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ON λ1-EXTREMAL NON-REGULAR GRAPHS∗
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Abstract. Let G be a connected non-regular graph with n vertices, maximum degree ∆ and

minimum degree δ, and let λ1 be the greatest eigenvalue of the adjacency matrix of G. In this paper,

by studying the Perron vector of G, it is shown that type-I-a graphs and type-I-b (resp. type-II-a)

graphs with some specified properties are not λ1-extremal graphs. Moreover, for each connected

non-regular graph some lower bounds on the difference between ∆ and λ1 are obtained.

Key words. Spectral radius, Non-regular graph, λ1-extremal graph, Perron vector, Degree.

AMS subject classifications. 05C50, 15A48.

1. Introduction. Throughout this paper, let G = (V,E) be a connected, simple
and undirected graph with vertex set V and edge set E, where |V | = n. Let uv denote
the edge joining vertices u and v. For a vertex u, let N(u) be the set of all neighbors
of u, and let d(u) = |N(u)| be the degree of u. The maximum and minimum degree
of G are denoted by ∆ and δ respectively. The sequence π = (d1, d2, ... , dn) (always
with d1 ≥ d2 ≥ · · · ≥ dn) is called the degree sequence of G, where d1, d2, ... , dn

are the degrees of the vertices of G. Let G + uv be the graph obtained from G by
inserting an edge uv /∈ E(G), where u, v ∈ V (G). Similarly, G − uv is the graph
obtained from G by deleting the edge uv ∈ E(G), and G − v is the graph obtained
from G by deleting the vertex v and all edges uv ∈ E(G) for some u ∈ V (G).

Let A(G) be the adjacency matrix of G. The spectral radius of G, denoted by
λ1(G), is the largest eigenvalue of A(G). Thus, by the Perron-Frobenius Theorem
(see [8]), when G is connected, λ1(G) is simple and there is a corresponding unique
positive unit eigenvector. We refer to such eigenvector f as the Perron vector of G.

Given a degree sequence π, let Cπ denote the set of connected graphs with degree
sequence π. We say that the graph G has the greatest maximum eigenvalue in class
Cπ provided λ1(G) ≥ λ1(G∗) for every G∗ in Cπ.

Let G be a connected non-regular graph. In [11], G is called λ1-extremal if
λ1(G) > λ1(G∗) for every other connected non-regular graph G∗ with the same num-
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ber of vertices and maximum degree as G. Let g(n,∆) denote the set of all connected
non-regular graphs with n vertices and maximum degree ∆.

Let G be a λ1-extremal graph of g(n,∆). As we know that if ∆ = 2, then G
is necessarily a path and λ1(G) = 2cos( π

n+1 ), while G is isomorphic to Kn − e and
λ1(G) =

n−3+
√

(n+1)2−8

2 if ∆ = n − 1 (n ≥ 4) (see [11]). In the following, we can
suppose that 2 < ∆ < n− 1.

Let V∆ = {u | d(u) = ∆} and V<∆ = {u | d(u) < ∆}. It has been shown that a
λ1-extremal graph of g(n,∆) has the following special properties.

Lemma 1.1. ([9]) Suppose 2 < ∆ < n−1. If G is a λ1-extremal graph of g(n,∆),
then G must have one of the following properties:

(1) |V<∆| ≥ 2, and V<∆ induces (i.e., G[V<∆]) a complete graph.

(2) |V<∆| = 1.
(3) V<∆ = {u, v}, uv /∈ E(G) and d(u) = d(v) = ∆− 1.
Moreover, G ∈ g(n,∆) is called a type-I (resp. type-II or type-III) graph if G has

the property (1) (resp. (2) or (3)).

By studying the properties of λ1-extremal graphs, B. Liu et al. proved that

Lemma 1.2. ([10]) Suppose 2 < ∆ < n − 1 and G is a λ1-extremal graph of
g(n,∆), then G must be a type-I or type-II graph.

Now we divide type-I (resp. type-II) graphs into two classes as follows.

