.

Type II:

Ri =
i2(d− i)(d− i+ 1)

d(d− 1)
,(14.6)

Si =
i(i− 1)(d− i+ 1)2

d(d− 1)
,(14.7)

Ti =
i(i− 1)(d− i)(d− i+ 1)

4
.(14.8)
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Type III+:

Ri =

{
0 if i is even,

(d− i+ 1)/d if i is odd,
(14.9)

Si =

{
i/d if i is even,

0 if i is odd,
(14.10)

Ti =

{
−i(d− i)/4 if i is even,

−(i− 1)(d− i+ 1)/4 if i is odd.
(14.11)

Type III−:

Ri =

{
0 if i is even,

(d− i)/(d− 1) if i is odd,
(14.12)

Si =

{
0 if i is even,

(i− 1)/(d− 1) if i is odd,
(14.13)

Ti =

{
i(d− i+ 1)/4 if i is even,

(i− 1)(d− i)/4 if i is odd.
(14.14)

Type IV:

R1 = 1, R2 = 0, R3 = 0,(14.15)

S1 = 0, S2 = 0, S3 = 1,(14.16)

T1 = 0, T2 = 1, T3 = 0.(14.17)

Note 14.2. In (14.3)–(14.14), the denominators of Ri, Si, and Ti are nonzero by Lemma 13.3.

The proof of Proposition 14.1 will be given in Sections 16, 19, 22, 25, and 28.

Theorem 14.3. Referring to Notation 12.1, the following (i)–(iii) hold:

(i) Assume that d = 1. Then A and B are compatible if and only if

φ1ϕ1 = φ′
1ϕ

′
1.

(ii) Assume that d = 2. Then A and B are compatible if and only if

φ1ϕ1 = φ′
1ϕ

′
1, φ2ϕ2 = φ′

2ϕ
′
2.

(iii) Assume that d ≥ 3. Then A and B are compatible if and only if

κ = κ′, φ1ϕ1 = φ′
1ϕ

′
1, φdϕd = φ′

dϕ
′
d.(14.18)

Proof. (i), (ii) By Theorem 12.2.

(iii) First assume that A and B are compatible. We show that (14.18) holds. By Theorem 12.2,

φ1ϕ1 = φ′
1ϕ

′
1 and φdϕd = φ′

dϕ
′
d. To show κ = κ′, we invoke Proposition 14.1. We consider the equation

(14.2) for Φ and Φ′. Let the scalars {Ri}di=1, {Si}di=1, {Ti}di=1 (resp. {R′
i}di=1, {S′

i}di=1, {T ′
i}di=1) be from
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Proposition 14.1 for Φ (resp. Φ′). By (14.3)–(14.17), we have Ri = R′
i, Si = S′

i, Ti = T ′
i for 1 ≤ i ≤ d. Using

this and Theorem 12.2(iii), we compare the equation (14.2) for Φ with the equation (14.2) for Φ′. This gives

Tiκ = Tiκ
′ for 1 ≤ i ≤ d. Observe that in Proposition 14.1, for each type the scalars {Ti}di=1 are not all zero

by Lemma 13.3. By these comments, we get κ = κ′. We have shown that (14.18) holds. Next assume that

(14.18) holds. By Proposition 14.1, we obtain φiϕi = φ′
iϕ

′
i for 1 ≤ i ≤ d. By this and Theorem 12.2, A and

B are compatible.

Corollary 14.4. Referring to Notation 12.1, the following (i)–(iii) hold:

(i) Assume that d = 1. Then A and B are compatible if and only if

(a0 − θ0)(a0 − θd) = (a′0 − θ′0)(a
′
0 − θ′d).

(ii) Assume that d = 2. Then A and B are compatible if and only if

(a0 − θ0)(a0 − θ2) = (a′0 − θ′0)(a
′
0 − θ′2),

(a2 − θ0)(a2 − θ2) = (a′2 − θ′0)(a
′
2 − θ′2).

(iii) Assume that d ≥ 3. Then A and B are compatible if and only if

κ = κ′,

(a0 − θ0)(a0 − θd) = (a′0 − θ′0)(a
′
0 − θ′d),

(ad − θ0)(ad − θd) = (a′d − θ′0)(a
′
d − θ′d).

Proof. By (6.14) and (6.15), φ1ϕ1 = φ′
1ϕ

′
1 if and only if

(a0 − θ0)(a0 − θd) = (a′0 − θ′0)(a
′
0 − θ′d).

By (6.16) and (6.17), φdϕd = φ′
dϕ

′
d if and only if

(ad − θ0)(ad − θd) = (a′d − θ′0)(a
′
d − θ′d).

By these comments and Theorem 14.3, we get the result.

We finish this section with a comment. Referring to Notation 12.1, assume that A, B are compatible

and let K = A−B. Recall from Lemma 11.3 that K is a companion of A, and therefore diagonal by Lemma

11.6. By Lemma 6.41 we see that

Ki,i = ai − a′i (0 ≤ i ≤ d).(14.19)

15. The companions for type O. In this section, we describe the companions for type O. We first

consider the case d = 1.

Proposition 15.1. Referring to Notation 12.1, assume that d = 1 and A, B are compatible. Consider

the companion K = A−B from Definition 11.2. Then

K0,0 = a0 − a′0,

K1,1 = θ0 + θ1 − a0 − θ′0 − θ′1 + a′0.

Proof. By (14.19) and Lemma 6.31.
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Next, we consider the case d = 2.

Proposition 15.2. Referring to Notation 12.1, assume that d = 2 and A, B are compatible. Consider

the companion K = A−B from Definition 11.2. Then

K0,0 = a0 − a′0,

K1,1 = θ0 + θ2 − a0 − θ′0 − θ′2 + a′0 +
(a0 − a′0 − θ1 + θ′1)(θ

∗
0 − θ∗1)

θ∗1 − θ∗2
,

K2,2 =
(θ1 − θ′1)(θ

∗
0 − θ∗2)− (a0 − a′0)(θ

∗
0 − θ∗1)

θ∗1 − θ∗2
.

Proof. By (14.19) and Lemma 6.54.

16. The parameter arrays of type I. In this section, we describe the parameter arrays of type I.

We then prove Proposition 14.1 for type I. Throughout this section, assume that d ≥ 3 and fix a nonzero

q ∈ F such that q4 ̸= 1.

Lemma 16.1. For a sequence

(16.1) (δ, µ, h, δ∗, µ∗, h∗, τ),

of scalars in F, define

θi = δ + µq2i−d + hqd−2i (0 ≤ i ≤ d),(16.2)

θ∗i = δ∗ + µ∗q2i−d + h∗qd−2i (0 ≤ i ≤ d),(16.3)

φi = (qi − q−i)(qd−i+1 − qi−d−1)(τ − µµ∗q2i−d−1 − hh∗qd−2i+1) (1 ≤ i ≤ d),(16.4)

ϕi = (qi − q−i)(qd−i+1 − qi−d−1)(τ − hµ∗q2i−d−1 − µh∗qd−2i+1) (1 ≤ i ≤ d).(16.5)

Then the sequence

(16.6) ({θi}di=0; {θ∗i }di=0; {φi}di=1; {ϕi}di=1),

is a parameter array over F that has type I and fundamental constant β = q2 + q−2, provided that the

inequalities in Lemma 6.15(i),(ii) hold. Conversely, assume that the sequence (16.6) is a parameter array

over F that has type I and fundamental constant β = q2 + q−2. Then there exists a unique sequence (16.1)

of scalars in F that satisfies (16.2)–(16.5).

Proof. Assume that the inequalities in Lemma 6.15(i),(ii) hold. Using (16.2)–(16.5), we routinely verify

the conditions Lemma 6.15(iii)–(v). Thus, the sequence (16.6) is a parameter array over F. Evaluating the

expression on the left in (6.3) using (16.2), we find that the parameter array (16.6) has fundamental constant

β = q2 + q−2. By q4 ̸= 1, we have β ̸= ±2. So the parameter array (16.6) has type I. The last assertion

comes from [37, Theorem 6.1].

Definition 16.2. Referring to Lemma 16.1, assume that the sequence (16.6) is a parameter array over

F. We call the scalars δ, µ, h, δ∗, µ∗, h∗, τ the basic variables of (16.6) with respect to q. We call the sequence

(δ, µ, h, δ∗, µ∗, h∗, τ) the basic sequence of (16.6) with respect to q.

Lemma 16.3. Referring to Lemma 16.1, the following hold for 0 ≤ i, j ≤ d:

θi − θj = (qi−j − qj−i)(µqi+j−d − hqd−i−j),

θ∗i − θ∗j = (qi−j − qj−i)(µ∗qi+j−d − h∗qd−i−j).
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Proof. Routine verification using (16.2) and (16.3).

Lemma 16.4. The inequalities in Lemma 6.15(i),(ii) hold if and only if

q2i ̸= 1 (1 ≤ i ≤ d),(16.7)

µ ̸= hq2i (1− d ≤ i ≤ d− 1),(16.8)

µ∗ ̸= h∗q2i (1− d ≤ i ≤ d− 1),(16.9)

τ ̸= µµ∗q2i−d−1 + hh∗qd−2i+1 (1 ≤ i ≤ d),(16.10)

τ ̸= hµ∗q2i−d−1 + µh∗qd−2i+1 (1 ≤ i ≤ d).(16.11)

Proof. Routine verification using (16.4), (16.5), and Lemma 16.3.

For the rest of this section, let Φ denote a Leonard system over F of type I with fundamental constant

β = q2 + q−2 and parameter array:

(16.12) ({θi}di=0; {θ∗i }di=0; {φi}di=1; {ϕi}di=1).

