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Abstract. In this paper, the problem of constructing a real symmetric doubly arrow matrix

A from two special kinds of spectral information is considered. The first kind is the minimal and

maximal eigenvalues of all leading principal submatrices of A, and the second kind is one eigenvalue

of each leading principal submatrix of A together with one eigenpair of A. Sufficient conditions

for both eigenproblems to have a solution and sufficient conditions for both eigenproblems have a

nonnegative solution are given in this paper. The results are constructive in the sense that they

generate algorithmic procedures to compute the solution matrix.
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1. Introduction. In this paper we consider two inverse eigenproblems for a
special kind of real symmetric matrices: the real symmetric doubly arrow matrices.
That is, matrices which look like two arrow matrices, forward and backward, with
heads against each other at the (p, p) position, 1 ≤ p ≤ n. They are matrices of the
form:

(1.1) A =




a1 b1

. . .
...

ap−1 bp−1

b1 · · · bp−1 ap bp · · · bn−1

bp ap+1

...
. . .

bn−1 an




, aj , bj ∈ R.
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Matrices of the form (1.1) generalize the well known real symmetric arrow matrices
(also called real symmetric bordered diagonal matrices):

(1.2)




a1 b1 b2 · · · bn−1

b1 a2

b2 a3

...
. . .

bn−1 an




, aj , bj ∈ R.

Arrow matrices arise in many areas of science and engineering [1]-[6]. In this
paper, we construct matrices A of the form (1.1), from a special kind of spectral in-
formation, which only recently is being considered. Since this type of matrix structure
generalizes the well known arrow matrices, we think that it will also become of inter-
est in applications. For the first eigenproblem, we have as initial spectral information
the minimal and maximal eigenvalues of all leading principal submatrices of A; and
for the second one, the initial information is an eigenvalue of each leading principal
submatrix of A together with one eigenpair of A.

Both eigenproblems considered in this paper were introduced by Peng et al. in
[7], for real symmetric bordered diagonal matrices. However, as it has been shown
in [8] and [9], the formulae given in [7], to compute the entries aj , bj of the matrix
in (1.2), may lead us to some wrong solutions. In this work we study the following
eigenproblems:

Problem 1. Given the real numbers λ
(j)
1 and λ

(j)
j , j = 1, 2, . . . , n, find necessary

and sufficient conditions for the existence of an n × n matrix A of the form (1.1),
such that λ

(j)
1 and λ

(j)
j are respectively, the minimal and maximal eigenvalues of the

j × j leading principal submatrix Aj of A = An, j = 1, 2, ..., n.

Problem 2. Given the real numbers λ(j), j = 1, 2, . . . , n and a real vector
x = (x1, . . . , xn)

T , find necessary and sufficient conditions for the existence of an
n× n matrix A of the form (1.1), such that λ(j) is an eigenvalue of the j × j leading
principal submatrix Aj of A, j = 1, 2, ..., n, and (λ(n),x) is an eigenpair of A = An.

In the sequel, we denote Ij the j×j identity matrix, Aj the j×j leading principal
submatrix of A which is in the form of (1.1), Pj (λ) the characteristic polynomial of
Aj , λ

(j)
1 ≤ λ

(j)
2 ≤ . . . ≤ λ

(j)
j the eigenvalues of Aj , and σ(Aj) the spectrum of Aj . In

the case that we consider only one eigenvalue of Aj , it will be denote by λ(j).

The following lemmas will be used to prove the results in the next sections:

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 700-718, November 2009



ELA

702 Hubert Pickmann, Juan C. Egaña, and Ricardo L. Soto

Lemma 1.1. Let A be an n × n matrix of the form (1.1). Then the sequence of
characteristic polynomials {Pj (λ)}n

j=1 satisfies the recurrence relation:

Pj (λ) =
j∏

i=1

(λ − ai) ; j = 1, . . . , p − 1.(1.3)

Pj (λ) = (λ − aj)Pj−1 (λ)−
j−1∑
k=1

b2
k

j−1∏
i=1
i�=k

(λ − ai) ; j = p.(1.4)

Pj (λ) = (λ − aj)Pj−1 (λ)− b2
j−1

j−1∏
i=1
i�=p

(λ − ai) ; j = p + 1, ..., n,(1.5)

where P0 (λ) = 1.

Proof. The result follows by expanding the determinants det(λIj − Aj), j =
1, 2, . . . , n.

Lemma 1.2. [8] Let P (λ) be a monic polynomial of degree n, with all real zeroes.
If λ1 and λn are, respectively, the minimal and the maximal zero of P (λ), then

1. If µ < λ1, we have that (−1)n P (µ) > 0.
2. If µ > λn, we have that P (µ) > 0.

From Lemma 1.2, it is clear that if µ < λ
(j)
1 then (−1)j Pj (µ) > 0 and if µ > λ

(j)
j

then Pj (µ) > 0. The minimal and maximal eigenvalues of Aj will be called extremal
eigenvalues.