Definition 1.3. (1) Let G ∈ g(n,∆) be a type-I graph. If there exist u1, v1 ∈ V∆

and u2, v2 ∈ V<∆ such that u1u2, v1v2 ∈ E and u1v2, v1u2 /∈ E, then G is called a
type-I-a graph. Otherwise, G is a type-I-b graph.

(2) Let G ∈ g(n,∆) be a type-II graph. Then G is called a type-II-a graph if
δ < ∆− 2. Otherwise, G is called a type-II-b graph.

In this paper, by investigating the Perron vector of G, we show that type-I-a
graphs are not λ1-extremal graphs, and type-I-b (resp. type-II-a) graphs with some
specified properties are also not λ1-extremal graphs, which provide more evidence to
confirm the following conjecture in [9].

Conjecture 1.4. ([9]) Let G ∈ g(n,∆) with 2 < ∆ < n − 1. Then G is a
λ1-extremal graph if and only if G is a graph with greatest maximum eigenvalue in

the class Cπ, where π = (∆,∆, · · · ,∆, δ), and δ =

{
∆− 1, when n∆ is odd,

∆− 2, when n∆ is even.
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Let G be a connected non-regular graph of order n. Stevanović first derived a
lower bound of ∆ − λ1 for G in [13]. Later this bound was improved in [3, 4, 11].
Let D (resp. d̄) denote the diameter (resp. the average degree) of G. In [3, 11], the
authors showed that

∆− λ1 >
1
nD

([3]) (1.1)

and

D ≤ 3n+∆− 5
∆ + 1

([11]). (1.2)

Thus combining (1.1) and (1.2), we have

∆− λ1 >
∆+ 1

n(3n+∆− 5) ([9, 11]). (1.3)

Applying Lemma 1.2, the authors in [9] made further improvement on Inequality (1.2)
and obtained the following inequality which improves (1.3).

D ≤ 3n+∆− 8
∆+ 1

and ∆− λ1 >
∆+ 1

n(3n+∆− 8) ([9]). (1.4)

Recently, L. Shi [12] established another strong inequality as follows.

∆− λ1 > [(n− δ)D + 1
∆− d̄ −

(
D

2

)
]−1 ([12]). (1.5)

Remark 1.5. For most almost regular graphs of constant degree and large order
(graphs where n∆−2m is a constant and D = o(√n)), Inequality (1.1) is better than
(1.5). However, for many non-regular graphs, i.e. graphs with (∆− d̄)[(D

2

)
+Dδ] ≥ 1,

L. Shi’s inequality is better. For example, in graphs where the diameter is a constant
fraction of the number of vertices (1.5) is better.

In Section 3, we obtain the following inequalities which improve (1.4).

D ≤ 3n+∆− 3δ − 5
∆+ 1

,

∆− λ1 >
∆+ 1

n(3n+∆− 3δ − 5)
and

∆− λ1 > [− (3n+∆− 3δ − 5)2
2(∆ + 1)2

+
(0.5 + n− δ)(3n+∆− 3δ − 5)

∆ + 1
+

1
∆− d̄ ]

−1.
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2. On λ1-extremal graphs. As is known to all, the Rayleigh quotient of the
adjacency matrix A(G) on vectors f on V is the fraction

RG(f) =
〈Af, f〉
〈f, f〉 =

2
∑

uv∈E f(u)f(v)∑
v∈V f(v)2

. ([8])

By the Rayleigh-Ritz Theorem we have the following well known property for the
spectral radius of G.

Proposition 2.1. ([8]) Let S denote the set of unit vectors on V . Then

λ1(G) = maxf∈SRG(f) = 2maxf∈S

∑
uv∈E

f(u)f(v).

If RG(f) = λ1(G) for a (positive) function f ∈ S, then f is a Perron vector.

The following technical lemma is useful in this paper.

Lemma 2.2. (Shifting [1, 2]) Let G(V,E) be a connected graph with uv1 ∈ E

and uv2 /∈ E. Let G∗ = G + uv2 − uv1. Suppose f is a Perron vector of G. If
f(v2) ≥ f(v1), then λ1(G∗) > λ1(G).

Analogously, we introduce another technique called Splitting.