Definition 16.5. By the basic variables (resp. basic sequence) of Φ with respect to q, we mean the basic

variables (resp. basic sequence) with respect to q for the parameter array (16.12).

For the rest of this section, let (δ, µ, h, δ∗, µ∗, h∗, τ) denote the basic sequence of Φ with respect to q.

Lemma 16.6. In the table below, for each Leonard system in the first column, we give the basic sequence

with respect to q:
Leonard system Basic sequence

Φ↓ (δ, µ, h, δ∗, h∗, µ∗, τ)

Φ⇓ (δ, h, µ, δ∗, µ∗, h∗, τ)

Φ∨ (−δ,−µ,−h, δ∗, µ∗, h∗,−τ)

Proof. Concerning Φ↓ and Φ⇓, use Lemma 6.28. Concerning Φ∨, use Lemma 7.10.

Lemma 16.7. For scalars ξ, ζ, ξ∗, ζ∗ in F with ξξ∗ ̸= 0, consider the Leonard system:

(ξA+ ζI; {Ei}di=0; ξ
∗A∗ + ζ∗I; {E∗

i }di=0).

For this Leonard system, the basic sequence with respect to q is equal to

(ξδ + ζ; ξµ, ξh, ξ∗δ∗ + ζ∗; ξ∗µ∗, ξ∗h∗, ξξ∗τ).

Proof. Use Lemma 6.29.

Corollary 16.8. The Leonard system

(A− δI; {Ei}di=0; A
∗ − δ∗I; {E∗

i }di=0),

has basic sequence (0, µ, h, 0, µ∗, h∗, τ) with respect to q.

Definition 16.9. The Leonard system Φ is said to be reduced whenever δ = 0 and δ∗ = 0.

Lemma 16.10. The invariant value κ for Φ satisfies

(16.13) κ = µh(q − q−1)2(q2 − q−2)2.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 404-456, August 2022.

K. Nomura and P. Terwilliger 434

Proof. By Lemma 6.25 and (16.2).

Proof of Proposition 14.1, type I. One routinely verifies (14.2) using (14.3)–(14.5), (16.13), and

Lemma 16.1. □

Note that Theorem 14.3 holds for type I.

17. A characterization of compatibility in terms of the basic sequence, type I. In this sec-

tion, we characterize the compatibility relation for Leonard pairs of type I in terms of the basic sequence.

Throughout this section, Notation 12.1 is in effect. Assume that Φ has type I and fundamental constant

β = q2 + q−2. Note that Φ′ has type I and fundamental constant β. Let

(δ, µ, h, δ∗, µ∗, h∗, τ), (δ′, µ′, h′, δ∗, µ∗, h∗, τ ′),

denote the basic sequence of Φ and Φ′ with respect to q, respectively.

Theorem 17.1. The matrices A, B are compatible if and only if the following (17.1)–(17.3) hold:

µh = µ′h′,(17.1)

τ(µ+ h) = τ ′(µ′ + h′),(17.2)

τ2 + (µ+ h)2µ∗h∗ = τ ′2 + (µ′ + h′)2µ∗h∗.(17.3)

Proof. We will invoke Theorem 14.3. To do this, we investigate the conditions in (14.18). By Lemma

16.10 and (16.7), κ = κ′ if and only if (17.1) holds. Using (16.4), (16.5), we find that under the assumption

(17.1) the expression φ1ϕ1 − φ′
1ϕ

′
1 − φdϕd + φ′

dϕ
′
d is equal to

(q − q−1)2(qd − q−d)2(qd−1 − q1−d)(µ∗ − h∗),

times

τ(µ+ h)− τ ′(µ′ + h′).

Using (16.4) and (16.5), we find that under the assumptions (17.1) and (17.2), the expression φ1ϕ1 − φ′
1ϕ

′
1

is equal to

(q − q−1)2(qd − q−d)2,

times

τ2 + (µ+ h)2µ∗h∗ − τ ′2 − (µ′ + h′)2µ∗h∗.

By these comments and (16.7), (16.9), we find that under the assumption (17.1), both φ1ϕ1 = φ′
1ϕ

′
1 and

φdϕd = φ′
dϕ

′
d hold if and only if both (17.2) and (17.3) hold. Now, the result follows from Theorem 14.3.

Our next goal is to solve the equations (17.1)–(17.3) for µ′, h′, and τ ′. It is convenient to handle

separately the cases Char(F) ̸= 2 and Char(F) = 2. We first consider the case Char(F) ̸= 2.

Theorem 17.2. Assume that Char(F) ̸= 2. Then the equations (17.1)–(17.3) hold if and only if at least

one of the following (17.4)–(17.8) holds:

τ ′ = τ, (µ′, h′) is a permutation of (µ, h);(17.4)

τ ′ = −τ, (µ′, h′) is a permutation of (−µ,−h);(17.5)

µ∗h∗ ̸= 0, µ′h′ = µh, µ′ + h′ = τ(µ∗h∗)−1/2, τ ′ = (µ+ h)(µ∗h∗)1/2;(17.6)

µ∗h∗ ̸= 0, µ′h′ = µh, µ′ + h′ = −τ(µ∗h∗)−1/2, τ ′ = −(µ+ h)(µ∗h∗)1/2;(17.7)

µ∗h∗ = 0, τ ′ = τ = 0, µ′h′ = µh.(17.8)
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Proof. One routinely checks that each of (17.4)–(17.8) gives a solution to (17.1)–(17.3). Now assume

that (17.1)–(17.3) hold. We show that at least one of (17.4)–(17.8) holds.

We claim that if τ2 = τ ′2 and τ ̸= 0 then either (17.4) or (17.5) holds. If τ ′ = τ ̸= 0 then µ+h = µ′+h′

by (17.2), so (17.4) holds in view of (17.1). If τ ′ = −τ ̸= 0, then µ+ h = −µ′ − h′ by (17.2), so (17.5) holds

in view of (17.1). We have shown the claim.

For the moment, assume that µ∗h∗ = 0. By (17.3), τ ′2 = τ2. If τ = 0, then (17.8) holds. If τ ̸= 0

then either (17.4) or (17.5) holds by the claim. For the rest of this proof, assume that µ∗h∗ ̸= 0. In (17.3),

multiply each side by τ ′2, and simplify the result using (17.2) to get

(τ2 − τ ′2)
(
τ ′2 − (µ+ h)2µ∗h∗) = 0.

Thus, at least one of the following (17.9) and (17.10) holds:

τ ′2 = τ2,(17.9)

τ ′2 = (µ+ h)2µ∗h∗.(17.10)

First consider the case (17.9). We may assume that τ = 0; otherwise, either (17.4) or (17.5) holds by

the claim. By (17.3) with τ = τ ′ = 0, we get (µ + h)2 = (µ′ + h′)2. Thus, either µ′ + h′ = µ + h or

µ′ + h′ = −µ − h. If µ′ + h′ = µ + h, then (17.4) holds in view of (17.1). If µ′ + h′ = −µ − h, then (17.5)

holds in view of (17.1).

Next consider the case (17.10). By (17.3) and (17.10),

(17.11) τ2 = (µ′ + h′)2µ∗h∗.

For the moment, assume that τ = 0. Then by (17.11), µ′ + h′ = 0, and so one of (17.6), (17.7) holds in

view of (17.10). For the rest of this proof, assume that τ ̸= 0. By (17.11), one of the following (17.12) and

(17.13) holds:

τ = (µ′ + h′)(µ∗h∗)1/2,(17.12)

τ = −(µ′ + h′)(µ∗h∗)1/2.(17.13)

If (17.12) holds, then by (17.2),

(µ′ + h′)(µ+ h)(µ∗h∗)1/2 = τ ′(µ′ + h′).

In this equation, we have µ′ + h′ ̸= 0 by (17.11) and τ ̸= 0. So

(µ+ h)(µ∗h∗)1/2 = τ ′.

Thus, (17.6) holds. If (17.13) holds, then by (17.2),

−(µ′ + h′)(µ+ h)(µ∗h∗)1/2 = τ ′(µ′ + h′).

In this equation, we have µ′ + h′ ̸= 0 by (17.11) and τ ̸= 0. So,

−(µ+ h)(µ∗h∗)1/2 = τ ′.

Thus, (17.7) holds.
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We have some comments about (17.4) and (17.5). By Proposition 12.3, (17.4) holds if and only if there

exists ζ ∈ F such that B = A+ ζI. By Proposition 12.4, (17.5) holds if and only if there exists ζ ∈ F such

that B = A∨ + ζI. The solutions (17.4)–(17.8) are not mutually exclusive.

Next, we consider the case Char(F) = 2.

Theorem 17.3. Assume that Char(F) = 2. Then the equations (17.1)–(17.3) hold if and only if at least

one of the following (17.14)–(17.16) holds:

τ ′ = τ, (µ′, h′) is a permutation of (µ, h);(17.14)

µ∗h∗ ̸= 0, µ′h′ = µh, µ′ + h′ = τ(µ∗h∗)−1/2, τ ′ = (µ+ h)(µ∗h∗)1/2;(17.15)

µ∗h∗ = 0, τ ′ = τ = 0, µ′h′ = µh.(17.16)

Proof. One routinely checks that each of (17.14)–(17.16) gives a a solution to (17.1)–(17.3). Now assume

that (17.1)–(17.3) holds. We show that at least one of (17.14)–(17.16) holds.

For the moment, assume that µ∗h∗ = 0. By (17.3), we have τ ′2 = τ2, so τ ′ = τ since Char(F) = 2. We

may assume that τ ̸= 0; otherwise, (17.16) holds. By (17.2), µ + h = µ′ + h′. By this and (17.1), we get

(17.14). For the rest of this proof, assume that µ∗h∗ ̸= 0. By (17.3),

τ2 − τ ′2 =
(
(µ′ + h′)2 − (µ+ h)2

)
µ∗h∗.

