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Abstract. Algebraic reflexivity of sets and semigroups of linear transformations are studied in

this paper. Some new examples of algebraically reflexive sets and semigroups of linear transforma-

tions are given. Using known results on algebraically orbit reflexive linear transformations, those

linear transformations on a complex Banach space that are determined by their invariant subsets are

characterized.
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1. Introduction. Let T ⊆ L(V) be a set of linear transformations on a vector
space V. Here L(V) means the algebra of all linear transformations on V. If S ∈ L(V)
is such that Sx = Txx holds for every x ∈ V and a linear transformation Tx ∈ T , which
depends on x, then S is said to be locally in T . Let Ref T denote the set of all linear
transformations that are locally in T , i.e. Ref T = {S ∈ L(V); Sx ∈ T x for all x ∈ V}.
It is obvious that T ⊆ Ref T , so one can pose the following very natural question:
For which sets T ⊆ L(V) one has the equality Ref T = T ? Sets which satisfy this
equality are said to be algebraically reflexive.

Since the concept of algebraic reflexivity is so simple and natural it was studied
during the last few decades by many authors [3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 17]
(we have given here just a few references and we did not mention papers that are
concerned with algebraic reflexivity of linear spaces of operators). It seems that the
basic idea of algebraic reflexivity for sets of linear transformations was given by [11,
remark (5) in §6]. However, the idea of reflexive spaces of operators on a Banach space
is more than ten years older (see Shulman’s definition in §5 of [18]) and itself relies
on the concept of a reflexive algebra of operators introduced by Halmos in 1960’s.

Recall that a closed algebra A of bounded linear operators on a complex Banach
space X is reflexive if it is determined by LatA, the lattice of closed A-invariant
subspaces of X. More precisely, denote by B(X) the Banach algebra of all bounded
linear operators on X and let Alg LatA ⊆ B(X) be the weakly closed subalgebra
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of all operators T that satisfy LatA ⊆ LatT . Then A is reflexive if and only if
Alg LatA = A. If A contains the identity operator Id , then Alg LatA = ReftA,
where ReftA = {T ∈ B(X); Tx ∈ [Ax] for every x ∈ X} is the topological reflexive
cover of A. Here [Ax] denotes the closure of the orbit Ax.

The aim of this paper is to use the ideas and concepts mentioned above in the
study of algebraic reflexivity for semigroups of linear transformations. Of course, ideas
from the theory of reflexive algebras have already been used in the study of algebraic
reflexivity of sets, however we wish to point out some analogies more explicitly. This
is done in Section 2 where we prove some general statements. In Section 3, we give
a few examples. For instance, we show that every finite set of linear transformations
is algebraically reflexive provided that the underlying field is infinite. We show that
the group of all invertible linear transformations on a vector space V is algebraically
reflexive if and only if dim(V) <∞. In the last example of the section we prove that
every continuous one-parameter semigroup on a finite-dimensional complex Banach
space is algebraically reflexive. The simplest semigroups are those with one generator.
A linear transformation T is said to be algebraically orbit reflexive (see [9]) if the
semigroup O(T ) = {T n; n ≥ 0} is algebraically reflexive. It seems that the problem
which linear transformations are algebraically orbit reflexive is not solved in general.
Probably [9, Theorems 9 and 10] gives the most general result in this direction.
However, on a complex Banach space every linear transformation is algebraically
orbit reflexive. In Section 4 we use results from [9] and consider the question whether
a linear transformation is uniquely determined by their own lattice of invariant sets.

2. Algebraic reflexivity. Let V be a vector space over a field F. A non-empty
subset M ⊆ V is said to be invariant for a linear transformation T ∈ L(V) if TM ⊆M.
More generally, M is invariant for a non-empty set of linear transformations T ⊆ L(V)
if it is invariant for every transformation in T . In this case, we write briefly TM ⊆M

and say that M is T -invariant.

Let T ⊆ L(V) be a non-empty set. It is obvious that the intersection and union of
any collection of T -invariant subsets are T -invariant as well. Thus, the family Lst T
of all T -invariant subsets of V is a lattice with respect to these two operations.

For a non-empty family M of non-empty subsets of V, let SgrM be the set of
all linear transformations T ∈ L(V) such that M ⊆ LstT . Since Id leaves invariant
every subset of V we have Id ∈ SgrM. If T1, T2 ∈ SgrM, then T1T2M = T1

(
T2M

)
⊆

T1M ⊆ M. Thus, SgrM is a semigroup of linear transformations. The following
relations are easy to check:

(a) T ⊆ Sgr Lst T ; (d) SgrM1 ⊇ Sgr M2 if M1 ⊆ M2;

(b) M ⊆ Lst Sgr M; (e) LstT1 ⊇ LstT2 if T1 ⊆ T2;

(c) Sgr Lst Sgr M = Sgr M; (f) Lst Sgr Lst T = Lst T .
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Let V and W be two vector spaces and let L(V,W) be the vector space of all
linear transformations from V to W. For T ⊆ L(V,W), let T x ⊆ W be the orbit of
T at x ∈ V. The algebraic reflexive cover of T is Ref T =

{
A ∈ L(V,W) : Ax ∈

T x, for every x ∈ V
}
. It is obvious that T ⊆ Ref T . Note that the orbits of T and

Ref T coincide at every x ∈ V. Actually, Ref T is the largest subset of L(V,W) with
this property. Note also that

⋂
T∈Ref T

kerT =
⋂

T∈T
kerT and Lin

( ⋃
T∈Ref T

imT

)
= Lin

( ⋃
T∈T

imT

)
,

where kerT ⊆ V is the kernel of T ∈ L(V,W), imT ⊆W is its image, and Lin denotes
the linear span of a set of vectors.