The paper is organized as follows: In Section 2, we discuss Problem 1 and give
a sufficient condition for the existence of a solution. We also show that if the first
p − 1 entries bi are equal then the solution is unique. We also give conditions under
which the solution matrix A of the form (1.1) is nonnegative. In Section 3, we study
Problem 2 and give a sufficient condition for the existence of a solution and a sufficient
condition for the existence of a nonnegative solution. In Section 4, we show some
examples to illustrate the results. All results are constructive in the sense that they
generate algorithmic procedures to compute a solution matrix.

2. Solution to Problem 1. If p = 1, the matrix A in (1.1) becomes the matrix
of the form (1.2). In this case, the conditions of Theorem 2.2 below reduce to condi-
tion (2.3), which is necessary and sufficient for the existence of an arrow matrix (with
the required spectral properties), as it was shown in [8]. In this sense, Theorem 2.2
generalizes similar results for real symmetric arrow matrices. We start by recalling
an important property, which establishes relations between the eigenvalues of a sym-
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metric matrix and the eigenvalues of its principal submatrices, that is, the Cauchy
interlacing property:

Lemma 2.1. Let A = An be an n × n real symmetric matrix with eigenvalues
λ

(n)
1 ≤ λ

(n)
2 ≤ · · · ≤ λ

(n)
n . Let Ar, with eigenvalues λ

(r)
1 ≤ λ

(r)
2 ≤ · · · ≤ λ

(r)
n−1, the

principal submatrix of A, obtained by deleting the r− th row and r− th column of A.
Then

λ
(n)
1 ≤ λ

(r)
1 ≤ λ

(n)
2 ≤ · · · ≤ λ

(n)
n−1 ≤ λ

(r)
n−1 ≤ λ(n)

n .

Observe that if λ
(j)
1 and λ

(j)
j are, respectively, the minimal and the maximal

eigenvalues of the leading principal submatrix Aj of A, then Lemma 2.1 implies

λ
(n)
1 ≤ · · · ≤ λ

(3)
1 ≤ λ

(2)
1 ≤ λ

(1)
1 ≤ λ

(2)
2 ≤ λ

(3)
3 ≤ · · · ≤ λ(n)

n .

Since Aj , j = 1, 2, . . . , p − 1, is a diagonal matrix, then

(2.1) λ
(p)
1 ≤ ai ≤ λ(p)

p , i = 1, 2, . . . , p − 1.

Now, suppose that ap < λ
(p)
1 . Then from Lemma 1.2, (−1)p Pp (ap) > 0 and from

(2.1), ap − ai < 0, i = 1, 2, . . . , p − 1. Therefore, from (1.4)

(−1)p Pp (ap) = (−1)p


(ap − ap)Pj−1 (ap)−

p−1∑
k=1

b2
k

p−1∏
i=1
i�=k

(ap − ai)




= (−1)2p−1
p−1∑
k=1

b2
k

p−1∏
i=1
i�=k

(ai − ap) ≤ 0,

which is a contradiction. The same occurs if we assume that λ
(p)
p < ap. Thus,

λ
(p)
1 ≤ ai ≤ λ

(p)
p , i = 1, 2, . . . , p. Finally, for j = p+ 1, . . . , n, we obtain, from Lemma

2.1,

(2.2) λ
(j)
1 ≤ ai ≤ λ

(j)
j , j = 1, 2, . . . , n; i = 1, 2, . . . , j.

The following result gives a sufficient condition for the Problem 1 to have a
solution.

Theorem 2.2. Let the real numbers λ
(j)
1 and λ

(j)
j , j = 1, 2, . . . , n, be given. If

(2.3) λ
(n)
1 < · · · < λ

(p−1)
1 = · · · = λ

(1)
1 < λ

(2)
2 < · · · < λ(n)

n .
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and there exist real solutions ap, bk > 0, k = 1, . . . , p − 1 of the system of equations

(2.4) Pp

(
λ

(p)
j

)
=

(
λ

(p)
j − ap

)
Pp−1

(
λ

(p)
j

)
−

p−1∑
k=1

b2
k

p−1∏
i=1
i�=k

(
λ

(p)
j − λ

(i)
i

)
= 0, j = 1, p,

then there exists an n × n real symmetric doubly arrow matrix A, of the form (1.1),
with positive entries bi, i = 1, 2, . . . , n−1, and such that λ

(j)
1 and λ

(j)
j are the extremal

eigenvalues of the leading principal submatrix Aj, j = 1, 2, . . . , n.

Before the proof of Theorem 2.2, we must observe two facts:

The first one is that the leading principal submatrix Ap−1 is diagonal. Then each
extremal eigenvalue of Aj , j = 1, 2, . . . , p − 1, is a diagonal entry of Ap−1. Hence, at
most p − 1 of all 2(p − 1)− 1 extremal eigenvalues of the matrices A1, A2, . . . , Ap−1,

can be distinct, and then, for this problem, we only dispose, at most, of 2n − p + 1
independent pieces of information.