By this and since Char(F) = 2,

(τ − τ ′)2 = (µ′ + h′ − µ− h)2µ∗h∗,

and so

τ − τ ′ = (µ′ + h′ − µ− h)(µ∗h∗)1/2.

In this equation, multiply each side by τ ′ and simplify the result using (17.2) to get

(τ − τ ′)
(
τ ′ − (µ+ h)(µ∗h∗)1/2

)
= 0.

Thus, at least one of the following (17.17) and (17.18) holds:

τ ′ = τ,(17.17)

τ ′ = (µ+ h)(µ∗h∗)1/2.(17.18)

First assume that (17.17) holds. If τ ′ = τ ̸= 0, then by (17.1) and (17.2), we get (17.14). If τ ′ = τ = 0, then

by (17.3), we get (µ+ h)2 = (µ′ + h′)2. By this and since Char(F) = 2, we get µ+ h = µ′ + h′. By this and

(17.1), we get (17.14). Next assume that (17.18) holds. In (17.3), eliminate τ ′ using (17.18) to get

τ2 = (µ′ + h′)2µ∗h∗.

By this and since Char(F) = 2,

τ = (µ′ + h′)(µ∗h∗)1/2.

By these comments and (17.1), we get (17.15).

We have a comment about (17.14). By Proposition 12.3, (17.14) holds if and only if there exists ζ ∈ F
such that B = A+ ζI. The solutions (17.14)–(17.16) are not mutually exclusive.
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18. Describing the companions for a Leonard pair of type I. In this section, we describe the

companions for a Leonard pair of type I. Throughout this section, Notation 12.1 is in effect. Assume that

Φ has type I and fundamental constant β = q2 + q−2. Note that Φ′ has type I and fundamental constant β.

Let

(δ, µ, h, δ∗, µ∗, h∗, τ), (δ′, µ′, h′, δ∗, µ∗, h∗, τ ′),(18.1)

denote the basic sequence of Φ and Φ′ with respect to q, respectively. Assume that A and B are compatible

and consider the companion K = A−B. We will give the entries of K. To avoid complicated formulas, we

assume that each of Φ and Φ′ is reduced so that δ = 0, δ′ = 0, δ∗ = 0.

We first assume Char(F) ̸= 2. Under this assumption, we consider the cases (17.4)–(17.8) in Theorem

17.2. For the moment assume that (17.4) holds. By the comments below Theorem 17.2, there exists ζ ∈ F
such that B = A+ ζI. By this and δ = δ′ = 0, we get B = A. So K = 0. Next assume that (17.5) holds. By

the comments below Theorem 17.2, there exists ζ ∈ F such that B = A∨ + ζI. By this and δ = δ′ = 0, we

get B = A∨. By this and Lemma 10.3, Ki,i = 2ai for 0 ≤ i ≤ d. Next, we give the K that corresponds to

solutions (17.6), (17.7). In this case, µ∗h∗ ̸= 0; we may assume µ∗h∗ = 1 in view of Lemma 16.7. To avoid

trivialities, we interpret 11/2 = 1.

Theorem 18.1. Assume that Char(F) ̸= 2. Then the following hold:

(i) Assume that (17.6) holds with µ∗h∗ = 1. Then

K0,0 =
qd(µ∗ − q−d−1)(µ+ h− τ)

µ∗ − qd−1
,

Ki,i =
qd−2i(µ∗ − q−d−1)(µ∗ − qd+1)(µ+ h− τ)

(µ∗ − qd−2i−1)(µ∗ − qd−2i+1)
(1 ≤ i ≤ d− 1),

Kd,d =
q−d(µ∗ − qd+1)(µ+ h− τ)

µ∗ − q1−d
.

(ii) Assume that (17.7) holds with µ∗h∗ = 1. Then

K0,0 =
qd(µ∗ + q−d−1)(µ+ h+ τ)

µ∗ + qd−1
,

Ki,i =
qd−2i(µ∗ + q−d−1)(µ∗ + qd+1)(µ+ h+ τ)

(µ∗ + qd−2i−1)(µ∗ + qd−2i+1)
(1 ≤ i ≤ d− 1),

Kd,d =
q−d(µ∗ + qd+1)(µ+ h+ τ)

µ∗ + q1−d
.

Proof. Use (14.19) and Lemmas 6.45, 16.1 with δ = δ′ = 0.

Next, we give the K that corresponds to solution (17.8).

Theorem 18.2. Assume that Char(F) ̸= 2. Then

(i) Assume that (17.8) holds with µ∗ = 0. Then

Ki,i = q2i−d(µ+ h− µ′ − h′) (0 ≤ i ≤ d).

(i) Assume that (17.8) holds with h∗ = 0. Then

Ki,i = qd−2i(µ+ h− µ′ − h′) (0 ≤ i ≤ d).
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Proof. Use (14.19) and Lemmas 6.45, 16.1 with δ = δ′ = 0.

Next, we assume Char(F) = 2. Under this assumption, we consider the cases (17.14)–(17.16) in Theorem

17.3. For the moment assume that (17.14) holds. By the comments below Theorem 17.3, there exists ζ ∈ F
such that B = A + ζI. By this and δ = δ′ = 0, we get B = A. So K = 0. We now give the K that

corresponds to solution (17.15). In view of Lemma 16.7, we may assume that µ∗h∗ = 1.

Theorem 18.3. Assume that Char(F) = 2 and (17.15) holds with µ∗h∗ = 1. Then

K0,0 =
qd(µ∗ + q−d−1)(µ+ h+ τ)

µ∗ + qd−1
,

Ki,i =
qd−2i(µ∗ + q−d−1)(µ∗ + qd+1)(µ+ h+ τ)

(µ∗ + qd−2i−1)(µ∗ + qd−2i+1)
(1 ≤ i ≤ d− 1),

Kd,d =
q−d(µ∗ + qd+1)(µ+ h+ τ)

µ∗ + q1−d
.

Proof. Use (14.19) and Lemmas 6.45, 16.1 with δ = δ′ = 0.

Next, we give the K that corresponds to solution (17.16).

Theorem 18.4. Assume that Char(F) = 2. Then

(i) Assume that (17.16) holds with µ∗ = 0. Then

Ki,i = q2i−d(µ+ h− µ′ − h′) (0 ≤ i ≤ d).

(i) Assume that (17.16) holds with h∗ = 0. Then

Ki,i = qd−2i(µ+ h− µ′ − h′) (0 ≤ i ≤ d).

Proof. Use (14.19) and Lemmas 6.45, 16.1 with δ = δ′ = 0.

19. The parameter arrays of type II. In this section, we describe the parameter arrays of type II.

We then prove Proposition 14.1 for type II. Throughout this section, assume that d ≥ 3.

Lemma 19.1. Assume that Char(F) ̸= 2. For a sequence

(19.1) (δ, µ, h, δ∗, µ∗, h∗, τ),

of scalars in F, define

θi = δ + µ(i− d/2) + hi(d− i),(19.2)

θ∗i = δ∗ + µ∗(i− d/2) + h∗i(d− i),(19.3)

for 0 ≤ i ≤ d and

φi = i(d− i+ 1)
(
τ − µµ∗/2 + (hµ∗ + µh∗)(i− (d+ 1)/2) + hh∗(i− 1)(d− i)

)
,(19.4)

ϕi = i(d− i+ 1)
(
τ + µµ∗/2 + (hµ∗ − µh∗)(i− (d+ 1)/2) + hh∗(i− 1)(d− i)

)
,(19.5)

for 1 ≤ i ≤ d. Then the sequence

(19.6) ({θi}di=0; {θ∗i }di=0; {φi}di=1; {ϕi}di=1),
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is a parameter array over F that has type II, provided that the inequalities in Lemma 6.15(i),(ii) hold.

Conversely, assume that the sequence (19.6) is a parameter array over F that has type II. Then there exists

a unique sequence (19.1) of scalars in F that satisfies (19.2)–(19.5).

Proof. Assume that the inequalities in Lemma 6.15(i),(ii) hold. Using (19.2)–(19.5), we routinely verify

the conditions Lemma 6.15(iii)–(v). Thus, the sequence (19.6) is a parameter array over F. Evaluating the

expression on the left in (6.3) using (19.2), we find that the parameter array (19.6) has fundamental constant

β = 2. So the parameter array (19.6) has type II. The last assertion comes from [37, Theorem 7.1].

Definition 19.2. Referring to Lemma 19.1, assume that the sequence (19.6) is a parameter array over F.
We call the scalars δ, µ, h, δ∗, µ∗, h∗, τ the basic variables of (19.6). We call the sequence (δ, µ, h, δ∗, µ∗, h∗, τ)

the basic sequence of (19.6).

Lemma 19.3. Referring to Lemma 19.1, the following hold for 0 ≤ i, j ≤ d:

θi − θj = (i− j)
(
µ+ h(d− i− j)

)
,

θ∗i − θ∗j = (i− j)
(
µ∗ + h∗(d− i− j)

)
.

Proof. Routine verification using (19.2) and (19.3).