Proposition 2.1. Let S ⊆ L(V) be a semigroup. Then Ref S is a semigroup
contained in the semigroup SgrLstS. The equality Ref S = SgrLstS holds if and
only if Id ∈ Ref S; in particular, it holds if Id ∈ S.

Proof. Let T1, T2 ∈ Ref S. Then, for x ∈ V, there exist S1, S2 ∈ S such that
T2x = S2x and T1(S2x) = S1(S2x). It follows, T1T2x = T1S2x = S1S2x ∈ Sx.
Thus, T1T2 ∈ Ref S. Let T ∈ Ref S and M ∈ LstS. Then Tx ∈ Sx ⊆ M, for every
x ∈ M, and therefore Ref S ⊆ SgrLstS. Since Sgr LstS always contains the identity
operator, one has Id ∈ Ref S whenever the equality Ref S = SgrLstS holds. To see
the opposite implication assume that Id ∈ Ref S. Then x ∈ Sx, for every x ∈ V.
Thus, if T ∈ SgrLstS, then T

(
Sx
)
⊆ Sx gives Tx ∈ Sx, i.e., T ∈ Ref S.

It is easy to find a semigroup S such that S = Ref S = SgrLstS. Indeed, let
P ∈ L(V), P = Id , be an idempotent. Then P = {P} is a semigroup. Since Tx ∈ Px,
for every x ∈ V, if and only if T = P one has Ref P = P . Next example shows that
there exist semigroups S ⊆ L(V) such that Id /∈ S and Id ∈ Ref S.

Example 2.2. Let V′ be the dual of V. For non-zero elements e ∈ V and ξ ∈ V′,
let e⊗ξ be the rank-one linear transformation on V that is defined by (e⊗ξ)x = ξ(x)e.
We denote by F1 the set of all linear transformations in L(V) whose rank is less or
equal to 1. Since (e1 ⊗ ξ1)(e2 ⊗ ξ2) = ξ1(e2)e1 ⊗ ξ2 the set F1 is a multiplicative
semigroup.

It is easily seen that F1x = V, for any non-zero vector x ∈ V. Thus, Tx ∈ F1x,
for every x ∈ V and every T ∈ L(V). We conclude that Ref F1 = L(V) = SgrLstF1.
However, if dim(V) ≥ 2, then Id /∈ F1.

Even in the pure algebraic case there is a natural topological structure on L(V,W).
For T ∈ L(V,W) and a finite set E ⊆ V, let U(T ;E) = {S ∈ L(V,W) : Sx =
Tx for every x ∈ E}. Then

{
U(T ;E) : E ⊆ V finite

}
is the family of basic neighbour-
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hoods of T in the strict topology on L(V,W).

Proposition 2.3. Let T ⊆ L(V,W) be a non-empty set. Reflexive cover Ref T
is closed in the strict topology.

Proof. Assume that A ∈ L(V,W) is not in Ref T . Then there exists x ∈ V such
that Ax /∈ T x. It follows, for an arbitrary B ∈ U(A;x), that Bx /∈ T x. Thus, U(A;x)
is a subset of the complement of Ref T , which means that this complement is open
in the strict topology.

Proposition 2.1 shows that the property being a semigroup is transferred from S to
its algebraic reflexive cover. Some other properties are transferred from T ⊆ L(V,W)
to Ref T as well.

Proposition 2.4. Let T ⊆ L(V,W) be a non-empty set.

(i) Ref T is closed under addition whenever T is closed.
(ii) If C ⊆ L(W) is a non-empty set such that CT := {CT : C ∈ C, T ∈ T } is

contained in T , then
(
Ref C

)(
Ref T

)
⊆ Ref T . Similarly, if T C ⊆ T , then(

Ref T
)(
Ref C

)
⊆ Ref T .

Proof. (i) If A1, A2 ∈ Ref T and x ∈ V, then there exist T1, T2 ∈ T such that
A1x = T1x and A2x = T2x. It follows (A1 +A2)x = (T1 + T2)x ∈ T x.

