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ON DECOMPOSITIONS OF MATRICES INTO PRODUCTS OF COMMUTATORS

OF INVOLUTIONS∗
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Abstract. Let F be a field and let n be a natural number greater than 1. The aim of this paper is to prove that if F

contains at least three elements, then every matrix in the special linear group SLn(F ) is a product of at most two commutators

of involutions.
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1. Introduction and main results. The decomposition of a matrix into products of matrices having

certain properties is an interesting topic that it has applications in many areas. In this paper, we focus on

decompositions of matrices in special linear groups into products of commutators of involutions.

Let F be a field, let n be a natural number greater than 1, and let GLn(F ) be the general linear group

of degree n over F . Denote by SLn(F ) the set of matrices in GLn(F ) with determinant 1. It is known

that [10, Theorem, Theorems 1, and 2] if either F contains at least three elements or n > 2, then every

matrix in SLn(F ) is a commutator of GLn(F ), that is, every matrix in GLn(F ) with determinant 1 has the

form BCB−1C−1, in which B and C belong to GLn(F ). This result has motivated other decompositions

of matrices in SLn(F ). For example [10], Thompson showed that if n − 2 is not divisible by 4, then every

matrix in SLn(F ) is a commutator of matrices of determinant 1. In [3], Hahn considered the decomposition

of certain matrices into products of commutators of symmetric matrices [3]. B. Zheng and H. You worked

on the product of commutators of symplectic transvections [12]. Recently, X. Hou considered commutators

of unipotent matrices of index 2 [5].

A matrix A ∈ GLn(F ) is an involution if A is the inverse of itself, that is, A2 = In. Here In is the

identity matrix of GLn(F ). B. Zheng proved in [13] that if F = R, the field of real numbers, or F = C,

the field of complex numbers, then every matrix in SLn(F ) is a product of at most two commutators of

involutions in GLn(F ). This result later was extended to an arbitrary field F of characteristic different from

2 [6, Theorem 2.8].

The main goal of this paper is to consider the case in which F has characteristic 2. We prove the

following theorem.
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Theorem 1. Let F be a field containing at least three elements and let n be a natural number greater

than 1. Then every matrix in SLn(F ) is a product of at most two commutators of involutions.

We next consider special cases in which F is the field F2 of two elements. We begin with GL2(F2). By the

fact that the determinant of every matrix in GL2(F2) is 1, one has that SL2(F2) = GL2(F2). However, we

show the following:

Proposition 2. Every matrix in the commutator subgroup of GL2(F2) is a commutator of involutions

in GL2(F2).

If n > 2, one can use [8, Lemma 1.2] to show that A ∈ SLn(F2) is a product of at most (n−1)(3n+2)
2

commutators of involutions of GLn(F2). If n is odd, we show the following result.

Proposition 3. If n is an odd number greater than 1, then every matrix of SLn(F2) is a product of at

most three commutators of involutions of GLn(F2).

2. Proofs. To prove the main results, we need a sequence of lemmas. Let F be a field and let n > 1

be a natural number. Assume that f(x) = xn + an−1x
n−1 + · · · + a0 ∈ F [x] is a monic polynomial in one

variable x with coefficients ai in F . A companion matrix C(f) of f(x) is

C(f) =


0 −a0
1 −a1

. . .
...

0 1 −an−1

 ∈ Mn(F ).

The matrix C(f) is invertible if and only if the constant term a0 of f is nonzero.

Let A1 ∈ Mn1(F ), A2 ∈ Mn2(F ), . . . , Ak ∈ Mnk
(F ) be square matrices of degree n1, n2, . . . , nk,

respectively. The block diagonal matrix:
A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ak

 ∈ Mn1+n2+···+nk
(F ),

is the direct sum of A1, A2, . . . , Ak, denoted by A1⊕A2⊕· · ·⊕Ak. If f : {1, 2, . . . , k} → {1, 2, . . . , k}, i 7→ f(i)

is a bijection, then A1 ⊕A2 ⊕ · · · ⊕Ak is similar to Af(1) ⊕Af(2) ⊕ · · · ⊕Af(k).

The following result shows that each square matrix is similar to a block diagonal matrix whose diagonal

blocks are companion matrices.

Lemma 4 ([7, Theorem B-3.47]). Every square matrix over the field is similar to a direct sum of

companion matrices.

A square matrix of degree 1 is denoted by (a), so as not to confuse it with the element a in F .