The second fact is that a matrix A of the form (1.1) is permutationally similar to
single arrow matrix of the form (1.2). However, the problem would not be simpler if A

is permuted to an arrow matrix B = PT AP by a permutation matrix P. The reason
is that if B = PT AP would be a single arrow matrix (of the form (1.2)) with all its
bi entries positive, then as it was shown in [8], its 2n− 1 extremal eigenvalues are all
distinct, while in this case we may have, as initial information, at most 2n − p + 1
distinct extremal eigenvalues.

Proof. Of Theorem 2.2. Assume that the real numbers λ
(j)
1 and λ

(j)
j , j =

1, 2, . . . , n, satisfy condition (2.3). Then there exists a j × j matrix
Aj = diag{λ(1)

1 , λ
(2)
2 , . . . , λ

(j)
j }, j = 1, . . . , p − 1, with extremal eigenvalues λ

(j)
1 and

λ
(j)
j . To prove the existence of a j × j matrix Aj , j = p, . . . , n, of the form (1.1), with

the desired spectral properties is equivalent to show that the system of equations

(2.5)

Pj

(
λ

(j)
1

)
= 0

Pj

(
λ

(j)
j

)
= 0




has real solutions aj, j = p + 1, . . . , n and bj−1 > 0, j = 1, . . . , n.

For j = p, from condition (2.4) it follows that the system of equations (2.5) has
real solutions ap, bk > 0, k = 1, . . . , p − 1. Hence, there exists a matrix Ap with the
required spectral properties.
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For j = p + 1, . . . , n, the system (2.5) has the form:

(2.6)

ajPj−1

(
λ

(j)
1

)
+ b2

j−1

j−1∏
i=1
i�=p

(
λ

(j)
1 − ai

)
= λ

(j)
1 Pj−1

(
λ

(j)
1

)

ajPj−1

(
λ

(j)
j

)
+ b2

j−1

j−1∏
i=1
i�=p

(
λ

(j)
j − ai

)
= λ

(j)
j Pj−1

(
λ

(j)
j

)




.

We claim that the determinant

hj = Pj−1

(
λ

(j)
1

) j−1∏
i=1
i�=p

(
λ

(j)
j − ai

)
− Pj−1

(
λ

(j)
j

) j−1∏
i=1
i�=p

(
λ

(j)
1 − ai

)

of the coefficient matrix of the system (2.6) is nonzero. In fact, we shall prove that
(−1)j−1

hj > 0. First, we observe from (2.2) and (2.3) that λ
(j)
1 < λ

(j−1)
1 ≤ ai ≤

λ
(j−1)
j−1 < λ

(j)
j , i = 1, . . . , j − 1. Consequently

(
λ

(j)
j − ai

)
> 0 and

(
λ

(j)
1 − ai

)
< 0,

i = 1, . . . , p − 1. Then,

j−1∏
i=1
i�=p

(
λ

(j)
j − ai

)
> 0

and since the product
j−1∏
i=1
i�=p

(
λ

(j)
1 − ai

)
has j − 2 factors, it follows that

− (−1)p−1
j−1∏
i=1
i�=p

(
λ

(j)
1 − ai

)
= (−1)p (−1)p−2

j−1∏
i=1
i�=p

(
ai − λ

(p)
1

)
> 0.

Now, from Lemma 1.2 we have (−1)j−1
Pj−1

(
λ

(j)
1

)
> 0 and Pj−1

(
λ

(j)
j

)
> 0.

Therefore, (−1)j−1
hj > 0, and then hj �= 0. Thus, the system (2.6) has solutions

given by

aj =

λ
(j)
1 Pj−1

(
λ

(j)
1

) j−1∏
i=1
i�=p

(
λ

(j)
j − ai

)
− λ

(j)
j Pj−1

(
λ

(j)
j

) j−1∏
i=1
i�=p

(
λ

(j)
1 − ai

)

hj

and

b2
j−1 =

(
λ

(j)
j − λ

(j)
1

)
Pj−1

(
λ

(j)
1

)
Pj−1

(
λ

(j)
j

)
hj

.
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Since from Lemma 1.2,

(−1)j−1
(
λ

(j)
j − λ

(j)
1

)
Pj−1

(
λ

(j)
1

)
Pj−1

(
λ

(j)
j

)
> 0,

then bj−1 is a real number, which can be chosen as positive. Hence, for j = 1, . . . , n,

there exists a matrix Aj with the required spectral properties. In particular, An = A

is the desired symmetric doubly arrow matrix of the form (1.1).

Looking for the uniqueness of the solution to Problem 1, we study a particular
case in which the matrix A of the form (1.1) has all its bi entries positive with the
first p − 1 entries being equal. That is,

(2.7) A =




a1 b
. . .