(ii) Let C ∈ C and A ∈ Ref T . Then, for x ∈ V, there exists Tx ∈ T such
that Ax = Txx. It follows CAx = CTxx ∈ T x since CT ⊆ T . This proves that
CRef T ⊆ Ref T . Now, let D ∈ Ref C and A ∈ Ref T be arbitrary. Then, for
x ∈ V, there is CAx ∈ C such that D(Ax) = CAxAx. By the first part of the proof,
CAxAx ∈ T x and therefore DA ∈ Ref T .

Assume that T C ⊆ T and let A ∈ Ref T , C ∈ C be arbitrary. For x ∈ V, there
exists TCx ∈ T such that A(Cx) = TCxCx ∈ T x. Thus,

(
Ref T

)
C ⊆ Ref T . Let

A ∈ Ref T and D ∈ Ref C be arbitrary. For x ∈ V, there exists Cx ∈ C such that
Dx = Cxx, which gives ADx = ACx ∈ T x. This proves that

(
Ref T

)(
Ref C

)
⊆

Ref T .

It follows immediately from Proposition 2.4 that Ref T is closed for multiplication
with scalars if T is closed. Moreover, an algebraic reflexive cover of a linear space
(an algebra) is a linear space (an algebra). Note also that the converse of (i) does
not hold, in general. Namely, let dim(V) ≥ 2. Then L(V) \ {0} is not closed under
addition however Ref

(
L(V) \ {0}

)
= L(V).

A non-empty subset I of a semigroup S ⊆ L(V) is called a left (respectively, right)
semigroup ideal of S (briefly, a left/right ideal) if SI ⊆ I (respectively, IS ⊆ I).
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Corollary 2.5. Let S ⊆ L(V) be a semigroup. If I ⊆ S is a left (right) ideal,
then Ref I is a left (right) ideal of Ref S.

Let V, V′, W, and W′ be vector spaces. For a non-empty set T ⊆ L(V,W) and
operators C ∈ L(W,W′), D ∈ L(V′,V), let CT D = {CTD : T ∈ T }.

Proposition 2.6. If T , C, and D are as above, then

C
(
Ref T

)
D ⊆ Ref (CT D).

Moreover, for C and D invertible, the equality holds.

Proof. Let A ∈ Ref T . For x′ ∈ V′, there exists TDx′ ∈ T such that ADx′ =
TDx′Dx′. It follows CADx′ = CTDx′Dx′ ∈

(
CT D

)
x′, which gives C

(
Ref T

)
D ⊆

Ref (CT D).

Assume that C and D are invertible and denote T ′ = CT D. Then T =
C−1T ′D−1. By the first part of the proof, C−1

(
Ref T ′)D−1 ⊆ Ref

(
C−1T ′D−1

)
=

Ref T . Thus, Ref (CT D) ⊆ C
(
Ref T

)
D.

According to Proposition 2.1 the following is a natural extension of the definition
of algebraically reflexive semigroups to arbitrary sets of operators.

Definition 2.7. A non-empty subset T ⊆ L(V,W) is algebraically reflexive if
T = Ref T .

So, we have the following corollary of Proposition 2.6.

Corollary 2.8. Let T ⊆ L(V,W) be a non-empty set and let C ∈ L(W,W′),
D ∈ L(V′,V) be invertible operators. Then T is algebraically reflexive if and only if
CT D is algebraically reflexive. In particular, a semigroup S ⊆ L(V) is algebraically
reflexive if and only if there exists an invertible A ∈ L(V,W) such that the semigroup
ASA−1 ⊆ L(W) is algebraically reflexive.

3. Examples. In this section, we list some examples of algebraically reflexive
and algebraically non-reflexive sets and semigroups.

3.1. Finite sets. Denote by |F| the cardinality of F. Let T ⊆ L(V,W) be a
finite set, say T = {T1, . . . , Tn}. If n ≤ |F|, then T is algebraically reflexive. Indeed,
if A ∈ Ref T , then Ax ∈ T x, for every x ∈ V, which gives V = ∪n

i=1ker (A − Ti). By
[2, Lemma 2], V cannot be a union of n ≤ |F| proper subspaces. Thus, one among
the kernels is the whole space. We have A = Ti, for some i ∈ {1, . . . , n}. We wish to
point out two particular cases.

1. If F is infinite, then every finite set T ⊆ L(V,W) is algebraically reflexive.
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2. If S ⊆ L(V) is a semigroup that contains Id and has less than |F| elements,
then Sgr LstS = S.

Let X and Y be real or complex Banach spaces. The Banach space of all bounded
linear transformations from X to Y is denoted by B(X,Y). If T ⊆ B(X,Y) is any
countable set of operators, then T = Ref T ∩ B(X,Y), see [9, Lemma 1].

3.2. Semigroups of invertible/non-invertible linear transformations.
Let V be a vector space over F. Denote by Inj(V) and Sur(V) the sets of all injec-
tive, respectively surjective, linear transformations on V. It is easily seen that these
sets are semigroups; their intersection is Inv(V), the group of all invertible linear
transformations.

Proposition 3.1. Semigroup Inj(V) is algebraically reflexive; moreover one has
Ref

(
Inv(V)

)
= Inj(V).