Lemma 5 ([1, Lemma 7]). Let F be a field containing at least four elements. Assume that C = C(f) is

an invertible companion matrix in GLn(F ) with respect to the polynomial f of degree n. Let a, b ∈ F \{0} be

such that detC = ab. Then, C = XY , in which X is similar to (a)⊕A and Y is similar to (b)⊕B. Here,

A = A1 ⊕A2 ⊕ · · · ⊕Ak,
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and

B = B1 ⊕B2 ⊕ · · · ⊕B`,

in which each of A1, A2, . . . , Ak, B1, B2, . . . , B` is one of the following forms:

(a) (1).

(b)

(
g 0

0 g−1

)
, in which g ∈ F \ {0,±1}.

(c)

(
0 −1

1 q

)
, in which q ∈ F .

In particular, A is similar to A−1 and B is similar to B−1.

We use the following version of the preceding lemma in the proof of the main result of this paper.

Corollary 6. Let F be a field of characteristic 2 containing at least four elements. Each of C ∈ SLn(F )

is similar to a product AB, in which

A = A1 ⊕A2 ⊕ · · · ⊕Ak,

and

B = B1 ⊕B2 ⊕ · · · ⊕B`,

with

Ai, Bi ∈
{(

g 0

0 g−1

)
| g ∈ F \ {0}

}⋃{(
0 1

1 q

)
| q ∈ F

}
,

for every i ≥ 2 and

(a) if n is odd, then A1 = B1 = (1);

(b) if n is even, then

A1, B1 ∈
{(

g 0

0 g−1

)
| g ∈ F \ {0}

}⋃{(
0 1

1 q

)
| q ∈ F

}
.

In particular, A is similar to its inverse and so is B.

Proof. By Lemma 4, C is similar to C1⊕C2⊕· · ·⊕Ck, in which C1 = C(f1), C2 = C(f2), . . . , Ck = C(fk)

are the companion matrices of f1, f2, . . . , fk, respectively. Therefore, without loss of generality, assume

that C = C1 ⊕ C2 ⊕ · · · ⊕ Ck, in which C1, C2, . . . , Ck are companion matrices. Each Ci is invertible for

i = 1, 2, . . . , k so according to Lemma 5, Ci can be expressed as the product XiYi, in which Xi and Yi are

similar to (ai)⊕Ai, (bi)⊕Bi, respectively, and Ai, Bi are direct sums of the matrices of the following forms:

(1),

(
0 1

1 q

)
,

(
g 0

0 g−1

)
,

with q ∈ F and g ∈ F \ {0}. We choose a1, a2, . . . , ak and b1, b2, . . . , bk in the zigzag way as follows

a1 = detC = 1, b1 = a−11 detC1, b2 = b−11 , a2 = b−12 detC2, a3 = a−12 , b3 = a−13 detC3, and so on. With the

similarity of direct sums and by rearrangement of the matrices of the form (1) in the front, it follows that C

is similar to AB.

Lemma 7. Let F be a finite field of characteristic 2. If x ∈ F \ {0}, then there exists y ∈ F \ {0} such

that x = y2.
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Proof. Suppose that |F | = 2m where m is a positive integer. Then F \ {0} is a cyclic group of degree

2m − 1 with a generator a. Hence, x = ak with 1 ≤ k < 2m − 1. If k is even, then we choose y = ak/2. If k

is odd, then we take y = a
2m−1+k

2 . Both cases lead to y2 = x.

Let F be a field and let n be a natural number greater than 1. Denote by LTn(F ) and UTn(F ) the sets

of lower unitriangular matrices and upper unitriangular matrices, respectively. These are triangular matrices

whose diagonal entries are 1.

Lemma 8. Let F be a field and let n ≥ 2 be a positive integer. If A ∈ SLn(F ) is a nonscalar matrix,

then there exists P ∈ GLn(F ) P−1AP = BC, in which B ∈ LTn(F ), C ∈ UTn(F ).

Proof. This is a special case of [9, Theorem 1] .

Remark 9. Let G be a group. If g = [a, b] = aba−1b−1 is a commutator of a, b ∈ G, then hgh−1 =

[hah−1, hbh−1] and g−1 = [b, a]. Therefore, conjugations and inverses of commutators are commutators.

Moreover, if an element in G is a commutator of involutions, then so are its conjugations and inverse. These

facts will be used frequently in this paper.

The following result is an intermediate step of the proof of the main theorem.

Lemma 10. Let F be an infinite field. Suppose that A ∈ SLn(F ) and A = BC, in which B ∈ LTn(F )

and C ∈ UTn(F ), then A is a product of at most two commutators of involutions.

Proof. Consider the two following cases.