...
ap−1 b

b · · · b ap bp · · · bn−1

bp ap+1

...
. . .

bn−1 an




,
aj ∈ R, b > 0,
bp, . . . , bn−1 > 0.

Now, in this case, we dispose of 2n − p + 1 independent pieces of information, with
2n − p + 1 unknowns. Then the formulae of Lemma 1.1 reduces to:

Pj (λ) =
j∏

i=1

(λ − ai) ; j = 1, . . . , p − 1.(2.8)

Pj (λ) = (λ − aj)Pj−1 (λ) − b2

j−1∑
k=1

j−1∏
i=1
i�=k

(λ − ai) ; j = p.(2.9)

Pj (λ) = (λ − aj)Pj−1 (λ) − b2
j−1

j−1∏
i=1
i�=p

(λ − ai) ; j = p + 1, ..., n.(2.10)

Then we have the following Corollary.

Corollary 2.3. Let the real numbers λ
(j)
1 and λ

(j)
j , j = 1, 2, . . . , n, be given. If

(2.11) λ
(n)
1 < · · · < λ

(p−1)
1 = · · · = λ

(1)
1 < λ

(2)
2 < · · · < λ(n)

n ,

then there exists a unique n × n matrix A of the form (2.7), such that λ
(j)
1 and λ

(j)
j

are the extremal eigenvalues of its leading principal submatrix Aj, j = 1, 2, . . . , n.

Proof. It is clear from (2.11) that for j = 1, 2, . . . , p − 1, there exists a unique
matrix Aj = diag{λ(1)

1 , λ
(2)
2 , . . . , λ

(j)
j } with extremal eigenvalues λ

(j)
1 and λ

(j)
j .

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 700-718, November 2009



ELA

Two Inverse Eigenproblems for Symmetric Doubly Arrow Matrices 707

As in the proof of Theorem 2.2, it is enough to show that the system of equations

(2.12)

Pj

(
λ

(j)
1

)
= 0

Pj

(
λ

(j)
j

)
= 0




has real solutions aj and bj−1, with bj−1 > 0, j = p + 1, . . . , n.

For j = p, from (2.9) the system (2.12) can be written as

ajPj−1

(
λ

(j)
1

)
+ b2

j−1∑
k=1

j−1∏
i=1
i�=k

(
λ

(j)
1 − λ

(i)
i

)
= λ

(j)
1 Pj−1

(
λ

(j)
1

)

(2.13)

ajPj−1

(
λ

(j)
j

)
− b2

j−1∑
k=1

j−1∏
i=1
i�=k

(
λ

(j)
j − λ

(i)
i

)
= λ

(j)
j Pj−1

(
λ

(j)
j

)

The determinant

hp = Pp−1

(
λ

(p)
1

) p−1∑
k=1

p−1∏
i=1
i�=k

(
λ(p)

p − λ
(i)
i

)
− Pp−1

(
λ(p)

p

) p−1∑
k=1

p−1∏
i=1
i�=k

(
λ

(p)
1 − λ

(i)
i

)
,

of the coefficients matrix in (2.13) is nonzero. To show this, we first observe from (2.2)
and (2.11) that λ

(p)
1 < ai = λ

(i)
i < λ

(p)
p , i = 1, . . . , p−1. Consequently,

(
λ

(p)
p − ai

)
> 0

and
(
λ

(p)
1 − ai

)
< 0, i = 1, . . . , p − 1. Then,

p−1∑
k=1

p−1∏
i=1
i�=k

(
λ(p)

p − ai

)
> 0.

Since there are p − 2 factors in each product
p−1∏
i=1
i�=k

(
λ

(p)
1 − ai

)
, then

− (−1)p−1
p−1∑
k=1

p−1∏
i=1
i�=k

(
λ

(p)
1 − ai

)
= (−1)p (−1)p−2

p−1∑
k=1

p−1∏
i=1
i�=k

(
ai − λ

(p)
1

)
> 0.

From Lemma (1.2), we have (−1)p−1
Pp−1

(
λ

(p)
1

)
> 0 and Pp−1

(
λ

(p)
p

)
> 0. Hence,
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(−1)p−1 hp > 0, and then hp �= 0. Thus, the system (2.13) has unique solutions
(2.14)

ap =

λ
(p)
1 Pp−1

(
λ

(p)
1

) p−1∑
k=1

p−1∏
i=1
i�=k

(
λ

(p)
p − ai

)
− λ

(p)
p Pp−1

(
λ

(p)
p

) p−1∑
k=1

p−1∏
i=1
i�=k

(
λ

(p)
1 − ai

)

hp

and

b2 =

(
λ

(p)
p − λ

(p)
1

)
Pp−1

(
λ

(p)
1

)
Pp−1

(
λ

(p)
p

)
hp

.

As

(−1)p−1
(
λ(p)

p − λ
(p)
1

)
Pp−1

(
λ

(p)
1

)
Pp−1

(
λ(p)

p

)
≥ 0,

then b = b1 = · · · = bp−1 is a real number and therefore there exists a unique matrix
Ap with the desired spectral properties.