Proof. Let T ∈ Ref
(
Inj(V)

)
and x be a non-zero vector. Then Tx = Sxx = 0, for

some Sx ∈ Inj(V). Thus, the inclusion Inv(V) ⊆ Inj(V) gives Ref
(
Inv(V)

)
⊆ Inj(V).

For the opposite inclusion, assume that T ∈ L(V) is injective. Let x ∈ V be arbitrary.
Of course, if x = 0, then Tx = 0 ∈ {0} = Inj(V)x. Assume therefore that x = 0.
Then Tx = 0, which means that there is an invertible linear transformation A on
Y := Lin{x, Tx} such that Ax = Tx. Let Z be a complement of Y, i.e. a subspace
of V such that V = Y ⊕ Z. Define linear transformations S and S′ on V in the
following way. If v = y + z is the unique decomposition with y ∈ Y and z ∈ Z, then
let Sv = Ay + z and S′v = A−1y + z. It is obvious that S′S = SS′ = Id . Since
Sx = Ax = Tx we have T ∈ Ref

(
Inv(V)

)
. Now, since Inv(V) ⊆ Inj(V), we may

conclude that Ref
(
Inv(V)

)
= Inj(V).

If V is not finite dimensional, then the group of invertible linear transformations
is a proper subsemigroup in Inj(V). On the other hand, if V is finite dimensional, then
a linear transformation is injective if and only if it is surjective (see [16, Corollary
2.9]), i.e. Inv(V) = Inj(V) = Sur(V). Thus, we have the following result.

Corollary 3.2. Semigroup Inv(V) is algebraically reflexive if and only if V is
finite dimensional.

Corollary 3.2 shows that the algebraic reflexive cover of a group is not necessary
a group, in general. However, the following holds.

Proposition 3.3. If S ⊆ L(V) is a semigroup of invertible linear transforma-
tions and T ∈ Ref S is invertible, then T−1 ∈ Ref S.

Proof. Let x ∈ V. Then there exists ST−1x ∈ S such that x = T (T−1x) =
ST−1x(T−1x). It follows T−1x = S−1

T−1xx ∈ Sx. Thus, T−1 ∈ Ref S.
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It is an immediate consequence of Corollary 3.2 and Proposition 3.3 that the
algebraic reflexive cover of a group of linear transformations is a group whenever the
underlying space is finite dimensional.

Proposition 3.4. If V is infinite-dimensional, then Ref
(
Sur(V)

)
= L(V).

Proof. Let T ∈ L(V) be arbitrary. If x ∈ V is not in the kernel of T , then there
exists an invertible S such that Tx = Sx (see the proof of Proposition 3.1). Assume
therefore that Tx = 0, for a non-zero x ∈ V. Let X be a subspace of V spanned by
x and let Y be a complement of X, i.e. V = X ⊕ Y. Since dim(V) = dim(Y) there
exists a bijective linear transformation A : Y → V. Let v = αx + y be the unique
decomposition of v ∈ V with respect to V = X ⊕ Y. Let S ∈ L(V) be given by
Sv = S(αx+y) = Ay. It is obvious that S is surjective and that Sx = 0 = Tx. Thus,
T ∈ Ref

(
Sur(V)

)
.

3.3. Continuous one-parameter semigroups in finite dimensional case.
Let X be a complex Banach space. Recall from [6] that a family

(
T (t)

)
t≥0

⊆ B(X)
is a strongly continuous semigroup if it satisfies the functional equation T (t + s) =
T (t)T (s) with T (0) = Id and, for every x ∈ X, the map t �→ T (t)x is continuous from
[0,∞) to X. If X is finite-dimensional, then every strongly continuous semigroup
with values in B(X) is uniformly continuous, i.e. the map t �→ T (t) is continuous
from [0,∞) to B(X). This follows from the fact that in the finite-dimensional case
all Hausdorff topologies on B(X) coincide. During this subsection, it is assumed that
X is a complex Banach space of dimension m ∈ N and that

(
T (t)

)
t≥0

⊆ B(X) is a
continuous semigroup.

Since the space X is isomorphic to Cm the semigroup
(
T (t)

)
t≥0

is similar to a
continuous semigroup included in Mm(C), the algebra of all m-by-m complex matri-
ces. By Corollary 2.8, similar semigroups are simultaneously reflexive. Thus, it is
enough to consider the reflexivity of continuous semigroups in Mm(C).

By [6, Theorem I.2.8], every continuous semigroup in Mm(C) is of the form t �→
etA (t ≥ 0), for some A ∈ Mm(C). Since each A ∈ Mm(C) can be written as
A = S−1DS, where D has the Jordan canonical form and S ∈ Mm(C) is invertible
one has, by [6, Lemma I.2.4], etA = S−1etDS, which means that we may reduce our
consideration to the semigroups that are of the form T (t) = etD (t ≥ 0).

Let α ∈ C and let Jn ∈Mn(C) be the n× n Jordan block. We consider first the
semigroup T which is given by

T (t) = et(αId+Jn) = etα
(
Id + tJn + t2

2 J
2
n + · · ·+ tn−1

(n−1)!J
n−1
n

)
.

