SIGN PATTERNS OF RATIONAL MATRICES WITH LARGE RANK II*

YAROSLAV SHITOV ${ }^{\dagger}$

Abstract

It is known that, for any real m-by- n matrix A of rank $n-2$, there is a rational m-by- n matrix which has rank $n-2$ and sign pattern equal to that of A. We prove a more general result conjectured in the recent literature.

Key words. Matrix rank, Sign pattern matrices.

AMS subject classifications. 15A03, 15B35.

The sign pattern of an $m \times n$ real matrix A is the $m \times n$ matrix $\mathcal{S}(A)$ defined as $S_{i j}=+$ if $A_{i j}>0$, $S_{i j}=-$ if $A_{i j}<0$, and $S_{i j}=0$ if $A_{i j}=0$. The following result was proved in [2] and later in [1].

Theorem 1. For any real m-by-n matrix A of rank $n-2$, there is a rational m-by-n matrix which has rank $n-2$ and sign pattern equal to that of A.

REmARK 2. In [1, p. 370], it is stated, without any further explanation, that the proof of Lemma 3.5 in [2] (which is Theorem 1 above) contains a logical gap. After careful scrutiny, neither the current Editors in Chief of ELA nor the author of this note have found such a gap.

The proof in [2] is based on the following technical statement, appearing as [2, Lemma 3.4]. We recall that $[x]$ is the integer part of a given real number x.

Lemma 3. Assume that a vector $a=\left(a_{1}, \ldots, a_{n}\right)$ and a matrix $B \in \mathbb{R}^{n \times 2}$ satisfy $a B=(00)$. Assume that every entry of the first column of B is either 0 or 1 . Define, for integer $N>0$, the n-by- 2 matrix $C=C(N)$ by $C_{i j}=\left[B_{i j} N\right]$. Then, for any sufficiently large N, there is a rational vector $x=x(N)$ satisfying $x C=(00)$ and $x(N) \rightarrow a$ as $N \rightarrow \infty$.

The goal of this note is to present a further illustration of the technique of [2]. Namely, we can prove a generalization of Theorem 1 conjectured in [1].

Theorem 4. Let A, B, and E be real matrices such that $A B=E$. If all the zero entries of E are contained in the first two columns, then there exist rational matrices $A^{\prime}, B^{\prime}, E^{\prime}$ such that $A^{\prime} B^{\prime}=E^{\prime}$ and the sign patterns of $A^{\prime}, B^{\prime}, E^{\prime}$ are equal to those of A, B, E, respectively.

Proof. We denote by $B_{(i)}$ and $B^{(i)}$ the i th row and column of B, respectively, and the scaling allows us to assume that $B^{(1)}$ consists of zeros and ones. For any positive integer N, we define the matrix $C=C(N)$ of the same size as B by the formula $C_{i j}=\left[N B_{i j}\right]$.

We define the matrix X of the same size as A as follows. The (i, j) entry of X is set to zero if $A_{i j}=0$, and we take $X_{i j}$ to be a variable if $A_{i j}$ is nonzero. For every i, a row index of A, we want to assign rational values to the variables in the vector $X_{(i)}$ and get a sequence of rational vectors $X_{(i)}(N)$ such that

[^0]$X_{(i)}(N) \cdot C^{(j)}(N)=0$ whenever $E_{i j}=0$ and $X_{(i)}(N) \rightarrow A_{(i)}$ as N goes to infinity. To this end, we apply Lemma 3 to the linear system
\[

X_{(i)}\left(C^{(1)} C^{(2)}\right)=\left($$
\begin{array}{ll}
0 & 0 \tag{1}
\end{array}
$$\right)
\]

whenever $E_{i 1}=E_{i 2}=0$. If $E_{i k} \neq 0$ with $k \in\{1,2\}$, we do the same thing but with $C^{(k)}$ replaced in (1) by the zero vector. So we get the matrices $X(N), C(N)$ such that $A_{i j}=0$ implies $X(N)_{i j}=0$, and $B_{i j}=0$ implies $C(N)_{i j}=0$, and also $E_{i j}=0$ implies that the (i, j) entry of $X(N) C(N)$ is zero, and, finally, we have the limits $X(N) \rightarrow A, C(N) / N \rightarrow B$ as $N \rightarrow \infty$. Therefore, for any sufficiently large N, the rational matrices $X(N), C(N), X(N) C(N)$ have the same sign patterns as A, B, E, respectively.

This proves Conjecture 2.16 in [1], which has a formulation similar to Theorem 4 but allows the word "columns" to be replaced by the word "rows." This is not essential because we can apply Theorem 4 to the matrices $B^{\top}, A^{\top}, E^{\top}$ to cover this case.

REFERENCES

[1] M. Arav, F. Hall, Z. Li, H. van der Holst, J. H. Sinkovic, L. Zhang. Minimum ranks of sign patterns via sign vectors and duality. Electron. J. Linear Algebra, 30:360-371, 2015.
[2] Ya. Shitov. Sign patterns of rational matrices with large rank. Eur. J. Comb., 42:107-111, 2014.

[^0]: *Received by the editors on December 19, 2021. Accepted for publication on January 3, 2022. Handling Editor: Froilán Dopico.
 ${ }^{\dagger}$ Izumrudnaya ulitsa, dom 65, kvartira 4, Moscow, Russia 129346.