Lemma 19.4. Referring to Lemma 19.1, the inequalities in Lemma 6.15(i),(ii) hold if and only if

Char(F) is equal to 0 or greater than d,(19.7)

µ ̸= hi (1− d ≤ i ≤ d− 1),(19.8)

µ∗ ̸= h∗i (1− d ≤ i ≤ d− 1),(19.9)

τ ̸= µµ∗/2− (hµ∗ + µh∗)(i− (d+ 1)/2)− hh∗(i− 1)(d− i) (1 ≤ i ≤ d),(19.10)

τ ̸= −µµ∗/2− (hµ∗ − µh∗)(i− (d+ 1)/2)− hh∗(i− 1)(d− i) (1 ≤ i ≤ d).(19.11)

Proof. Routine verification using (19.4), (19.5), and Lemma 19.3.

For the rest of this section, let Φ denote a Leonard system over F that has type II and parameter array:

(19.12) ({θi}di=0; {θ∗i }di=0; {φi}di=1; {ϕi}di=1).

Definition 19.5. By the basic variables (resp. basic sequence) of Φ, we mean the basic variables (resp.

basic sequence) of the parameter array (19.12).

For the rest of this section, let (δ, µ, h, δ∗, µ∗, h∗, τ) denote the basic sequence of Φ.

Lemma 19.6. In the table below, for each Leonard system in the first column we give the basic sequence:

Leonard system Basic sequence

Φ↓ (δ, µ, h, δ∗,−µ∗, h∗, τ)

Φ⇓ (δ,−µ, h, δ∗, µ∗, h∗, τ)

Φ∨ (−δ,−µ,−h, δ∗, µ∗, h∗,−τ)

Proof. Concerning Φ↓ and Φ⇓, use Lemma 6.28. Concerning Φ∨, use Lemma 7.10.

Lemma 19.7. For scalars ξ, ζ, ξ∗, ζ∗ in F with ξξ∗ ̸= 0, consider the Leonard system:

(ξA+ ζI; {Ei}di=0; ξ
∗A∗ + ζ∗I; {E∗

i }di=0).
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For this Leonard system, the basic sequence is equal to

(ξδ + ζ; ξµ, ξh, ξ∗δ∗ + ζ∗; ξ∗µ∗, ξ∗h∗, ξξ∗τ).

Proof. Use Lemma 6.29.

Corollary 19.8. The Leonard system

(A− δI; {Ei}di=0; A
∗ − δ∗I; {E∗

i }di=0),

has basic sequence (0, µ, h, 0, µ∗, h∗, τ).

Definition 19.9. We say that Φ is reduced whenever δ = 0 and δ∗ = 0.

Lemma 19.10. The invariant value κ for Φ satisfies κ = 4h2.

Proof. By Lemma 6.25 and (19.2).

Proof of Proposition 14.1, type II. One routinely verifies (14.2) using (14.3)–(14.5) and Lemmas 19.1,

19.10. □

Note that Theorem 14.3 holds for type II.

20. A characterization of compatibility in terms of the basic sequence, type II. In this

section, we characterize the compatibility relation for Leonard pairs of type II in terms of the basic sequence.

Throughout this section, Notation 12.1 is in effect. Assume that Φ has type II. Note that Φ′ has type II. Let

(δ, µ, h, δ∗, µ∗, h∗, τ), (δ′, µ′, h′, δ∗, µ∗, h∗, τ ′),

denote the basic sequence of Φ and Φ′, respectively.

Theorem 20.1. The matrices A and B are compatible if and only if the following (20.1)–(20.3) hold:

h2 = h′2,(20.1)

2hτ + µ2h∗ = 2h′τ ′ + µ′2h∗,(20.2)

4τ2 − µ2
(
µ∗2 + (d− 1)2h∗2) = 4τ ′2 − µ′2(µ∗2 + (d− 1)2h∗2).(20.3)

Proof. We will invoke Theorem 14.3. To do this, we investigate the conditions in (14.18). By Lemma

19.10 and (19.7), κ = κ′ if and only if (20.1) holds. Using (19.4), (19.5), we find that under the assumption

(20.1) the expression φ1ϕ1 − φ′
1ϕ

′
1 − φdϕd + φ′

dϕ
′
d is equal to d2(1− d)µ∗ times:

2hτ + µ2h∗ − 2h′τ ′ − µ′2h∗.

Using (19.4) and (19.5), we find that under the assumptions (20.1) and (20.2) the expression φ1ϕ1 − φ′
1ϕ

′
1

is equal to d2/4 times:

4τ2 − µ2
(
µ∗2 + (d− 1)2h∗2)− 4τ ′2 + µ′2 (µ∗2 + (d− 1)2h∗2) .

By these comments and (19.7), (19.9), we find that under the assumption (20.1) both φ1ϕ1 = φ′
1ϕ

′
1 and

φdϕd = φ′
dϕ

′
d hold if and only if both (20.2) and (20.3) hold. Now the result follows from Theorem 14.3.

Our next goal is to solve the equations (20.1)–(20.3) for µ′, h′, τ ′.
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Theorem 20.2. The equations (20.1)–(20.3) hold if and only if at least one of the following (20.4)–(20.8)

holds:

h′ = h, τ ′ = τ, µ′2 = µ2;(20.4)

h′ = −h, τ ′ = −τ, µ′2 = µ2;(20.5)

h∗ ̸= 0, h′ = h ̸= 0, τ ′ = −τ − h

2h∗

(
µ∗2 + (d− 1)2h∗2) ,

µ′2 = µ2 +
h

h∗2

(
4h∗τ + h

(
µ∗2 + (d− 1)2h∗2)) ;(20.6)

h∗ ̸= 0, h′ = −h ̸= 0, τ ′ = τ +
h

2h∗

(
µ∗2 + (d− 1)2h∗2) ,

µ′2 = µ2 +
h

h∗2

(
4h∗τ + h(µ∗2 + (d− 1)2h∗2)

)
;

(20.7)

h∗ = 0, h′ = h = 0, 4(τ2 − τ ′2) = (µ2 − µ′2)µ∗2.(20.8)

Proof. One routinely checks that each of (20.4)–(20.8) gives a solution to (20.1)–(20.3). Now assume

that (20.1)–(20.3) hold. We show that at least one of (20.4)–(20.8) holds.

First consider the case h∗ = 0. Note by (19.9) that µ∗ ̸= 0. By (20.2) and (20.3),

hτ = h′τ ′,(20.9)

4(τ2 − τ ′2) = (µ2 − µ′2)µ∗2.(20.10)

We may assume that h ̸= 0; otherwise, h = h′ = 0 by (20.1), and so (20.8) holds by (20.10). By (20.1), we

have either h′ = h or h′ = −h. If h′ = h, then by (20.9) we get τ ′ = τ , and so (20.4) holds by (20.10). If

h′ = −h, then by (20.9) we get τ ′ = −τ , and so (20.5) holds by (20.10).

Next consider the case h∗ ̸= 0. First assume that h = 0. By (20.1), h′ = 0. By (20.2), µ2 = µ′2. By this

and (20.3), τ2 = τ ′2. So either τ ′ = τ or τ ′ = −τ . If τ ′ = τ , then (20.4) holds. If τ ′ = −τ , then (20.5) holds.

Next assume that h ̸= 0. By (20.1), we have either h′ = h or h′ = −h. First assume that h′ = h. By (20.2),

(20.11) µ′2 = µ2 +
2h(τ − τ ′)

h∗ .

In (20.3), eliminate µ′ using (20.11) to get

(20.12) (τ − τ ′)

(
2(τ + τ ′) +

h

h∗

(
µ∗2 + (d− 1)2h∗2)) = 0.

We may assume that τ ̸= τ ′; otherwise, µ′2 = µ2 by (20.11), and so (20.4) holds. By (20.12),

τ ′ = −τ − h

2h∗

(
µ∗2 + (d− 1)2h∗2).

By this and (20.11),

µ′2 = µ2 +
h

h∗2

(
4τh∗ + h

(
µ∗2 + (d− 1)2h∗2)) .

Thus, (20.6) holds. Next assume that h′ = −h. By (20.2),

(20.13) µ′2 = µ2 +
2h(τ + τ ′)

h∗ .
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In (20.3), eliminate µ′ using (20.13) to get

(20.14) (τ + τ ′)

(
2(τ − τ ′) +

h

h∗

(
µ∗2 + (d− 1)2h∗2)) = 0.

We may assume that τ + τ ′ ̸= 0; otherwise, µ′2 = µ2 by (20.13), and so (20.5) holds. By (20.14),

τ ′ = τ +
h

2h∗

(
µ∗2 + (d− 1)2h∗2).

By this and (20.13),

µ′2 = µ2 +
h

h∗2

(
4τh∗ + h

(
µ∗2 + (d− 1)2h∗2)) .

Thus, (20.7) holds.

We have some comments about (20.4) and (20.5). By Proposition 12.3, (20.4) holds if and only if there

exists ζ ∈ F such that B = A+ ζI. By Proposition 12.4, (20.5) holds if and only if there exists ζ ∈ F such

that B = A∨ + ζI. The solutions (20.4)–(20.8) are not mutually exclusive.

21. Describing the companions for a Leonard pair of type II. In this section, we describe the

companions for a Leonard pair of type II. Throughout this section, Notation 12.1 is in effect. Assume that

Φ has type II. Note that Φ′ has type II. Let

(δ, µ, h, δ∗, µ∗, h∗, τ), (δ′, µ′, h′, δ∗, µ∗, h∗, τ ′)(21.1)

denote the basic sequence of Φ and Φ′, respectively. Assume that A and B are compatible and consider the

companion K = A−B. We will give the entries of K. To avoid complicated formulas, we assume that each

of Φ and Φ′ is reduced so that δ = 0, δ′ = 0, δ∗ = 0.

For the moment assume that (20.4) holds. By the comments below Theorem 20.2, there exists ζ ∈ F
such that B = A + ζI. By this and δ = δ′ = 0, we get B = A. So K = 0. Next assume that (20.5) holds.