Lemma 3.5. Semigroup T is algebraically reflexive.
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Proof. Let e1, . . . , en be the standard basis in Cn. Assume that S = [sij ] ∈
Ref (T ). Then, for every j ∈ {1, . . . , n}, there exists tj such that Sej = T (tj)ej . It
follows that

S =




et1α t2e
t2α t23

2 e
t3α · · · tn−1

n

(n−1)!e
tnα

0 et2α t3e
t3α · · · tn−2

n

(n−2)!e
tnα

...
. . . . . . . . .

...
...

. . . . . . tne
tnα

0 · · · · · · 0 etnα



.

We have to show that t1 = t2 = · · · = tn. For j ∈ {1, . . . , n − 1} and r > 0,
let fr,j = r ej + ej+1. Then there exists τj(r) ≥ 0 such that Sfr,j = T

(
τj(r)

)
fr,j .

Comparing the rows j and j + 1 we get the equalities

(3.1) retjα + tj+1e
αtj+1 = reατj(r) + τj(r)eατj(r)

and

(3.2) eαtj+1 = eατj(r).

It follows from (3.2) that there exists an integer kj such that

(3.3) τj(r) = tj+1 −
2kjπi

α
.

Use (3.2) and (3.3) in (3.1):

retjα + tj+1e
αtj+1 = reαtj+1 +

(
tj+1 −

2kjπi

α

)
eαtj+1 .

So, one has

eα(tj−tj+1) = 1− 2kjπi

rα
.

Since r is an arbitrary positive number the last equality holds only if kj = 0. We
conclude that

eαtj = eαtj+1 .

Thus,

S = et1α




1 t2
t23
2 · · · tn−1

n

(n−1)!

0 1 t3 · · · tn−2
n

(n−2)!

...
. . . . . . . . .

...
...

. . . . . . tn
0 · · · · · · 0 1



.
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Now, let g = e1 + · · ·+ en. Then there exists σ ≥ 0 such that Sg = T (σ)g. It is easily
to see that this equality gives t1 = · · · = tn = σ.

Assume now that T =
(
etD
)
t≥0
⊂Mm(C), where

D = (α1Idn1 + Jn1)⊕ · · · ⊕ (αkIdnk
+ Jnk

), n1 + · · ·+ nk = m.

It is obvious that

(3.4) etD = etα1etJn1 ⊕ · · · ⊕ etαketJnk

with respect to the decomposition

(3.5) C
m = C

n1 ⊕ · · · ⊕ C
nk .

Proposition 3.6. Every continuous semigroup T on a finite dimensional com-
plex Banach space is algebraically reflexive.

Proof. As mentioned above, without loss of generality, one can assume that T is
a continuous semigroup of m-by-m complex matrices and that it is of the form (3.4).
Let S ∈ Ref (T ) have the block-matrix [Sij ] with respect to the decomposition (3.5).
For 1 ≤ j ≤ k, let xj ∈ Cnj be an arbitrary vector. Then there exists t = txj ≥ 0
such that

S(0⊕ · · · ⊕ xj ⊕ · · · ⊕ 0) =
(
etα1etJn1 ⊕ · · · ⊕ etαketJnk

)
(0⊕ · · · ⊕ xj ⊕ · · · ⊕ 0).

It is easily seen that this gives Sij = 0 if i = j and Sjjxj ∈ {etαjetJnjxj : t ≥ 0}.
Thus, Sjj ∈ Ref

(
(etαjetJnj )t≥0

)
. Since, by Lemma 3.5, the semigroup

(
etαjetJnj

)
t≥0

is reflexive there exists tj ≥ 0 such that Sjj = etjαjetjJnj , which gives

S = et1α1et1Jn1 ⊕ · · · ⊕ etkαketkJnk .

In order to show that t1 = · · · = tk, let u1, . . . , um be the standard basis in C
m and

let

v = un1−1 + un1 + un1+n2−1 + un1+n2 · · ·+ un1+n2+···+nk−1 + un1+n2+···+nk
.

There exists τ ≥ 0 such that(
et1α1et1Jn1 ⊕ · · · ⊕ etkαketkJnk

)
v =

(
eτα1eτJn1 ⊕ · · · ⊕ eταkeτJnk

)
v.

From this equation we derive systems of equations

etjαj (1 + tj) = eταj(1 + τ) and etjαj = eταj (1 ≤ j ≤ k).

It is obvious that tj = τ for every 1 ≤ j ≤ k.
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4. Algebraically orbit reflexive transformations. Of course, the most nat-
ural examples of semigroups of linear transformations are those generated by a single
element. Let A ∈ L(V) be a non-zero linear transformation and let O(A) be the
semigroup generated by A. Thus, O(A) = {An : n = 0, 1, 2, . . .}. In general, O(A) is
an infinite semigroup (even in the case when V is finite dimensional); it is finite in
very special cases.