Lemma 2.3. (Splitting) Let G(V,E) be a connected graph with u1u2 ∈ E and
u1w1, u2w2 /∈ E (maybe w1 = w2). Let G∗ = G+u1w1+u2w2 −u1u2. Suppose f is a
Perron vector of G. If f(w1) + f(w2) ≥ max{f(u1), f(u2)}, then λ1(G∗) > λ1(G).

Proof. Without loss of generality, suppose f(u1) ≥ f(u2). Then

RG∗(f)−RG(f) = 〈A(G∗)f, f〉 − 〈A(G)f, f〉
= 2(

∑
xy∈E∗−E

f(x)f(y)−
∑

uv∈E−E∗
f(u)f(v))

= 2[f(u1)f(w1) + f(u2)f(w2)− f(u1)f(u2)]

≥ 2{f(u2)[f(w1) + f(w2)]− f(u1)f(u2)}
= 2f(u2)[f(w1) + f(w2)− f(u1)] ≥ 0.

Hence λ1(G∗) ≥ RG∗(f) ≥ RG(f) = λ1(G) by Proposition 2.1. Assume that
λ1(G∗) = λ1(G), which implies f would also be a Perron vector of G∗. Then

λ1(G∗)f(w1) =
∑

xw1∈E

f(x) +
∑

yw1∈E∗−E

f(y) >
∑

xw1∈E

f(x) = λ1(G)f(w1).

This is a contradiction. Consequently, λ1(G∗) > λ1(G).

Now let’s turn to the study of λ1-extremal graphs.
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Theorem 2.4. Let G = (V,E) ∈ g(n,∆) be a type-I-a graph with 2 < ∆ < n−1.
Then G is not a λ1-extremal graph of g(n,∆).

Proof. By contradiction, suppose G is a λ1-extremal graph.

Since G ∈ g(n,∆) is a type-I-a graph, there exist u1, v1 ∈ V∆ and u2, v2 ∈ V<∆

such that u1u2, v1v2 ∈ E and u1v2, v1u2 /∈ E. Let f be the Perron vector of G. We
consider the next two cases:

Case 1. f(u2) ≥ f(v2). LetG∗ = G−v1v2+v1u2. Note thatG[V<∆] is a complete
graph and d(u2) < ∆, thus G∗ ∈ g(n,∆). By Lemma 2.2, we have λ1(G∗) > λ1(G),
which is a contradiction.

Case 2. f(u2) ≤ f(v2). Let G∗ = G − u1u2 + u1v2. Similarly, since G[V<∆] is
a complete graph and d(v2) < ∆, we have G∗ ∈ g(n,∆). It follows from Lemma 2.2
that λ1(G∗) > λ1(G), also a contradiction.

Example 2.5. Let G0 be a graph with vertex set V = {v1, v2, ... , v8} and edge
set E = {vivj | i, j = 1, 2, ... , 5 and i �= j} ∪ {v6vi | i = 4, 7, 8} ∪ {v7vi | i =
5, 8} − {v4v5}. Note that G0 ∈ g(8, 4) is a type-I-a graph. By Theorem 2.4, G0 is
not a λ1-extremal graph.

Proposition 2.6. Let G = (V,E) ∈ g(n,∆) be a type-I-b graph with 2 < ∆ <

n − 1 and let f be a Perron vector of G. Assume that δ �= ∆ − 1 when |V<∆| = 2.
If there exist u1, u2 ∈ V∆, w1, w2 ∈ V<∆ such that u1u2 ∈ E, u1w1, u2w2 /∈ E and
f(w1) + f(w2) ≥ max{f(u1), f(u2)}, then G is not a λ1-extremal graph of g(n,∆).

Proof. Let G∗ = G + u1w1 + u2w2 − u1u2. Note that either |V<∆| ≥ 3 or
|V<∆| = 2 (δ �= ∆ − 1). Because w1, w2 ∈ V<∆ and G[V<∆] is a complete graph,
we have G∗ ∈ g(n,∆). Since f(w1) + f(w2) ≥ max{f(u1), f(u2)}, by Lemma 2.3,
λ1(G∗) > λ1(G), which implies that G is not a λ1-extremal graph of g(n,∆).