Similarly to the proof of Theorem (2.2), for j = p+1, . . . , n, from (2.10), it follows
that system (2.6) has unique solutions

(2.15) aj =

λ
(j)
1 Pj−1

(
λ

(j)
1

) j−1∏
i=1
i�=p

(
λ

(j)
j − ai

)
− λ

(j)
j Pj−1

(
λ

(j)
j

) j−1∏
i=1
i�=p

(
λ

(j)
1 − ai

)

hj

and

b2
j−1 =

(
λ

(j)
j − λ

(j)
1

)
Pj−1

(
λ

(j)
1

)
Pj−1

(
λ

(j)
j

)
hj

> 0.

Hence bj−1 is a real number which can be chosen positive. Therefore, there exists a
unique symmetric doubly arrow matrix A of the form (1.1) with the required spectral
properties.

Now we discuss Problem 1 for a matrix A = Ã + aI, a ∈ R, where Ã is of the
form

(2.16) Ã =




0 b
. . .

...
0 b

b · · · b 0 bp · · · bn−1

bp 0
...

. . .
bn−1 0




,
b, bi �= 0,

i = p, . . . , n − 1.
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Lemma 2.4. Let Ã be an n × n matrix of the form (2.16). Let P̃j (λ) be the
characteristic polynomial of the leading principal submatrix Ãj of Ã, j = 1, . . . , n.
Then if j is even, P̃j (λ) is an even polynomial, and if j is odd, P̃j (λ) is an odd
polynomial.

Proof. If aj = 0, j = 1, 2, . . . , n, then the recurrence relations (2.8)-(2.10) become

P̃j (λ) =
j∏

i=1

λ; j = 1, . . . , p − 1.

P̃j (λ) = λP̃j−1 (λ)− b2

j−1∑
k=1

j−1∏
i=1
i�=k

λ; j = p.(2.17)

P̃j (λ) = λP̃j−1 (λ)− b2
j−1

j−1∏
i=1
i�=p

λ; j = p + 1, ..., n.

Clearly, P̃j (λ), j = 1, . . . , p− 1, is an even or odd polynomial if j is even or odd,
respectively. Now, suppose j = p is odd. Then P̃p−1 (λ) is an even polynomial. Thus,
from (2.17)

P̃p (−λ) = −λP̃p−1 (−λ)− b2

p−1∑
k=1

p−1∏
i=1
i�=k

(−λ)

= −λP̃p−1 (λ)− b2 (−1)p−2
p−1∑
k=1

p−1∏
i=1
i�=k

λ

= −P̃p−1 (λ) ,

and P̃p (λ) is an odd polynomial. Similarly, if j = p is even, then P̃p (−λ) = P̃p−1 (λ).

Let j = p + 1, . . . , n − 1. By using induction, assume that P̃j (λ) is odd for odd
j. We shall prove that P̃j+1 (λ) is even for even j + 1. In fact, suppose j + 1 is even.
Then j is odd with P̃j (λ) odd and j − 1 is even. From (2.17), we have

P̃j+1 (−λ) = −λP̃j (−λ)− b2
j

j∏
i=1
i�=p

(−λ)

= λP̃j (λ)− b2
j (−λ)j−1

= P̃j+1 (λ) .
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Therefore, P̃j+1 (λ) is an even polynomial. In the same way we may show that
P̃j (λ) is odd when j is odd. It is enough to observe that P̃j+1 (−λ) = −P̃j+1 (λ)
when j + 1 is odd.

Definition 2.5. A vector v = (λ1, λ2, . . . , λn) of real numbers is said to be
skew-symmetric if λi = −λn−i+1, with λn+1

2
= 0 if n is odd.

If λ
(1)
1 = 0 and λ

(j)
1 = −λ

(j)
j , j = 2, 3, ..., n, then the extremal eigenvalues

{λ(j)
1 , λ

(j)
j } of the j × j leading principal submatrices Ãj of the matrix Ã of the form

(2.16) form a skew-symmetric vector, where λ
(j)
1 = λ

(j)
j = 0 for j = 1, 2, . . . , p − 1.

Thus, we have the following result

Corollary 2.6. Let the real numbers λ
(j)
1 and λ

(j)
j , j = 1, 2, . . . , n, be given.

Then there exists a unique n× n matrix A = Ã+ aI, a ∈ R, of the form (2.16), such
that λ

(j)
1 and λ

(j)
j are the extremal eigenvalues of its j × j leading principal submatrix

Aj, j = 1, 2, . . . , n, if and only if

(2.18) λ
(n)
1 < · · · < λ

(p−1)
1 = · · · = λ

(1)
1 = · · · = λ

(p−1)
p−1 < · · · < λ(n)

n

and

(2.19) λ
(j)
1 + λ

(j)
j = 2λ(1)

1 , j = 1, 2, . . . , n.