By the comments below Theorem 20.2, there exists ζ ∈ F such that B = A∨ + ζI. By this and δ = δ′ = 0,

we get B = A∨. By this and Lemma 10.3, Ki,i = 2ai for 0 ≤ i ≤ d. Next, we give the K that corresponds

to solutions (20.6) and (20.7).

Theorem 21.1. The following hold:

(i) Assume that (20.6) holds. Then

K0,0 = −
d
(
4h∗τ + h

(
µ∗2 + (d− 1)2h∗2))

2h∗
(
µ∗ + (d− 1)h∗

) ,

Ki,i = −
(
(d− 2i)µ∗ +

(
d(d+ 1)− 2i(d− i)

)
h∗) (4h∗τ + h

(
µ∗2 + (d− 1)2h∗2))

2h∗
(
µ∗ + (d− 2i− 1)h∗

)(
µ∗ + (d− 2i+ 1)h∗

)
(1 ≤ i ≤ d− 1),

Kd,d = −
d
(
4h∗τ + h

(
µ∗2 + (d− 1)2h∗2))

2h∗
(
− µ∗ + (d− 1)h∗

) .
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(ii) Assume that (20.7) holds. Then

K0,0 =
dh

(
µ∗ + (d− 1)h∗)

2h∗ ,

Ki,i =
h
(
(d− 2i)µ∗ +

(
d(d− 1)− 2i(d− i)

)
h∗)

2h∗ (1 ≤ i ≤ d− 1),

Kd,d =
dh

(
− µ∗ + (d− 1)h∗)

2h∗ .

Proof. Use (14.19) and Lemmas 6.45, 19.1 with δ = δ′ = 0.

Next, we give the K that corresponds to solution (20.8).

Theorem 21.2. Assume that (20.8) holds. Then

Ki,i = − (d− 2i)(τ − τ ′)

µ∗ (0 ≤ i ≤ d).

Proof. Use (14.19) and Lemmas 6.45, 19.1 with δ = δ′ = 0.

22. The parameter arrays of type III+. In this section, we describe the parameter arrays of type

III+. We then prove Proposition 14.1 for type III+. Throughout this section, assume that d ≥ 3.

Lemma 22.1. Assume that d is even and Char(F) ̸= 2. For a sequence

(22.1) (δ, s, h, δ∗, s∗, h∗, τ),

of scalars in F, define

θi =

{
δ + s+ h(i− d/2) if i is even,

δ − s− h(i− d/2) if i is odd
(0 ≤ i ≤ d),(22.2)

θ∗i =

{
δ∗ + s∗ + h∗(i− d/2) if i is even,

δ∗ − s∗ − h∗(i− d/2) if i is odd
(0 ≤ i ≤ d),(22.3)

and for 1 ≤ i ≤ d,

φi =

{
i(τ − sh∗ − s∗h− hh∗(i− (d+ 1)/2)) if i is even,

(d− i+ 1)(τ + sh∗ + s∗h+ hh∗(i− (d+ 1)/2)) if i is odd,
(22.4)

ϕi =

{
i(τ − sh∗ + s∗h+ hh∗(i− (d+ 1)/2)) if i is even,

(d− i+ 1)(τ + sh∗ − s∗h− hh∗(i− (d+ 1)/2)) if i is odd.
(22.5)

Then the sequence

(22.6) ({θi}di=0; {θ∗i }di=0; {φi}di=1; {ϕi}di=1),

is a parameter array over F that has type III+, provided that the inequalities in Lemma 6.15(i),(ii) hold.

Conversely, assume that the sequence (22.6) is a parameter array over F that has type III+. Then there

exists a unique sequence (22.1) of scalars in F that satisfies (22.2)–(22.5).
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Proof. Assume that the inequalities in Lemma 6.15(i),(ii) hold. Using (22.2)–(22.5), we routinely verify

the conditions Lemma 6.15(iii)–(v). Thus, the sequence (22.6) is a parameter array over F. Evaluating the

expression on the left in (6.3) using (22.2), we find that the parameter array (22.6) has fundamental constant

β = −2. So the parameter array (22.6) has type III+. The last assertion comes from [37, Theorem 8.1].

Definition 22.2. Referring to Lemma 22.1, assume that the sequence (22.6) is a parameter array over F.
We call the scalars δ, s, h, δ∗, s∗, h∗, τ the basic variables of (22.6). We call the sequence (δ, s, h, δ∗, s∗, h∗, τ)

the basic sequence of (22.6).

Lemma 22.3. Referring to Lemma 22.1, the following hold for 0 ≤ i, j ≤ d:

θi − θj =


h(i− j) if i is even, j is even,

2s+ h(i+ j − d) if i is even, j is odd,

h(j − i) if i is odd, j is odd,

θ∗i − θ∗j =


h∗(i− j) if i is even, j is even,

2s∗ + h∗(i+ j − d) if i is even, j is odd,

h∗(j − i) if i is odd, j is odd.

Proof. Routine verification using (22.2) and (22.3).

Lemma 22.4. Referring to Lemma 22.1, the inequalities in Lemma 6.15(i),(ii) hold if and only if

Char(F) is equal to 0 or greater than d/2,(22.7)

h ̸= 0, h∗ ̸= 0,(22.8)

2s ̸= ih if i is odd (1− d ≤ i ≤ d− 1),(22.9)

2s∗ ̸= ih∗ if i is odd (1− d ≤ i ≤ d− 1),(22.10)

τ ̸= sh∗ + s∗h+ hh∗(i− (d+ 1)/2
)

if i is even (1 ≤ i ≤ d),(22.11)

τ ̸= −sh∗ − s∗h− hh∗(i− (d+ 1)/2
)

if i is odd (1 ≤ i ≤ d),(22.12)

τ ̸= sh∗ − s∗h− hh∗(i− (d+ 1)/2
)

if i is even (1 ≤ i ≤ d),(22.13)

τ ̸= −sh∗ + s∗h+ hh∗(i− (d+ 1)/2
)

if i is odd (1 ≤ i ≤ d).(22.14)

Proof. Routine verification using (22.4), (22.5), and Lemma 22.3.

For the rest of this section, let Φ denote a Leonard system over F that has type III+ and parameter

array

(22.15) ({θi}di=0; {θ∗i }di=0; {φi}di=1; {ϕi}di=1).

Definition 22.5. By the basic variables (resp. basic sequence) of Φ, we mean the basic variables (resp.

basic sequence) of the parameter array (22.15).

For the rest of this section, let (δ, s, h, δ∗, s∗, h∗, τ) denote the basic sequence of Φ.

Lemma 22.6. In the table below, for each Leonard system in the first column, we give the basic sequence:

Leonard system Basic sequence

Φ↓ (δ, s, h, δ∗, s∗,−h∗, τ)

Φ⇓ (δ, s,−h, δ∗, s∗, h∗, τ)

Φ∨ (−δ,−s,−h, δ∗, s∗, h∗,−τ)
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Proof. Concerning Φ↓ and Φ⇓, use Lemma 6.28. Concerning Φ∨, use Lemma 7.10.

Lemma 22.7. For scalars ξ, ζ, ξ∗, ζ∗ in F with ξξ∗ ̸= 0, consider the Leonard system:

(ξA+ ζI; {Ei}di=0; ξ
∗A∗ + ζ∗I; {E∗

i }di=0).

For this Leonard system, the basic sequence is equal to

(ξδ + ζ; ξs, ξh, ξ∗δ∗ + ζ∗; ξ∗s∗, ξ∗h∗, ξξ∗τ).

Proof. Use Lemma 6.29.

Corollary 22.8. The Leonard system

(A− δI; {Ei}di=0; A
∗ − δ∗I; {E∗

i }di=0),

has basic sequence (0, s, h, 0, s∗, h∗, τ).

Definition 22.9. We say that Φ is reduced whenever δ = 0 and δ∗ = 0.

Lemma 22.10. The variable κ for Φ satisfies κ = 4h2.

Proof. By Lemma 6.25 and (22.2).

Proof of Proposition 14.1, type III+. One routinely verifies (14.2) using (14.3)–(14.5) and Lemmas 22.1,

22.10. □

Note that Theorem 14.3 holds for type III+.

23. A characterization of compatibility in terms of the basic sequence, type III+. In this

section, we characterize the compatibility relation for Leonard pairs of type III+ in terms of the basic

sequence. Throughout this section, Notation 12.1 is in effect. Assume that Φ has type III+. Note that Φ′

has type III+. Let

(δ, s, h, δ∗, s∗, h∗, τ), (δ′, s′, h′, δ∗, s∗, h∗, τ ′),

denote the basic sequence of Φ and Φ′, respectively.

Theorem 23.1. The matrices A and B are compatible if and only if the following (23.1)–(23.3) hold:

h2 = h′2,(23.1)

(τ + sh∗)2 = (τ ′ + s′h∗)2,(23.2)

(τ − sh∗)2 = (τ ′ − s′h∗)2.(23.3)

Proof. We will invoke Theorem 14.3. To do this, we investigate the conditions in (14.18). By Lemma

22.10 and (22.7), κ = κ′ if and only if (23.1) holds. Using (22.4) and (22.5), we find that under the

assumption (23.1) the expression φ1ϕ1 − φ′
1ϕ

′
1 is equal to d2 times:

(τ + sh∗)2 − (τ ′ + s′h∗)2,

and the expression φdϕd − φ′
dϕ

′
d is equal to d2 times:

(τ − sh∗)2 − (τ ′ − s′h∗)2.

