SIGN PATTERNS OF RATIONAL MATRICES WITH LARGE RANK II*

YAROSLAV SHITOV †

Abstract. It is known that, for any real *m*-by-*n* matrix *A* of rank n-2, there is a rational *m*-by-*n* matrix which has rank n-2 and sign pattern equal to that of *A*. We prove a more general result conjectured in the recent literature.

Key words. Matrix rank, Sign pattern matrices.

AMS subject classifications. 15A03, 15B35.

The sign pattern of an $m \times n$ real matrix A is the $m \times n$ matrix S(A) defined as $S_{ij} = +$ if $A_{ij} > 0$, $S_{ij} = -$ if $A_{ij} < 0$, and $S_{ij} = 0$ if $A_{ij} = 0$. The following result was proved in [2] and later in [1].

THEOREM 1. For any real m-by-n matrix A of rank n-2, there is a rational m-by-n matrix which has rank n-2 and sign pattern equal to that of A.

REMARK 2. In [1, p. 370], it is stated, without any further explanation, that the proof of Lemma 3.5 in [2] (which is Theorem 1 above) contains a logical gap. After careful scrutiny, neither the current Editors in Chief of ELA nor the author of this note have found such a gap.

The proof in [2] is based on the following technical statement, appearing as [2, Lemma 3.4]. We recall that [x] is the integer part of a given real number x.

LEMMA 3. Assume that a vector $a = (a_1, \ldots, a_n)$ and a matrix $B \in \mathbb{R}^{n \times 2}$ satisfy aB = (00). Assume that every entry of the first column of B is either 0 or 1. Define, for integer N > 0, the n-by-2 matrix C = C(N) by $C_{ij} = [B_{ij}N]$. Then, for any sufficiently large N, there is a rational vector x = x(N) satisfying xC = (00) and $x(N) \to a$ as $N \to \infty$.

The goal of this note is to present a further illustration of the technique of [2]. Namely, we can prove a generalization of Theorem 1 conjectured in [1].

THEOREM 4. Let A, B, and E be real matrices such that AB = E. If all the zero entries of E are contained in the first two columns, then there exist rational matrices A', B', E' such that A'B' = E' and the sign patterns of A', B', E' are equal to those of A, B, E, respectively.

Proof. We denote by $B_{(i)}$ and $B^{(i)}$ the *i*th row and column of *B*, respectively, and the scaling allows us to assume that $B^{(1)}$ consists of zeros and ones. For any positive integer *N*, we define the matrix C = C(N) of the same size as *B* by the formula $C_{ij} = [NB_{ij}]$.

We define the matrix X of the same size as A as follows. The (i, j) entry of X is set to zero if $A_{ij} = 0$, and we take X_{ij} to be a variable if A_{ij} is nonzero. For every *i*, a row index of A, we want to assign rational values to the variables in the vector $X_{(i)}$ and get a sequence of rational vectors $X_{(i)}(N)$ such that

^{*}Received by the editors on December 19, 2021. Accepted for publication on January 3, 2022. Handling Editor: Froilán Dopico.

 $^{^\}dagger Izumrudnaya ulitsa, dom 65, kvartira 4, Moscow, Russia 129346.$

I L AS

64

Y. Shitov

 $X_{(i)}(N) \cdot C^{(j)}(N) = 0$ whenever $E_{ij} = 0$ and $X_{(i)}(N) \to A_{(i)}$ as N goes to infinity. To this end, we apply Lemma 3 to the linear system

(1)
$$X_{(i)}\left(C^{(1)} \ C^{(2)}\right) = (0 \ 0),$$

whenever $E_{i1} = E_{i2} = 0$. If $E_{ik} \neq 0$ with $k \in \{1, 2\}$, we do the same thing but with $C^{(k)}$ replaced in (1) by the zero vector. So we get the matrices X(N), C(N) such that $A_{ij} = 0$ implies $X(N)_{ij} = 0$, and $B_{ij} = 0$ implies $C(N)_{ij} = 0$, and also $E_{ij} = 0$ implies that the (i, j) entry of X(N)C(N) is zero, and, finally, we have the limits $X(N) \to A$, $C(N)/N \to B$ as $N \to \infty$. Therefore, for any sufficiently large N, the rational matrices X(N), C(N), X(N)C(N) have the same sign patterns as A, B, E, respectively.

This proves Conjecture 2.16 in [1], which has a formulation similar to Theorem 4 but allows the word "columns" to be replaced by the word "rows." This is not essential because we can apply Theorem 4 to the matrices $B^{\top}, A^{\top}, E^{\top}$ to cover this case.

REFERENCES

- M. Arav, F. Hall, Z. Li, H. van der Holst, J. H. Sinkovic, L. Zhang. Minimum ranks of sign patterns via sign vectors and duality. *Electron. J. Linear Algebra*, 30:360–371, 2015.
- [2] Ya. Shitov. Sign patterns of rational matrices with large rank. Eur. J. Comb., 42:107-111, 2014.