Proof. Let λ
(j)
1 and λ

(j)
j , j = 1, 2, ..., n, satisfying (2.18) and (2.19). It is enough

to prove the result for a skew-symmetric vector (λ(n)
1 , λ

(n−1)
1 , . . . , λ

(n−1)
n−1 , λ

(n)
n ), with

λ
(1)
1 = 0. Otherwise, if λ

(1)
1 �= 0, then we define µ

(j)
i = λ

(j)
i − λ

(1)
1 , j = 1, 2, . . . , n,

i = 1, j to obtain µ
(1)
1 = 0, µ

(j)
1 = −µ

(j)
j , j = 2, . . . , n. Then, if there exists Ã with

µ
(j)
1 and µ

(j)
j being the extremal eigenvalues of Ãj , j = 1, 2, . . . , n, then A = Ã+λ

(1)
1 I

is the matrix with the required spectral properties.

Let λ
(1)
1 = 0 and λ

(j)
1 = −λ

(j)
j , j = 2, ..., n. From (2.18) it is clear that aj = λ

(1)
1 =

0, j = 1, 2, . . . , p − 1. Now, from the proof of Corollary 2.3 and (2.18) the matrices
Aj , j = p, p + 1, . . . , n exist, are unique and satisfy the required spectral properties.

It only remain to show that aj = 0, j = p, ..., n. Let j = p be even. Then from

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 700-718, November 2009



ELA

Two Inverse Eigenproblems for Symmetric Doubly Arrow Matrices 711

Lemma 2.4, Pp−1 (λ) is odd and the numerator in (2.14) is given by

λ
(p)
1 Pp−1

(
λ

(p)
1

)
(p − 1)

(
λ(p)

p

)p−2

− λ(p)
p Pp−1

(
λ(p)

p

)
(p − 1)

(
λ

(p)
1

)p−2

= −λ(p)
p Pp−1

(
−λ(p)

p

)
(p − 1)

(
λ(p)

p

)p−2

− λ(p)
p Pp−1

(
λ(p)

p

)
(p − 1)

(
−λ(p)

p

)p−2

= λ(p)
p Pp−1

(
λ(p)

p

)
(p − 1)

(
λ(p)

p

)p−2

− λ(p)
p Pp−1

(
λ(p)

p

)
(p − 1)

(
λ(p)

p

)p−2

= 0,

which implies ap = 0. Now, suppose aj = 0, j = 1, 2, . . . , k; p ≤ k < n. Let k + 1
even. Then, from Lemma 2.4, Pk (λ) is odd and the numerator in (2.15) is given by

λ
(k+1)
1 Pk

(
λ

(k+1)
1

)(
λ

(k+1)
k+1

)k−1

− λ
(k+1)
k+1 Pk

(
λ

(k+1)
k+1

)(
λ

(k+1)
1

)k−1

= −λ
(k+1)
k+1 Pk

(
−λ

(k+1)
k+1

)(
λ

(k+1)
k+1

)k−1

− λ
(k+1)
k+1 Pk

(
λ

(k+1)
k+1

)(
−λ

(k+1)
k+1

)k−1

= λ
(k+1)
k+1 Pk

(
λ

(k+1)
k+1

)(
λ

(k+1)
k+1

)k−1

− λ
(k+1)
k+1 Pk

(
λ

(k+1)
k+1

)(
λ

(k+1)
k+1

)k−1

= 0,

which implies that ak+1 = 0. Similarly it can be proved that ak+1 = 0 when k + 1 is
odd.

For the necessity, assume that A = Ã+aI, a ∈ R is the unique n×n matrix such
that λ

(j)
1 and λ

(j)
j are the extremal eigenvalues of the leading principal submatrix Aj ,

j = 1, 2, . . . , n, of A. Either P̃j (λ) is even or P̃j (λ) is odd, we have that P̃j (λ) = 0
implies P̃j (−λ) = 0. Then the eigenvalues λ̃

(j)
1 , λ̃

(j)
2 , ..., λ

(j)
j of Ãj satisfy λ̃

(j)
i +

λ̃
(j)
j−i+1 = 0 and λ̃

(j)
i = λ̃

(j)
j−i+1 = 0, j = 1, . . . , p − 1. It is clear that the extremal

eigenvalues of Ãj are λ
(j)
1 − λ

(1)
1 and λ

(j)
j − λ

(1)
1 , j = 1, 2, . . . , n, and satisfy (2.18).

Moreover,
(
λ

(j)
1 − λ

(1)
1

)
+

(
λ

(j)
j − λ

(1)
1

)
= 0, and consequently λ

(j)
1 + λ

(j)
j = 2λ(1)

1 ,
j = 1, 2, . . . , n. This completes the proof.

2.1. Nonnegative realization.

Corollary 2.7. Let the real numbers λ
(j)
1 and λ

(j)
j , j = 1, 2, . . . , n, be given.