By these comments and (22.7), we find that under the assumption (23.1), φ1ϕ1 = φ′
1ϕ

′
1 holds if and only if

(23.2) holds, and φdϕd = φ′
dϕ

′
d if and only if (23.3) holds. Now the result follows from Theorem 14.3.
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Our next goal is to solve the equations (23.1)–(23.3) for s′, h′, and τ ′.

Theorem 23.2. The equations (23.1)–(23.3) hold if and only if at least one of the following (23.4)–(23.7)

holds:

s′ = s, τ ′ = τ, h′2 = h2;(23.4)

s′ = −s, τ ′ = −τ, h′2 = h2;(23.5)

s′ = τ/h∗, τ ′ = sh∗, h′2 = h2;(23.6)

s′ = −τ/h∗, τ ′ = −sh∗, h′2 = h2.(23.7)

Proof. One routinely checks that each of (23.4)–(23.7) gives a solution to (23.1)–(23.3). Now assume

that (23.1)–(23.3) hold. Note by (22.8) that h∗ ̸= 0. By (23.2),

τ + sh∗ = τ ′ + s′h∗ or τ + sh∗ = −τ ′ − s′h∗.

By (23.3),

τ − sh∗ = τ ′ − s′h∗ or τ − sh∗ = −τ ′ + s′h∗.

By these comments and (23.1), we get at least one of (23.4)–(23.7).

We have some comments about (23.4) and (23.5). By Proposition 12.3, (23.4) holds if and only if there

exists ζ ∈ F such that B = A+ ζI. By Proposition 12.4, (23.5) holds if and only if there exists ζ ∈ F such

that B = A∨ + ζI. The solutions (23.4)–(23.7) are not mutually exclusive.

24. Describing the companions for a Leonard pair of type III+. In this section, we describe

the companions for a Leonard pair of type III+. Throughout this section, Notation 12.1 is in effect. Assume

that Φ has type III+. Note that Φ′ has type III+. Let

(δ, s, h, δ∗, s∗, h∗, τ), (δ′, s′, h′, δ∗, s∗, h∗, τ ′),(24.1)

denote the basic sequence of Φ and Φ′, respectively. Assume that A and B are compatible and consider the

companion K = A−B. We will give the entries of K. To avoid complicated formulas, we assume that each

of Φ and Φ′ is reduced so that δ = 0, δ′ = 0, δ∗ = 0.

For the moment assume that (23.4) holds. By the comments below Theorem 23.2, there exists ζ ∈ F
such that B = A + ζI. By this and δ = δ′ = 0, we get B = A. So K = 0. Next assume that (23.5) holds.

By the comments below Theorem 23.2, there exists ζ ∈ F such that B = A∨ + ζI. By this and δ = δ′ = 0,

we get B = A∨. By this and Lemma 10.3, Ki,i = 2ai for 0 ≤ i ≤ d. We now give the K that corresponds to

solutions (23.6), (23.7).

Theorem 24.1. The following hold:

(i) Assume (23.6) holds. Then

K0,0 = s− τ/h∗,

Ki,i =


(s− τ/h∗)

(
2s∗ − (d+ 1)h∗)

2s∗ − (d− 2i+ 1)h∗ if i is even,

−
(s− τ/h∗)

(
2s∗ − (d+ 1)h∗)

2s∗ − (d− 2i− 1)h∗ if i is odd

(1 ≤ i ≤ d).
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(ii) Assume that (23.7) holds. Then

Ki,i =


(s+ τ/h∗)

(
2s∗ + (d+ 1)h∗)

2s∗ − (d− 2i− 1)h∗ if i is even,

−
(s+ τ/h∗)

(
2s∗ + (d+ 1)h∗)

2s∗ − (d− 2i+ 1)h∗ if i is odd

(0 ≤ i ≤ d− 1),

Kd,d = s+ τ/h∗.

Proof. Use (14.19) and Lemmas 6.45, 22.1 with δ = δ′ = 0.

25. The parameter arrays of type III−. In this section, we describe the parameter arrays of type

III−. We then prove Proposition 14.1 for type III−. Throughout this section, assume that d ≥ 3.

Lemma 25.1. Assume that d is odd and Char(F) ̸= 2. For a sequence

(25.1) (δ, s, h, δ∗, s∗, h∗, τ),

of scalars in F, define

θi =

{
δ + s+ h(i− d/2) if i is even,

δ − s− h(i− d/2) if i is odd
(0 ≤ i ≤ d),(25.2)

θ∗i =

{
δ∗ + s∗ + h∗(i− d/2) if i is even,

δ∗ − s∗ − h∗(i− d/2) if i is odd
(0 ≤ i ≤ d),(25.3)

and for 1 ≤ i ≤ d,

φi =

{
hh∗i(d− i+ 1) if i is even,

τ − 2ss∗ + i(d− i+ 1)hh∗ − (sh∗ + s∗h)(2i− d− 1) if i is odd,
(25.4)

ϕi =

{
hh∗i(d− i+ 1) if i is even,

τ + 2ss∗ + i(d− i+ 1)hh∗ + (sh∗ − s∗h)(2i− d− 1) if i is odd.
(25.5)

Then the sequence

(25.6) ({θi}di=0; {θ∗i }di=0; {φi}di=1; {ϕi}di=1),

is a parameter array over F that has type III−, provided that the inequalities in Lemma 6.15(i),(ii) hold.

Conversely, assume that the sequence (25.6) is a parameter array over F that has type III−. Then there

exists a unique sequence (25.1) of scalars in F that satisfies (25.2)–(25.5).

Proof. Assume that the inequalities in Lemma 6.15(i),(ii) hold. Using (25.2)–(25.5) we routinely verify

the conditions Lemma 6.15(iii)–(v). Thus the sequence (25.6) is a parameter array over F. Evaluating the

expression on the left in (6.3) using (25.2), we find that the parameter array (25.6) has fundamental constant

β = −2. So the parameter array (25.6) has type III−. The last assertion comes from [37, Theorem 9.1].

Definition 25.2. Referring to Lemma 25.1, assume that the sequence (25.6) is a parameter array over

F. We call the scalars δ, s, h, δ∗, s∗, h∗, τ the basic variables of (25.6). We call the sequence (δ, s, h, δ∗, s∗,

h∗, τ) the basic sequence of (25.6).
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Lemma 25.3. Referring to Lemma 25.1, the following hold for 0 ≤ i, j ≤ d:

θi − θj =


h(i− j) if i is even, j is even,

2s+ h(i+ j − d) if i is even, j is odd,

h(j − i) if i is odd, j is odd,

θ∗i − θ∗j =


h∗(i− j) if i is even, j is even,

2s∗ + h∗(i+ j − d) if i is even, j is odd,

h∗(j − i) if i is odd, j is odd.

Proof. Routine verification using (25.2) and (25.3).

Lemma 25.4. Referring to Lemma 25.1, the inequalities in Lemma 6.15(i),(ii) hold if and only if

Char(F) is equal to 0 or greater than (d− 1)/2,(25.7)

h ̸= 0, h∗ ̸= 0,(25.8)

2s ̸= ih if i is even (1− d ≤ i ≤ d− 1),(25.9)

2s∗ ̸= ih∗ if i is even (1− d ≤ i ≤ d− 1),(25.10)

τ ̸= 2ss∗ − i(d− i+ 1)hh∗ + (sh∗ + s∗h)(2i− d− 1) if i is odd (1 ≤ i ≤ d),(25.11)

τ ̸= −2ss∗ − i(d− i+ 1)hh∗ − (sh∗ − s∗h)(2i− d− 1) if i is odd (1 ≤ i ≤ d).(25.12)

Proof. Routine verification using (25.4), (25.5), and Lemma 25.3.

For the rest of this section, let Φ denote a Leonard system over F that has type III− and parameter

array:

(25.13) ({θi}di=0; {θ∗i }di=0; {φi}di=1; {ϕi}di=1).

Definition 25.5. By the basic variables (resp. basic sequence) of Φ, we mean the basic variables (resp.

basic sequence) of the parameter array (25.13).

For the rest of this section, let (δ, s, h, δ∗, s∗, h∗, τ) denote the basic sequence of Φ.

Lemma 25.6. In the table below, for each Leonard system in the first column, we give the basic sequence:

Leonard system Basic sequence

Φ↓ (δ, s, h, δ∗, s∗,−h∗, τ)

Φ⇓ (δ, s,−h, δ∗, s∗, h∗, τ)

Φ∨ (−δ,−s,−h, δ∗, s∗, h∗,−τ)

Proof. Concerning Φ↓ and Φ⇓, use Lemma 6.28. Concerning Φ∨, use Lemma 7.10.

Lemma 25.7. For scalars ξ, ζ, ξ∗, ζ∗ in F with ξξ∗ ̸= 0, consider the Leonard system:

(ξA+ ζI; {Ei}di=0; ξ
∗A∗ + ζ∗I; {E∗

i }di=0).

For this Leonard system, the basic sequence is equal to

(ξδ + ζ; ξs, ξh, ξ∗δ∗ + ζ∗; ξ∗s∗, ξ∗h∗, ξξ∗τ).



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 404-456, August 2022.

449 Compatibility and companions for Leonard pairs

Proof. Use Lemma 6.29.

Corollary 25.8. The Leonard system

(A− δI; {Ei}di=0; A
∗ − δ∗I; {E∗

i }di=0),

has basic sequence (0, s, h, 0, s∗, h∗, τ).

Definition 25.9. We say that Φ is reduced whenever δ = 0 and δ∗ = 0.

Lemma 25.10. The invariant value κ for Φ satisfies κ = 4h2.

Proof. By Lemma 6.25 and (25.2).

Proof of Proposition 14.1, type III−. One routinely verifies (14.2) using (14.3)–(14.5) and Lemmas 25.1,

25.10. □

Note that Theorem 14.3 holds for type III−.