Proposition 4.1. For A ∈ L(V), the semigroup O(A) is finite if and only if
there exist positive integers m and n such that the minimal polynomial of A divides
p(z) = zm(zn − 1).

Proof. Let mA(z) be the minimal polynomial of A. If mA(z)|zm(zn − 1), where
m, n are positive integers, then Am(An − Id) = 0 and therefore Am+n = Am, which
means that O(A) ⊆ {Id , A, . . . , Am+n−1}. On the other hand, if O(A) is a finite
semigroup, then there exist positive integers m and n such that Am+n = Am. It
follows that Am(An − Id) = 0 and therefore mA(z)|zm(zn − 1).

A linear transformation A ∈ L(V) is said to be algebraically orbit-reflexive if the
semigroup O(A), which is generated by A, is algebraically reflexive (in the sense of
Definition 2.7). If the field F is large enough, then many linear transformations are
algebraically orbit-reflexive.

Recall that a linear transformationA ∈ L(V) is locally algebraic if, for each x ∈ V,
there exists a polynomial px = 0 such that px(A)x = 0. If one has a polynomial p = 0
such that p(A)x = 0 for all x ∈ V, which means p(A) = 0, then A is said to be
algebraic. Of course, if V is a finite dimensional vector space, then every linear
transformation is algebraic. By the celebrated Kaplansky Theorem, every locally
algebraic bounded linear transformation on a Banach space is algebraic. However,
there exist vector spaces and locally algebraic linear transformations on them that are
not algebraic. For instance, on F[z] the linear transformation that maps a polynomial
p to its derivative p′ is locally algebraic but not algebraic.

Theorem 4.2 ([9], Theorems 9 and 10). Let V be a vector space over F.

1. If F is uncountable, then
(i) every algebraic linear transformation is algebraically orbit-reflexive; in

particular, on a finite dimensional space every linear transformation is
algebraically orbit-reflexive;

(ii) for every locally algebraic A ∈ L(V), the reflexive cover of O(A) is just
the closure of O(A) in the strict topology.

2. If F is infinite and A ∈ L(V) is not locally algebraic, then A is algebraically
orbit-reflexive.

In this section, we will employ Theorem 4.2 in the consideration of the question
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if a linear transformation A is determined by the lattice LstA. More precisely, have
A,B ∈ L(V) to be equal if LstA = LstB? As the following simple example shows, A
is not determined by LstA, in general. Namely, let V be a complex vector space and
let ζ = cos 2π

3 + i sin 2π
3 . Denote A = ζId and B = ζ2Id . Of course, A = B. However,

LstA = LstB. Indeed, for every x ∈ V, one has O(A)x = {x, ζx, ζ2x} = O(B)x. We
will see that examples similar to this one are essentially the only exceptions when F is
an uncountable algebraically closed field and A is an algebraic linear transformation.
First we state the following corollary of Theorem 4.2.

Corollary 4.3. Let V be a vector space over an infinite field F. If A ∈ L(V) is
not locally algebraic, then A is uniquely determined with LstA.

Proof. Assume that LstA = LstB, for some B ∈ L(V). Then Sgr LstB =
SgrLstA and therefore Sgr LstB = O(A), by Theorem 4.2 (2). Hence there exists a
non-negative integer n such that B = An. Linear transformation B cannot be locally
algebraic. Namely, if for every x ∈ V there exists a non-zero polynomial px such that
px(B)x = 0, then one has qx(A)x = 0 for a non-zero polynomial qx(z) := px(zn),
which means A is locally algebraic. Since B is not locally algebraic we have, by
Theorem 4.2 (2), Sgr LstB = O(B). Thus, there is an integer m ≥ 0 such that
A = Bm. It follows that A = Amn. This equality is reasonable only if mn = 1 since
A is not algebraic. We conclude A = B.

It remains to consider locally algebraic transformations.

Proposition 4.4. Let V be a vector space over an arbitrary field F and let
A,B ∈ L(V) be commuting linear transformations.

(i) If A and B are algebraic, then A+B and AB are algebraic as well.
(ii) If A and B are locally algebraic, then A+B and AB are locally algebraic.

Proof. (i) Let A and B be algebraic. Denote by R ⊆ L(V) the ring generated
by A, B, and Id . Of course, R is a commutative ring with the identity and FId is
a subring that contains the identity. In the terminology of [1], elements A, B ∈ R
are integral over FId . By [1, Corollary 5.3], the sum A+B and the product AB are
integral over FId as well, which, in our terminology, means that they are algebraic
linear transformations.