Let

(2.20) λ
(n)
1 < · · · < λ

(p−1)
1 = · · · = λ

(1)
1 < λ

(2)
2 < · · · < λ(n)

n .
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If there exist nonnegative solutions ap, b1, b2, . . . , bp−1 of the system of equations

(2.21) Pp

(
λ

(p)
j

)
=

(
λ

(p)
j − ap

)
Pp−1

(
λ

(p)
j

)
−

p−1∑
k=1

b2
k

p−1∏
i=1
i�=k

(
λ

(p)
j − ai

)
= 0, j = 1, p,

(2.22) λ
(1)
1 ≥ 0,

and

(2.23)
λ

(j)
1

λ
(j)
j

≥

Pj−1

(
λ

(j)
j

) j−1∏
i=1
i�=p

(
λ

(j)
1 − ai

)

Pj−1

(
λ

(j)
1

) j−1∏
i=1
i�=p

(
λ

(j)
j − ai

) , j = p + 1, . . . , n,

then there exists an n× n nonnegative matrix A of the form (1.1), such that λ
(j)
1 and

λ
(j)
j are the extremal eigenvalues of its leading principal submatrix Aj, j = 1, 2, . . . , n.

Proof. If conditions (2.20) and (2.21) hold, then Theorem 2.2 guarantees the
existence of a matrix A of the form (1.1) with bi ≥ 0, i = 1, . . . , n − 1. Moreover,
from condition (2.21) it follows that ap ≥ 0. Only remain to show that the remaining
diagonal elements ai are nonnegative. From (2.20) and (2.22), we have aj = λ

(j)
j ≥ 0,

j = 1, . . . , p − 1. Finally, for j = p + 1, . . . , n, from (2.23) we have

λ
(j)
1

λ
(j)
j

≥

(−1)j−1 Pj−1

(
λ

(j)
j

) j−1∏
i=1
i�=p

(
λ

(j)
1 − ai

)

(−1)j−1 Pj−1

(
λ

(j)
1

) j−1∏
i=1
i�=p

(
λ

(j)
j − ai

) .

Now, from (2.2) and (2.20), λ
(j)
1 < λ

(j−1)
1 ≤ ai ≤ λ

(j−1)
j−1 < λ

(j)
j , i = 1, . . . , j − 1.

Besides, from Lemma 1.2, (−1)j−1
Pj−1

(
λ

(j)
1

)
> 0. Then

(−1)j−1
Pj−1

(
λ

(j)
1

) j−1∏
i=1
i�=p

(
λ

(j)
j − ai

)
> 0,

Since 0 ≤ λ
(1)
1 < λ

(j)
j , it follows that

λ
(j)
1 (−1)j−1

Pj−1

(
λ

(j)
1

) j−1∏
i=1
i�=p

(
λ

(j)
j − ai

)
≥ λ

(j)
j (−1)j−1

Pj−1

(
λ

(j)
j

) j−1∏
i=1
i�=p

(
λ

(j)
1 − ai

)
,
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or

(−1)j−1


λ

(j)
1 Pj−1

(
λ

(j)
1

) j−1∏
i=1
i�=p

(
λ

(j)
j − ai

)
− λ

(j)
j Pj−1

(
λ

(j)
j

) j−1∏
i=1
i�=p

(
λ

(j)
1 − ai

)



= g̃j ≥ 0.

Therefore, from (2.20) and the proof of Corollary 2.3, we obtain

aj =
g̃j

h̃j

≥ 0.

The proof is complete.

3. Solution to Problem 2. In this section, we discuss a solution to Problem
2 and construct an n × n symmetric doubly arrow matrix A, of the form (1.1), from
a list {λ(j)}n

j=1, and a vector x, where λ(j) is an eigenvalue of the leading principal
submatrix Aj of A and (λ(n),x) is an eigenpair of An = A.

Theorem 3.1. Let the real numbers λ(j), j = 1, 2, . . . , n and a real vector x =
(x1, . . . , xn)

T
, be given. Let

(3.1) xi �= 0, i = 1, . . . , n,

and

(3.2) Pp−1

(
λ(p)

)
�= 0.

If there exists a real solution bj−1 of the equation

(3.3) b2
j−1

j−1∏
i=1
i�=p

(
λ(j) − ai

)
− bj−1

xp

xj
Pj−1

(
λ(j)

)
+

(
λ(n) − λ(j)

)
Pj−1

(
λ(j)

)
= 0,

j = p+ 1, . . . , n− 1, then there exists an n× n matrix A of the form (1.1), such that
λ(j) is an eigenvalue of its leading principal submatrix Aj, j = 1, . . . , n and (λ(n),x)
is an eigenpair of A.

Proof. To show the existence of the required matrix A is equivalent to show that
the system of equations

(3.4) Pj

(
λ(j)

)
= 0, j = 1, 2, . . . , n

(3.5) Ax = λ(n)x
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has real solutions aj and bj−1. Next we rewrite (3.5) as

(3.6)

ajxj + bjxp = λ(n)xj , j = 1, . . . , p − 1,

p−1∑
k=1

bkxk + apxp +
n−1∑
k=p

bkxk+1 = λ(n)xp

bj−1xp + ajxj = λ(n)xj , j = p + 1, . . . , n.