Case 1. n is even, that is, n = 2k for some positive integer k. Since F is infinite, we can choose elements

x1, x2, . . . , xk ∈ F \ {0} such that x21, x
2
2, . . . , x

2
k, x
−2
1 , x−22 , . . . , x−2k are pairwise distinct. For 1 ≤ i ≤ k,

put Ei =

(
x2i 0

0 x−2i

)
and E = E1 ⊕ E2 ⊕ · · · ⊕ Ek. By putting B1 = BE−1 and C1 = EC, we get

A = BC = B1C1, in which B1 and C1 have the forms:

B1 =


x−21 0 · · · 0 0

∗ x21 · · · 0 0
...

...
. . .

...
...

∗ ∗ · · · x−2k 0

∗ ∗ · · · ∗ x2k

 ,

and

C1 =


x21 ∗ · · · ∗ ∗
0 x−21 · · · ∗ ∗
...

...
. . .

...
...

0 0 · · · x2k ∗
0 0 · · · 0 x−2k

 .

It is known [7, Exercise B-3.32] that C1 is similar to E. For i = 1, . . . , k, one can check that Ei = [Gi, Hi]

where Hi =

(
0 1

1 0

)
and Gi =

(
0 xi
x−1i 0

)
are involutions in GL2(F ), so if G = G1 ⊕ G2 ⊕ · · · ⊕ Gn and

H = H1⊕H2⊕ · · · ⊕Hn, then G and H are involutions and E = [G,H]. By Remark 9, C1 is a commutator

of involutions. Similarly, B1 is similar to E−1 = [H,G]. This implies that B1 is a commutator of involutions.

Thus, A = B1C1 is a product of at most two commutators of involutions.
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Case 2. n is odd, that is, n = 2k+ 1 for some positive integer k. By the same argument as in Case 1, we can

choose x1, x2, . . . , xk ∈ F \ {0, 1} such that x21, x
2
2, . . . , x

2
k, x
−2
1 , x−22 , . . . , x−2k are pairwise distinct. Choose

E as in Case 1. Then put E′ = E ⊕ (1), B′1 = BE′ and C ′1 = E′−1C. Using the same arguments as in

Case 1, we find that C ′1 and B′1 are similar to E′ and E′−1, respectively. Let G and H be as in Case 1.

If G′ = G ⊕ (1) and H ′ = H ⊕ (1), then G′, H ′ are involutions and E′ is the commutator of G′ and H ′.

Then, B′1 and C ′1 are commutators of involutions, which implies that A = B′1C
′
1 is a product of at most two

commutators of involutions.

In the proof of the main result, we use the technique of [6, Theorem 2.8]. To apply this technique, we

need the following lemma.

Lemma 11. Let F be a field and let n ≥ 2 be a positive integer. Assume that A ∈ GLn(F ). If A is

similar to A−1, then A2 is a commutator of involutions.

Proof. Since A is similar to A−1, A = BC, in which B and C are involutions [4, Theorem 1]. Hence,

A2 = (BC)2 = BCBC = BCB−1C−1 is a commutator of involutions.

Now we can prove the main result of this paper.

Proof of Theorem 1. Let C ∈ SLn(F ). If F is a field of characteristic different from 2, then C is a product

of at most two commutators of involutions by [6, Theorem 2.8]. Now, we suppose that the characteristic of

F is 2. Consider the two following cases.

Case 1. F is infinite. If C is noncentral, then by Lemma 8 we have C = AB with A ∈ LTn(F ), B ∈ UTn(F ).

By Lemma 10, C is a product of at most two commutators of involutions. Now, if C is central, then there

exists α ∈ F such that C = αI. We use the arguments in the proof of [6, Theorem 2.8]. Namely, we consider

the two following subcases.

Subcase 1.1. n is odd. Put β = α
n+1
2 . Then, α = β2. Put B = diag(1, α2, · · · , α2(n−1)). Then,

B = diag(1, β2, · · · , β2(n−1))2 and αB = diag(β, β3, · · · , β2n−1)2. Note that each of

diag(1, β2, · · · , β2(n−1)),

and

diag(β, β3, · · · , β2n−1),

is similar to its inverse. Therefore, by Lemma 11, B and αB are commutators of involutions. According to

Remark 9, B−1 is also a commutator of involutions. Thus, C = αBB−1 is a product of two commutators of

involutions.

Subcase 1.2. n is even. Then, there exists a positive integer m such that n = 2m. Put B =

diag(1, 1, α2, α2, · · · , α2(m−1), α2(m−1)). For every x ∈ F \ {0}, denote K(x) =

(
0 x

1 0

)
. Put B′ =

K(1) ⊕ K(α2) ⊕ · · · ⊕ K(α2(m−1)) and B′′ = K(α) ⊕ K(α3) ⊕ · · · ⊕ K(α2m−1). Then, B = B′2 and

αB = B′′2. By using the same arguments as in Subcase 1.1, we conclude that B and αB are commutators

of involutions. Therefore, C = αBB−1 is a product of two commutators of involutions.