(ii) Assume that A and B are locally algebraic. For an arbitrary vector x ∈ V,
there exist polynomials px(z) = zn + an−1z

n−1 + · · · + a1z + a0 and qx(z) = zm +
bm−1z

m−1 + · · ·+ b1z + b0 such that px(A)x = 0 and qx(B)x = 0. Denote by Wx the
subspace of V that is spanned by vectors AiBjx, where 0 ≤ i < n and 0 ≤ j < m.
Since A and B commute it is easily seen that Wx is invariant for A and B. Let Ax

be the restriction of A to Wx and, similarly, let Bx be the restriction of B to Wx.
It is straightforward to check that px(Ax) = 0 and qx(Bx) = 0, which means that
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Ax and Bx are algebraic linear transformations in L(Wx). By the first part of this
proof, Ax + Bx and AxBx are algebraic as well. Thus, there are polynomials ux(z)
and vx(z) such that ux(Ax +Bx) = 0 and vx(AxBx) = 0, which gives ux(A+B)x = 0
and vx(AB)x = 0.

If F is infinite and A ∈ L(V) is locally algebraic, then LstA = LstB can hold
only for locally algebraic B ∈ L(V). This is just a reformulation of Corollary 4.3. In
the case of an uncountable field, we can say more.

Proposition 4.5. Let V be a vector space over an uncountable field F and let
A ∈ L(V).

(i) If A is an algebraic linear transformation, then every linear transformation
in SgrLstA is algebraic.

(ii) If A is a locally algebraic linear transformation, then every linear transfor-
mation in SgrLstA is locally algebraic.

Proof. (i) Assume that A is algebraic and let B ∈ SgrLstA. By Theorem 4.2
(1)(i), A is algebraically orbit-reflexive, which means that Sgr LstA = O(A). In
particular, there is a non-negative integer m such that B = Am. It follows, by
Proposition 4.4 (i), that B is algebraic.

(ii) Let A be locally algebraic and B ∈ SgrLstA. By Theorem 4.2 (1)(ii), B is in
the strict closure of O(A). Note that A and B commute. Indeed, let x ∈ V be arbitrary
and let E = {x,Ax}. Recall that U(B;E) = {S ∈ L(V) : Bx = Sx and BAx = SAx}
is a basic neighbourhood of B. Since B is in the strict closure of O(A), the intersection
U(B;E)∩O(A) cannot be empty. Thus, there is Ak ∈ O(A) such that Bx = Akx and
B(Ax) = Ak(Ax). It follows that BAx = ABx and consequently BA = AB.

Let x ∈ V and let px(z) = zn + an−1z
n−1 + · · · + a0 be a polynomial such that

px(A)x = 0. Denote with Wx the subspace of V that is spanned by vectors x, Ax,
. . . , An−1x. Since U(B;x) ∩O(A) = ∅ one has Bx = Amx, for a non-negative integer
m. Hence it is easily seen that Wx is invariant for B. Let Ax and Bx be restrictions
of A and B to Wx. Then Bx = Amx gives Bx = Am

x . Since Ax is algebraic one
has Bx ∈ O(Ax) = SgrLstAx and therefore, by the first part of this proposition, Bx

is algebraic. Thus, there is a polynomial qx(z) such that qx(Bx) = 0 and we may
conclude that qx(B)x = 0.

Now we consider an algebraic linear transformation A ∈ L(V). It is obvious that
the identity transformation Id is the only linear transformation that leaves invariant
every subset of V. Also, the zero linear transformation leaves invariant every subset of
V that contains the zero vector, and it is the unique transformation with this property.
So, in sequel, we assume that A = Id and A = 0.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 745-760, November 2009



ELA

Algebraic Reflexivity for Semigroups of Operators 757

Proposition 4.6. Let V be a vector space over an uncountable field F and let
A ∈ L(V), Id = A = 0, be an algebraic linear transformation. If LstA = LstB, for
some B ∈ L(V) such that A = B, then B is algebraic and there exist integers m ≥ 2
and n ≥ 2 such that A = Bm and B = An, which means that the minimal polynomials
of A and B divide the polynomial q(z) = zmn − z.

Proof. The equality LstA = LstB gives Sgr LstA = SgrLstB. Since A is
algebraic B is algebraic as well, by Proposition 4.5. Thus, by Theorem 4.2, O(A) =
O(B). It follows that there are non-negative integers m and n such that A = Bm and
B = An. It is easily seen that A = B if m ∈ {0, 1} or n ∈ {0, 1}. So, since we have
assumed that A = B, one has m ≥ 2 and n ≥ 2. Of course, the equalities A = Bm

and B = An give Amn − A = 0 and Bmn − B = 0, which means that the minimal
polynomials of A and B divide the polynomial q(z) = zmn − z.

The following corollaries are immediate consequences of Proposition 4.6.

Corollary 4.7. Let V be a vector space over an uncountable field F. If A ∈
L(V) is an algebraic linear transformation whose minimal polynomial does not divide
q(z) = zmn−z, for any integers m,n ≥ 2, then A is uniquely determined with LstA.

Corollary 4.8. Let V be a vector space over an uncountable field F and let
A ∈ L(V) be an algebraic linear transformation such that LstA = LstB for some
B ∈ L(V) that is distinct from A. Then the minimal polynomial mA(z) has only simple
zeros in the algebraic closure F. Thus, if mA(z) = r1(z) · · · rk(z) is the decomposition
of the minimal polynomial of A into polynomials r1(z), . . . , rk(z) which are irreducible
over F, then ri(z) = rj(z) whenever i = j.