Example 2.7. Let G1 be a graph with vertex set V = {v1, v2, ... , v11} and
edge set E = {vivj | i, j = 1, ... , 6 and i �= j} ∪ {v7vi | i = 4, 5, 9, 10, 11} ∪
{v8vi | i = 3, 6, 9, 10, 11} ∪ {v9v10, v9v11, v10v11} − {v3v6, v4v5}. It is not difficult
to see that G1 ∈ g(11, 5) is a type-I-b graph with λ1 ≈ 4.82843 and degree sequence
(5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4).

Directly calculating, f(vi) ≈ 0.36725 (i = 1, 2), f(vj) ≈ 0.35150 (3 ≤ j ≤ 6),
f(vk) ≈ 0.25969 (k = 7, 8), and f(vl) ≈ 0.18363 (l = 9, 10, 11). Note that v5v6 ∈ E,
v5v9, v6v10 /∈ E and f(v9) + f(v10) ≥ max{f(v5), f(v6)}, it follows from Proposition
2.6 that G1 is not a λ1-extremal graph.

Proposition 2.8. Let G = (V,E) ∈ g(n,∆) be a type-II-a graph with 2 < ∆ <
n− 1 and let f be a Perron vector of G. Suppose V<∆ = {w} and d(w) = δ. If there

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 735-744, November 2009



ELA

740 B. Liu, Y. Huang, and Z. You

exist u1, u2 ∈ V∆ such that u1u2 ∈ E, u1w, u2w /∈ E and 2f(w) ≥ max{f(u1), f(u2)},
then G is not a λ1-extremal graph of g(n,∆).

Proof. Let G∗ = G + u1w + u2w − u1u2. Since G is a type-II-a graph, we have
d(w) = δ < ∆ − 2, and then G∗ ∈ g(n,∆). Note that 2f(w) ≥ max{f(u1), f(u2)},
by Lemma 2.3, λ1(G∗) > λ1(G). Therefore, G is not a λ1-extremal graph.

Example 2.9. Let G2 be a graph with vertex set V = {v1, v2, ... , v9} and edge
set E = {vivj | i, j = 1, ... , 8 and i �= j} ∪ {v9vi | i = 5, ... , 8} − {v5v7, v6v8}.

It is easy to see that G2 ∈ g(9, 7) is a type-II-a graph with λ1 ≈ 6.79944 and
degree sequence (7, 7, 7, 7, 7, 7, 7, 7, 4). Directly computing, f(vi) ≈ 0.35531 (1 ≤
i ≤ 4), f(vj) ≈ 0.33749 (5 ≤ j ≤ 8), and f(v9) ≈ 0.19854. Note that v1v2 ∈ E,
v1v9, v2v9 /∈ E and 2f(v9) ≥ max{f(v1), f(v2)}, by Proposition 2.8, we conclude that
G2 is not a λ1-extremal graph.

Remark 2.10. By Theorem 2.4, Propositions 2.6 and 2.8, type-I-a graphs, and
type-I-b graphs (resp. type-II-a graphs) with some specified properties are not λ1-
extremal graphs. In other words, if G is a λ1-extremal graph of g(n,∆), then G is
most likely to be a type-II-b graph (|V<∆| = 1 and δ = ∆− 2 or ∆− 1). Hence this
provides more evidence to confirm Conjecture 1.4.

Remark 2.11. Conjecture 1.4 is true for small n, where n ≤ 7. Since 2 < ∆ <
n− 1, it need to be verified for n = 5, 6, 7 as follows.

The λ1-extremal graph of g(5, 3) is the Graph 1.17 ([7], pp. 273) with the degree
sequence π = (3, 3, 3, 3, 2), and λ1 ≈ 2.8558.

The λ1-extremal graph of g(6, 3) is the Graph 65 ([5]) with the degree sequence
π = (3, 3, 3, 3, 3, 1), and λ1 ≈ 2.895.