Case 2. F is finite. Since F contains at least three elements and F 6= F2, F has at least four elements. By

Corollary 6, C is similar to AB, in which A and B have the forms:

A = A1 ⊕A2 ⊕ · · · ⊕Ak,
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and

B = B1 ⊕B2 ⊕ · · · ⊕B`,

with

Ai, Bi ∈
{(

g 0

0 g−1

)
| g ∈ F \ {0}

}⋃{(
0 1

1 q

)
| q ∈ F

}
,

for every i ≥ 2. In particular,

(a) if n is odd, then A1 = B1 = (1).

(b) if n is even, then

A1, B1 ∈
{(

g 0

0 g−1

)
| g ∈ F \ {0}

}⋃{(
0 1

1 q

)
| q ∈ F

}
.

By Remark 9, it suffices to assume that C = AB. We claim that each of the matrices A1, A2, . . . , Ak,

B1, B2, . . . , B` is a commutator of involutions. There is nothing to prove if n = 1. For the matrices

diag(g, g−1) with g ∈ F \ {0}, since g ∈ F \ {0}, by Lemma 7, there exists g′ ∈ F \ {0, 1} such that g = g′2

and (
g 0

0 g−1

)
=

[(
0 g′

g′−1 0

)
,

(
0 1

1 0

)]
,

is a commutator of involutions. For a matrix of the form

(
0 1

1 q

)
with q ∈ F , by Lemma 7, there exists

q′ ∈ F such that q = q′2. Then, (
0 1

1 q

)
=

[(
q′−1 q′−1 + q′

q′−1 q′−1

)
,

(
1 q

0 1

)]
,

is also a commutator of involutions. The claim is shown. Thus, each of A and B is a commutator of

involutions. Hence, the product C = AB is a product of at most two commutators of involutions.

Proof of Proposition 2. By calculating directly, we get the commutator subgroup of GL2(F2) is

[GL2(F2),GL2(F2)] =

{(
1 0

0 1

)
,

(
0 1

1 1

)
,

(
1 1

1 0

)}
.

Moreover, we have

(
1 0

0 1

)
=

[(
0 1

1 0

)
,

(
0 1

1 0

)]
,

(
1 1

1 0

)
=

[(
1 1

0 1

)
,

(
1 0

1 1

)]
,

and (
0 1

1 1

)
=

[(
1 0

1 1

)
,

(
1 1

0 1

)]
.

By Remark 9, the proof is complete.
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A matrix A ∈ GLn(F ) of degree n over a field F is a transvection if the rank of A − In is 1 and

(A − In)2 = 0. For example, a matrix of the form



1 ∗
1 ∗

1 ∗
. . .

...

1 ∗
1


is a transvection. It is known

that all transvections are similar [2, Proposition 1.5].

Proof of Proposition 3. Let A ∈ SLn(F2). By [11, Theorem 2], we can choose B and C ∈ GLn(F2) such

that A = BC, in which B and C are, respectively, similar to

B1 =



0 1

1 0

1
. . .

. . . 0

1 0

1 0


and C1 =



0 1

1 0 ∗

1
. . .

...
. . . 0 ∗

1 0 ∗
1 ∗


.

Observe that the minimal polynomial of B1 is tn − 1, so Bn+1
1 = B1. Since n + 1 is even, put B2 = B

n+1
2

1 .

Then B1 = B2
2 and

B2 =



1

1
. . .

1

1

1
. . .

1


,

which is the product

B2 =



1

1
...

1

1

1
...

1




1

1
...

1

1

 ,
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of involutions. Hence, B1 = B2
2 is a commutator of involutions. Now put C2 = B−11 C1. Then,

C2 =



1 ∗
1 ∗

1 ∗
. . .

...

1 ∗
1


.

If C2 = In, then C2 is a commutator of involutions, so we assume that C2 6= In. Then, C2 is a transvection,

which implies that C2 is similar to

(
1 1

0 1

)
⊕ In−2, as

(
1 1

0 1

)
⊕ In−2 is also a transvection. Observe that

1 1 0

0 1 0

0 0 1

⊕ In−3 =

1 0 1

0 1 0

0 0 1

⊕ In−3,

1 0 0

0 1 0

0 1 1

⊕ In−3

 ,
is a commutator of involutions, so C1 = B1C2 is a product of two commutators of involutions. Thus, A is a

product of at most three commutators of involutions.
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