Proof. By Proposition 4.6, mA(z) divides q(z) = zmn − z, where m,n ≥ 2. Since
q(z) has only simple zeros in F, the same holds for mA(z).

Corollary 4.9. Let V be a vector space over an uncountable field F and let
A ∈ L(V) be an algebraic linear transformation. If LstA = LstB, for some B ∈ L(V),
then kerA = kerB.

Proof. If x ∈ kerA, then, by Proposition 4.6, Bx = Anx = 0. Similarly, if
x ∈ kerB, then Ax = Bmx = 0.

Now we assume that

(i) F is an uncountable algebraically closed field,
(ii) A ∈ L(V) is an algebraic linear transformation with the minimal polynomial

mA(z) = (z − λ1) · · · (z − λk),

(iii) λj ∈ F are distinct and are either zero or a root of 1, and
(iv’) r ≥ 1 is the smallest integer such that λr

j = λj holds for all j = 1, . . . , k.
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For every j = 1, . . . , k, let Xj = ker(A− λj). It is well known that

V = X1 ⊕ · · · ⊕ Xk

and one has the corresponding decomposition A = λ1Id1 ⊕ · · · ⊕ λkIdk of the linear
transformation. Here Id j is the identical linear transformation on Xj .

It is easily seen that A is uniquely determined with LstA if mA(z) = z(z − 1),
which means A = 0⊕ Id . So, we may assume that at least one eigenvalue of A is not
0 or 1, which means that the above condition (iv′) can be replaced with

(iv) r ≥ 2 is the smallest integer such that λr
j = λj holds for all j = 1, . . . , k.

Proposition 4.10. Assume that the conditions (i)-(iv) are satisfied. Then, for
B ∈ L(V), equality LstA = LstB holds if and only if B = An, where n < r is a
positive integer satisfying mn − 1 = p(r − 1) for some positive integers m and p.
Moreover, let n1 = 1 < . . . < nϕ(r−1) be the positive integers which are smaller than
r and coprime with r − 1 (ϕ is Euler’s totient function). Then LstA = LstB if and
only if B ∈

{
A = An1 , . . . , Anϕ(r−1)

}
.

Proof. Assume that LstA = LstB, for some B ∈ L(V). If A = B, then n = p = 1
and m = r. Assume therefore that A = B. By Proposition 4.6, B is algebraic and
there exist positive integers m and n such that B = An and A = Bm. Since Ar = A

one can assume that n < r. It follows that λmn
j = λj , for all j = 1, . . . , k, and

therefore λmn−1
j = 1, for all λj = 0. Since r ≥ 2 is the smallest integer such that

λr−1
j = 1, for all λj = 0, one has mn − 1 ≥ r − 1. Let p ≥ 1 and 0 ≤ q < r − 1 be

integers such that mn− 1 = p(r− 1) + q. Then 1 = λmn−1
j =

(
λr−1

j

)p
λq

j = λq
j , for all

λj = 0, which gives q = 0.

For the opposite implication suppose that B = An, where n < r is a positive
integers satisfying mn − 1 = p(r − 1) for some positive integers m and p. Then
Bm = Amn = A. It follows that LstA ⊆ LstAn = LstB ⊆ LstBm = LstA.

It is obvious that, for r ≥ 2 and 1 ≤ n ≤ r − 1, one can find positive integers
m and p satisfying mn − 1 = p(r − 1) if and only if n and r − 1 are coprime. If
n1 = 1 < . . . < nϕ(r−1) are the positive integers which are smaller than r and coprime
with r − 1, then, because of condition (iv), A = An1 , . . . , Anϕ(r−1) are distinct linear
transformations and LstA = LstAnk , for every k = 1, . . . , ϕ(r − 1).

Corollary 4.11. Let X be a complex Banach space. Then A ∈ B(X) is uniquely
determined by the lattice LstA except in the case when

• A is an algebraic operator with the minimal polynomial

mA(z) = (z − λ1) · · · (z − λk),
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• λi (i = 1, . . . , k) are distinct numbers, each is either zero or a root of 1
• if r is the minimal positive integer such that λr

i = λi for all i = 1, . . . , k, then
ϕ(r − 1) > 1.

In the exceptional case, let N = {n1 = 1 < . . . < nϕ(r−1) = r − 2} be the set of all
ϕ(r − 1) positive integers that are smaller than r − 1 and coprime with r − 1. Then
LstA = LstB if and only if B = Ani for some ni ∈ N.

Proof. If X is a complex Banach space then each locally algebraic bounded op-
erator on it is algebraic. Thus, if A is not algebraic, then it is uniquely determined
with LstA, by Corollary 4.3. On the other hand, if A is algebraic and there exists
B = A such that LstB = LstA, then, by Corollary 4.7, the minimal polynomial has
only simple zeros and each of them is either zero or a root of 1. The rest of the proof
follows from Proposition 4.10.
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