The λ1-extremal graph of g(6, 4) is the Graph 14 ([5]) with the degree sequence
π = (4, 4, 4, 4, 4, 2), and λ1 ≈ 3.820.

The λ1-extremal graph of g(7, 3) is the Graph 10-261 ([6], pp. 193) with the
degree sequence π = (3, 3, 3, 3, 3, 3, 2), and λ1 ≈ 2.9107.

The λ1-extremal graph of g(7, 4) is the Graph 13-643 ([6], pp. 218) with the
degree sequence π = (4, 4, 4, 4, 4, 4, 2), and λ1 ≈ 3.8558.

The λ1-extremal graph of g(7, 5) is the Graph 17-835 ([6], pp. 231) with the
degree sequence π = (5, 5, 5, 5, 5, 5, 4), and λ1 ≈ 4.8809.

3. The largest eigenvalue of non-regular graphs.
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Theorem 3.1. Let G ∈ g(n,∆) (2 < ∆ < n− 1) be a type-I-b graph (or type-II
graph) with diameter D and minimum degree δ. Then

D ≤ 3n+∆− 3δ − 5
∆+ 1

.

Proof. Since G ∈ g(n,∆) with 2 < ∆ < n − 1 is non-regular, we have D ≥ 2.
Let u, v be vertices at distance D and let P : u = u0 ↔ u1 ↔ · · · ↔ uD = v be a
shortest path connecting u and v. We observe |V<∆ ∩ V (P )| ≤ 2. Otherwise G is a
type-I-b graph. Assume {up, uq, ur} ⊆ V<∆ ∩ V (P ) with p < q < r. Since G[V<∆] is
a complete graph, upur ∈ E(G), contradicting the choice of P .

Case 1. V<∆ ∩ V (P ) = {up, up+1}.
Subcase 1.1. D ≡ 2 (mod 3). Define T = {i | i ≡ 0 (mod 3) and i < p}∪{i | i ≡

D (mod 3) and p+ 1 < i ≤ D}. Then |T | = D+1
3 .

Let d(ui, uj) denote the distance between ui and uj. Since P is a shortest path
connecting u and v, we have d(ui, uj) ≥ 3 and thus N(ui)∩N(uj) = ∅ for any distinct
i, j ∈ T . Note that |{p, p+ 1} ∩ {0, D}| ≤ 1 since D ≥ 2. Thus

n ≥ |V (P )|+
∑
i∈T

|N(ui)− V (P )| ≥ (D + 1) + [(∆− 1) + (|T | − 1)(∆− 2)] (3.1)

= (D + 1) + [(∆− 1) + (D + 1
3

− 1)(∆− 2)] = D(∆ + 1) + ∆+ 4
3

. (3.2)

Subcase 1.2. D �≡ 2 (mod 3). Define T = {i | i ≡ 0 (mod 3) and 0 ≤ i ≤
D − 3} ∪ {D}. Then |T | = �D+2

3 �. Note that there is at most one j ∈ T such that
δ ≤ d(uj) < ∆. Similarly as Subcase 1.1, we have

n ≥ |V (P )|+
∑
i∈T

|N(ui)− V (P )| (3.3)

≥ (D + 1) + [(∆− 1) + (δ − 1) + (|T | − 2)(∆− 2)] (3.4)

≥ (D + 1) + [(∆− 1) + (δ − 1) + (D + 2
3

− 2)(∆− 2)] (3.5)

=
D(∆ + 1)−∆+ 3δ + 5

3
. (3.6)

Case 2. V<∆ ∩ V (P ) = {up}.
Subcase 2.1. D �≡ 0 (mod 3). Define T = {i | i ≡ 0 (mod 3) and i < p}∪{i | i ≡

D (mod 3) and p < i ≤ D}. Then |T | = �D+1
3 �. Similarly as Subcase 1.1,

n ≥ |V (P )|+
∑
i∈T

|N(ui)− V (P )| ≥ D(∆ + 1) + ∆+ 4
3

. (3.7)
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Subcase 2.2. D ≡ 0 (mod 3). Define T = {i | i ≡ 0 (mod 3) and 0 ≤ i ≤ D}.
Then |T | = D+3