26. A characterization of compatibility in terms of the basic sequence, type III−. In this

section, we characterize the compatibility relation for Leonard pairs of type III− in terms of the basic

sequence. Throughout this section, Notation 12.1 is in effect. Assume that Φ has type III−. Note that Φ′

has type III−. Let

(δ, s, h, δ∗, s∗, h∗, τ), (δ′, s′, h′, δ∗, s∗, h∗, τ ′),

denote the basic sequence of Φ and Φ′, respectively.

Theorem 26.1. The matrices A and B are compatible if and only if the following (26.1)–(26.3) hold:

h2 = h′2,(26.1)

hτ + 2h∗s2 = h′τ ′ + 2h∗s′2,(26.2)

2h∗τ2 +
(
4s∗2 + (d+ 1)2h∗2)hτ = 2h∗τ ′2 +

(
4s∗2 + (d+ 1)2h∗2)h′τ ′.(26.3)

Proof. We will invoke Theorem 14.3. To do this, we investigate the conditions in (14.18). By Lemma

25.10 and Char(F) ̸= 2, κ = κ′ if and only if (26.1) holds. Using (25.4) and (25.5), we find that under the

assumption (26.1) the expression φ1ϕ1 − φ′
1ϕ

′
1 − φdϕd + φ′

dϕ
′
d is equal to 4(d− 1)s∗ times:

hτ + 2h∗s2 − h′τ ′ − 2h∗s′2.

Using (25.4) and (25.5), we find that under the assumptions (26.1) and (26.2), the expression φ1ϕ1 − φ′
1ϕ

′
1

is equal to

2h∗τ2 +
(
4s∗2 + (d+ 1)2h∗2)hτ − 2h∗τ ′2 −

(
4s∗2 + (d+ 1)2h∗2)h′τ ′

2h∗ .

By these comments and (25.7) and (25.10), we find that under the assumption (26.1), both φ1ϕ1 = φ′
1ϕ

′
1

and φdϕd = φ′
dϕ

′
d hold if and only if both (26.2) and (26.3) hold. Now the result follows from Theorem

14.3.

Our next goal is to solve the equations (26.1)–(26.3) for s′, h′, and τ ′.
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Theorem 26.2. The equations (26.1)–(26.3) hold if and only if at least one of the following (26.4)–(26.7)

holds:

h′ = h, τ ′ = τ, s′2 = s2;(26.4)

h′ = −h, τ ′ = −τ, s′2 = s2;(26.5)

h′ = h, τ ′ = −τ − 2hh∗
(
(s∗/h∗)2 +

(
(d+ 1)/2

)2)
,

s′2 = s2 + (h/h∗)τ + h2
(
(s∗/h∗)2 +

(
(d+ 1)/2

)2)
;

(26.6)

h′ = −h, τ ′ = τ + 2hh∗
(
(s∗/h∗)2 +

(
(d+ 1)/2

)2)
,

s′2 = s2 + (h/h∗)τ + h2
(
(s∗/h∗)2 +

(
(d+ 1)/2

)2)
.

(26.7)

Proof. One routinely checks that each of (26.4)–(26.7) gives a solution to (26.1)–(26.3). Now assume

that (26.1)–(26.3) hold. We show that at least one of (26.4)–(26.7) holds.

By (26.1), we have either h′ = h or h′ = −h. First assume that h′ = h. We may assume that τ ̸= τ ′;

otherwise s2 = s′2 by (26.2), and so (26.4) holds. By (26.3),

(τ − τ ′)
(
2h∗(τ + τ ′) + h

(
4s∗2 + (d+ 1)2h∗2)) = 0.

By this and τ − τ ′ ̸= 0,

(26.8) 2h∗(τ + τ ′) + h
(
4s∗2 + (d+ 1)2h∗2) = 0.

By (26.2),

s′2 = s2 +
h(τ − τ ′)

2h∗ .

By this and (26.8), we get (26.6). Next assume that h′ = −h. We may assume that τ ′ ̸= −τ ; otherwise

s2 = s′2 by (26.2), and so (26.5) holds. By (26.3),

(τ + τ ′)
(
2h∗(τ − τ ′) + h

(
4s∗2 + (d+ 1)2h∗2)) = 0.

By this and τ + τ ′ ̸= 0,

(26.9) 2h∗(τ − τ ′) + h
(
4s∗2 + (d+ 1)2h∗2) = 0.

By (26.2),

s′2 = s2 +
h(τ + τ ′)

2h∗ .

By this and (26.9), we get (26.7).

We have some comments about (26.4) and (26.5). By Proposition 12.3, (26.4) holds if and only if there

exists ζ ∈ F such that B = A+ ζI. By Proposition 12.4, (26.5) holds if and only if there exists ζ ∈ F such

that B = A∨ + ζI. The solutions (26.4)–(26.7) are not mutually exclusive.
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27. Describing the companions for a Leonard pair of type III−. In this section, we describe

the companions for a Leonard pair of type III−. Throughout this section, Notation 12.1 is in effect. Assume

that Φ has type III−. Note that Φ′ has type III−. Let

(δ, s, h, δ∗, s∗, h∗, τ), (δ′, s′, h′, δ∗, s∗, h∗, τ ′),(27.1)

denote the basic sequence of Φ and Φ′, respectively. Assume that A and B are compatible and consider the

companion K = A−B. We will give the entries of K. To avoid complicated formulas, we assume that each

of Φ and Φ′ is reduced so that δ = 0, δ′ = 0, and δ∗ = 0.

For the moment assume that (26.4) holds. By the comments below Theorem 26.2, there exists ζ ∈ F
such that B = A + ζI. By this and δ = δ′ = 0, we get B = A. So K = 0. Next assume that (26.5) holds.

By the comments below Theorem 26.2, there exists ζ ∈ F such that B = A∨ + ζI. By this and δ = δ′ = 0,

we get B = A∨. By this and Lemma 10.3, Ki,i = 2ai for 0 ≤ i ≤ d. We now give the K that corresponds to

solutions (26.6) and (26.7).

Theorem 27.1. The following hold:

(i) Assume that (26.6) holds. Then

Ki,i =


τ + hh∗

(
(s∗/h∗)2 +

(
(d+ 1)/2

)2)
s∗ −

(
(d− 1)/2− i

)
h∗ if i is even,

−
τ + hh∗

(
(s∗/h∗)2 +

(
(d+ 1)/2

)2)
s∗ −

(
(d+ 1)/2− i

)
h∗ if i is odd

(0 ≤ i ≤ d).

(ii) Assume that (26.7) holds. Then

K0,0 = −h (s∗/h∗ + (d+ 1)/2) ,

Ki,i =


−
hh∗

(
(s∗/h∗)2 −

(
(d+ 1)/2

)2)
s∗ − ((d+ 1)/2− i)h∗ if i even,

hh∗
(
(s∗/h∗)2 −

(
(d+ 1)/2

)2)
s∗ − ((d− 1)/2− i)h∗ if i odd

(1 ≤ i ≤ d− 1),

Kd,d = h (s∗/h∗ − (d+ 1)/2) .

Proof. Use (14.19) and Lemmas 6.45, 25.1 with δ = δ′ = 0.

28. The parameter arrays of type IV. In this section, we describe the parameter arrays of type

IV. We then prove Proposition 14.1 for type IV. Note by Lemma 13.3 that d = 3 for type IV.

Lemma 28.1. Assume that d = 3 and Char(F) = 2. For a sequence

(28.1) (δ, h, s, δ∗, h∗, s∗, r),

of scalars in F, define

θ0 = δ, θ1 = δ + h(s+ 1), θ2 = δ + h, θ3 = δ + hs,(28.2)

θ∗0 = δ∗, θ∗1 = δ∗ + h∗(s∗ + 1), θ∗2 = δ∗ + h∗, θ∗3 = δ∗ + h∗s∗,(28.3)

φ1 = hh∗r, φ2 = hh∗, φ3 = hh∗(r + s+ s∗),(28.4)

ϕ1 = hh∗(r + s+ ss∗), ϕ2 = hh∗, ϕ3 = hh∗(r + s∗ + ss∗).(28.5)
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Then the sequence

(28.6) ({θi}di=0; {θ∗i }di=0; {φi}di=1; {ϕi}di=1),

is a parameter array over F that has type IV, provided that the inequalities in Lemma 6.15(i),(ii) hold.

Conversely, assume that the sequence (28.6) is a parameter array over F that has type IV. Then there exists

a unique sequence (28.1) of scalars in F that satisfies (28.2)–(28.5).

Proof. Assume that the inequalities in Lemma 6.15(i),(ii) hold. Using (28.2)–(28.5) we routinely verify

the conditions Lemma 6.15(iii)–(v). Thus, the sequence (28.6) is a parameter array over F. Evaluating the

expression on the left in (6.3) using (28.2), we find that the parameter array (28.6) has fundamental constant

β = 2. So the parameter array (28.6) has type IV. The last assertion comes from [37, Theorem 10.1].

Definition 28.2. Referring to Lemma 28.1, assume that the sequence (28.6) is a parameter array over F.
We call the scalars δ, h, s, δ∗, h∗, s∗, r the basic variables of (28.6). We call the sequence (δ, h, s, δ∗, h∗, s∗, r)

the basic sequence of (28.6).

Lemma 28.3. Referring to Lemma 28.1, the inequalities in Lemma 6.15(i),(ii) hold if and only if

h ̸= 0, s ̸= 0, s+ 1 ̸= 0, h∗ ̸= 0, s∗ ̸= 0, s∗ + 1 ̸= 0,(28.7)

r ̸= 0, r + s+ s∗ ̸= 0, r + s+ ss∗ ̸= 0, r + s∗ + ss∗ ̸= 0.(28.8)

Proof. Routine verification using (28.2)–(28.5).

For the rest of this section, let Φ denote a Leonard system over F that has type IV and parameter array:

(28.9) ({θi}di=0; {θ∗i }di=0; {φi}di=1; {ϕi}di=1).

Definition 28.4. By the basic variables (resp. basic sequence) of Φ, we mean the basic variables (resp.

basic sequence) of the parameter array (28.9).

For the rest of this section, let (δ, h, s, δ∗, h∗, s∗, r) denote the basic sequence of Φ.

Lemma 28.5. In the table below, for each Leonard system in the first column, we give the basic sequence:

Leonard system Basic sequence

Φ↓ (δ, s, h, δ∗ + h∗s∗, s∗, h∗, r + s∗ + ss∗)

Φ⇓ (δ + hs, s, h, δ∗, s∗, h∗, r + s+ ss∗)

Φ∨ (δ, s, h, δ∗, s∗, h∗, r)

Proof. Concerning Φ↓ and Φ⇓, use Lemma 6.28. Concerning Φ∨, use Lemma 7.10.

Lemma 28.6. For scalars ξ, ζ, ξ∗, ζ∗ in F with ξξ∗ ̸= 0, consider the Leonard system:

(ξA+ ζI; {Ei}di=0; ξ
∗A∗ + ζ∗I; {E∗

i }di=0).

For this Leonard system, the basic sequence is equal to

(ξδ + ζ, ξh, s, ξ∗δ∗ + ζ∗, ξ∗h∗, s∗, r).

Proof. Use Lemma 6.29.
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Lemma 28.7. The invariant value κ for Φ satisfies κ = h2.

Proof. By Lemma 6.25 and (28.2).

Proof of Proposition 14.1, type IV. One routinely verifies (14.2) using (14.3)–(14.5) and Lemmas 28.1,

28.7. □

Note that Theorem 14.3 holds for type IV.

29. A characterization of compatibility in terms of the basic sequence, type IV. In this

section, we characterize the compatibility relation for Leonard pairs of type IV in terms of the basic sequence.

Throughout this section, Notation 12.1 is in effect. Assume that Φ has type IV. Note that Φ′ has type IV.

Let

(δ, h, s, δ∗, h∗, s∗, r) (δ′, h′, s′, δ∗, h∗, s∗, r′),

denote the basic sequence of Φ and Φ′, respectively.

Theorem 29.1. The matrices A and B are compatible if and only if the following (29.1)–(29.3) hold:

h = h′,(29.1)

s(1 + s+ s∗) = s′(1 + s′ + s∗),(29.2)

r(r + s+ ss∗) = r′(r′ + s′ + s′s∗).(29.3)

Proof. We will invoke Theorem 14.3. To do this, we investigate the conditions in (14.18). By Lemma

28.7 and since Char(F) = 2, κ = κ′ if and only if (29.1) holds. Using (28.4) and (28.5), we find that under

the assumption (29.1) the expression φ1ϕ1 − φ′
1ϕ

′
1 is equal to h2h∗2 times:

r(r + s+ ss∗)− r′(r′ + s′ + s′s∗),

and the expression φ3ϕ3 − φ′
3ϕ

′
3 is equal to h2h∗2 times:

(r + s+ s∗)(r + s∗ + ss∗)− (r′ + s′ + s∗)(r′ + s∗ + s′s∗).

By these comments and (28.7), we find that under the assumption (29.1), φ1ϕ1 = φ′
1ϕ

′
1 holds if and only if

(29.2) holds, and φdϕd = φ′
dϕ

′
d holds if and only if (29.3) holds. Now the result follows from Theorem 14.3.

Our next goal is solve the equations (29.1)–(29.3) for h′, s′, and r′.

Theorem 29.2. The equations (29.1)–(29.3) hold if and only if at least one of the following (29.4) and

(29.5) holds:

h′ = h, s′ = s, r′ = r or r′ = r + s+ ss∗,(29.4)

h′ = h, s′ = 1 + s+ s∗,
r + r′

1 + s∗
+

r′(1 + s∗)

r + r′
= s, r′ + r ̸= 0.(29.5)

Proof. Recall that Char(F) = 2. One routinely checks that each of (29.4) and (29.5) gives a solution to

(29.1)–(29.3). Now assume that (29.1)–(29.3) hold. We show that (29.4) or (29.5) holds.

By (29.1), h′ = h. Using (29.2), we find that

(s′ + s)(s′ + 1 + s+ s∗) = 0.
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So either s′ = s or s′ = 1 + s+ s∗. First assume that s′ = s. By (29.3) with s′ = s,

(r + r′)(r + r′ + s+ ss∗) = 0.

So either r′ = r or r′ = r+s+ss∗. Thus, (29.4) holds. Next assume that s′ = 1+s+s∗. In (29.3), eliminate

s′ to get

r(r + s+ ss∗) + r′
(
r′ + (1 + s+ s∗)(1 + s∗)

)
= 0.

In this equation, rearrange terms to get

(r + r′)2 + s(r + r′)(1 + s∗) + r′(1 + s∗)2 = 0.

We have r + r′ ̸= 0; otherwise r′(1 + s∗)2 = 0, contradicting Lemma 28.3. In the above equation, multiply

each side by (r + r′)−1(1 + s∗)−1 to get the third equation in (29.5). By these comments (29.5) holds.

We have a comment about (29.4). By Proposition 12.3, solution (29.4) holds if and only if there exists

ζ ∈ F such that B = A+ ζI. In this case, ζ = δ′ − δ in view of Lemma 28.6.

30. Describing the companions for a Leonard pair of type IV. In this section, we describe the

companions for a Leonard pair of type IV. Throughout this section, Notation 12.1 is in effect. Assume that

Φ has type IV. Note that Φ′ has type IV. Let

(δ, h, s, δ∗, h∗, s∗, r) (δ′, h′, s′, δ∗, h∗, s∗, r′),(30.1)

denote the basic sequence of Φ and Φ′, respectively. Assume that A and B are compatible and consider the

companion K = A−B. We will give the entries of K.

For the moment assume that (29.4) holds. By the comment below Theorem 29.2, we have B = A+(δ′−
δ)I, so K = (δ − δ′)I. We now give the K that corresponds to solution (29.5).

Theorem 30.1. Assume that (29.5) holds. Then

K0,0 = δ − δ′ +
h(r + r′)

s∗ + 1
, K1,1 = δ − δ′ + h

(
1 + s∗ +

r + r′

s∗ + 1

)
,

K2,2 = δ − δ′ + h

(
1 +

r + r′

s∗ + 1

)
, K3,3 = δ − δ′ + h

(
s∗ +

r + r′

s∗ + 1

)
.

Proof. Use (14.19) and Lemmas 6.45, 28.1.
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(Algebraic Combinatorics, Kyoto, 1999)

[47] P. Terwilliger. Two linear transformations each tridiagonal with respect to an eigenbasis of the other. Linear Algebra

Appl., 330:149–203, 2001.

[48] P. Terwilliger. Introduction to Leonard pairs. J. Comp. Appl. Math., 153:463–475, 2003.

[49] P. Terwilliger. Two linear transformations each tridiagonal with respect to an eigenbasis of the other; the TD-D and the

LB-UB canonical form. J. Algebra, 291:1–45, 2005.

[50] P. Terwilliger. Leonard pairs from 24 points of view. Rocky Mountain J. Math., 32:827–888, 2002.

[51] P. Terwilliger. Leonard pairs and the q-Racah polynomials. Linear Algebra Appl., 387:235–276, 2004.

[52] P. Terwilliger. Two linear transformations each tridiagonal with respect to an eigenbasis of the other one; comments on

the parameter array. Des. Codes Cryptogr., 34:307–332, 2005.

[53] P. Terwilliger. An Algebraic Approach to the Askey Scheme of Orthogonal Polynomials, Orthogonal Polynomials and

Special Functions. Lecture Notes in Mathematics, Vol. 1883. Springer, Berlin, 255–330, 2006. arXiv:math/0408390.

[54] P. Terwilliger. Notes on the Leonard system classification. Graphs Comb., 37:1687–1748, 2021.

[55] C. Worawannotai. Dual polar graphs, the quantum algebra Uq(sl2), and Leonard systems of dual q-Krawtchouk type.

Linear Algebra Appl., 438:443–497, 2013.


	Introduction
	Preliminaries
	Tridiagonal matrices and diagonal equivalence
	A normalization
	The bond relation
	Leonard pairs and Leonard systems
	The bond relation for Leonard pairs and Leonard systems
	Compatibility and companions for Leonard pairs
	The set 
	The bond relation on 
	The compatibility relation on 
	A characterization of the compatibility relation and the bond relation in terms of the parameter array
	The type of a Leonard pair and Leonard system
	A refinement of Theorem 12.2
	The companions for type O
	The parameter arrays of type I
	A characterization of compatibility in terms of the basic sequence, type I
	Describing the companions for a Leonard pair of type I
	The parameter arrays of type II
	A characterization of compatibility in terms of the basic sequence, type II
	Describing the companions for a Leonard pair of type II
	The parameter arrays of type III+
	A characterization of compatibility in terms of the basic sequence, type III+
	Describing the companions for a Leonard pair of type III+
	The parameter arrays of type III-
	A characterization of compatibility in terms of the basic sequence, type III-
	Describing the companions for a Leonard pair of type III-
	The parameter arrays of type IV
	A characterization of compatibility in terms of the basic sequence, type IV
	Describing the companions for a Leonard pair of type IV
	References