3 and 0, D ∈ T . Note that there is at most one j ∈ T such that
δ ≤ d(uj) < ∆. Similarly as Subcase 1.2, we have

n ≥ |V (P )|+
∑
i∈T

|N(ui)− V (P )| (3.8)

≥ (D + 1) + [(∆− 1) + (δ − 1) + (|T | − 2)(∆− 2)] (3.9)

=
D(∆ + 1) + 3δ + 3

3
. (3.10)

Case 3. V<∆ ∩ V (P ) = ∅. Define T = {i | i ≡ 0 (mod 3) and i ≤ D− 3} ∪ {D}.
Then |T | = �D+1

3 �. Analogously, we obtain that

n ≥ |V (P )|+
∑
i∈T

|N(ui)− V (P )| (3.11)

≥ (D + 1) + [2(∆− 1) + (|T | − 2)(∆− 2)] (3.12)

= (D + 1) + [2(∆− 1) + (D + 1
3

− 2)(∆− 2)] = D(∆ + 1) + ∆+ 7
3

. (3.13)

By combining the above inequalities (3.1)-(3.13), Theorem 3.1 holds.

Theorem 3.2. Let G ∈ g(n,∆) with 2 < ∆ < n − 1, and minimum degree δ.
Then

∆− λ1 >
∆+ 1

n(3n+∆− 3δ − 5) .

Proof. We may assume G ∈ g(n,∆) with 2 < ∆ < n− 1 is a λ1-extremal graph.
Applying Theorem 3.1 on Inequality (1.1), we obtain the desired result.

Remark 3.3. Note that

λ1 < ∆− ∆+ 1
n(3n+∆− 5− 3δ) ≤ ∆− ∆+ 1

n(3n+∆− 8)
since δ ≥ 1, the bound we obtain improves Inequality (1.4) (also see [9]).

The following corollary is a direct consequence of Theorem 3.2.

Corollary 3.4. Let G ∈ g(n,∆) (2 < ∆ < n − 1) with no pendant vertices.
Then

∆− λ1 >
∆+ 1

n(3n+∆− 11) .
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Theorem 3.5. Let G ∈ g(n,∆) with 2 < ∆ < n − 1, minimum degree δ, and
average degree d̄. Then

∆− λ1 > [− (3n+∆− 3δ − 5)2
2(∆ + 1)2

+
(0.5 + n− δ)(3n+∆− 3δ − 5)

∆ + 1
+

1
∆− d̄ ]

−1.

Proof. Let

f(x) = (n− δ)x+ 1
∆− d̄ −

(
x

2

)
.

It is easy to see that

f(x) = −x
2

2
+ (
1
2
+ n− δ)x+ 1

∆− d̄
= −1

2
[x− (1

2
+ n− δ)]2 + 1

2
· (1
2
+ n− δ)2 + 1

∆− d̄ .

Then for x ≤ 1
2 + n− δ, the function f(x) is monotonically increasing in x.

On the other hand, we have

1
2
+ n− δ − 3n+∆− 3δ − 5

∆ + 1
=
(n− δ − 0.5)(∆− 2) + 4.5

∆ + 1
≥ 0.

Combining this with Theorem 3.1, it follows that

D ≤ 3n+∆− 3δ − 5
∆+ 1

≤ 1
2
+ n− δ.

Hence

f(D) ≤ − (3n+∆− 3δ − 5)2
2(∆ + 1)2

+
(0.5 + n− δ)(3n+∆− 3δ − 5)

∆ + 1
+

1
∆− d̄ .

By Inequality (1.5), ∆− λ1 > f(D)−1, and this completes the proof.

Remark 3.6. For the non-regular graphs with

(∆− d̄)[
(3n+∆−3δ−5

∆+1

2

)
+
δ(3n+∆− 3δ − 5)

∆ + 1
] ≥ 1,

the bound in Theorem 3.5 is better than that in Theorem 3.2. On the other hand, for
most almost regular graphs of constant degree and large order, the bound in Theorem
3.2 is better. We conclude that these two bounds are incomparable.
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