From relation (1.3) of Lemma 1.1 we have that

(3.7) aj = λ(j), j = 1, . . . , p − 1

is a solution of (3.4). Then, from (3.1) and (3.6),

(3.8) bj =
(
λ(n) − aj

) xj

xp
j = 1, . . . , p − 1.

From relation (1.4) of Lemma 1.1 and (3.4), we obtain

Pp

(
λ(p)

)
=

(
λ(p) − ap

)
Pp−1

(
λ(p)

)
−

p−1∑
k=1

b2
k

p−1∏
i=1
i�=k

(
λ(p) − ai

)
= 0.

Thus, by assuming that condition (3.2) holds, we have

(3.9) ap =

λ(p)Pp−1

(
λ(p)

) − p−1∑
k=1

b2
k

p−1∏
i=1
i�=k

(
λ(p) − ai

)

Pp−1

(
λ(p)

) .

From (3.6)

(3.10) aj = λ(n) − bj−1
xp

xj
j = p + 1, . . . , n.

Besides, from (1.5) of Lemma 1.1 and (3.4), we obtain for j = p + 1, ..., n,

(3.11) Pj

(
λ(j)

)
=

(
λ(j) − aj

)
Pj−1

(
λ(j)

)
− b2

j−1

j−1∏
i=1
i�=p

(
λ(j) − ai

)
= 0.

By substituting aj in (3.10) into (3.11) for j = p+1, . . . , n−1, we obtain the quadratic
equation

b2
j−1

j−1∏
i=1
i�=p

(
λ(j) − ai

)
− bj−1

xp

xj
Pj−1

(
λ(j)

)
+

(
λ(n) − λ(j)

)
Pj−1

(
λ(j)

)
= 0,
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which, because of condition (3.3) has real solutions bj−1.

Finally, from (3.6), it follows that

(3.12) bn−1 =
1
xn




(
λ(n) − ap

)
xp −

p−1∑
k=1

bkxk −
n−2∑
k=p

bkxk+1


 .

3.1. Nonnegative realization.

Corollary 3.2. Let the real numbers λ(j), j = 1, 2, . . . , n, and the real vector
x = (x1, . . . , xn)

T be given. Let

(3.13) xi > 0, i = 1, . . . , n,

and

(3.14) Pp−1

(
λ(p)

)
�= 0.

If there exists a nonnegative solution bj−1 of the equation

(3.15) b2
j−1

j−1∏
i=1
i�=p

(
λ(j) − ai

)
− bj−1

xp

xj
Pj−1

(
λ(j)

)
+

(
λ(n) − λ(j)

)
Pj−1

(
λ(j)

)
= 0,

j = p + 1, . . . , n − 1, with

(3.16) λ(n) ≥ λ(j) ≥ 0, j = 1, 2, . . . , p − 1,

λ(n) ≥ ap +
1
xp




p−1∑
k=1

bkxk +
n−2∑
k=p

bkxk+1


 ,(3.17)

λ(p) ≥

p−1∑
k=1

b2
k

p−1∏
i=1
i�=k

(
λ(p) − ai

)

Pp−1

(
λ(p)

) ,(3.18)

and

(3.19) λ(n) ≥ bj−1
xp

xj
, j = p + 1, . . . , n,

then there exists an n × n nonnegative matrix A of the form (1.1), such that λ(j) is
an eigenvalue of its leading principal submatrix Aj, j = 1, 2, ..., n, and (λ(n),x) is an
eigenpair of A = An.
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Proof. From Theorem 3.1, conditions (3.13), (3.14) and (3.15) guarantee the
existence of an n × n matrix A of the form (1.1) such that λ(j) is an eigenvalue of
its leading principal submatrix Aj , j = 1, 2, ..., n, and (λ(n),x) is an eigenpair of A.
From (3.7) and (3.16), for j = 1, 2, . . . , p − 1, it follows that

aj = λ(j) ≥ 0.

From (3.8) and conditions (3.13) and (3.16), it follows that

bj =
(
λ(n) − aj

) xj

xp
≥ 0 j = 1, . . . , p − 1.

From condition (3.15), we see that bj−1 ≥ 0, j = p + 1, p + 2, . . . , n − 1. From (3.12)
and conditions (3.13) and (3.17) we obtain

(
λ(n) − ap

)
xp ≥ xn

xn




p−1∑
k=1

bkxk +
n−1∑
k=p

bkxk+1


 .

Hence,

(
λ(n) − ap

) xp

xn
− 1

xn




p−1∑
k=1

bkxk +
n−1∑
k=p

bkxk+1


 ≥ 0,

which implies bn−1 ≥ 0.

It only remains to show the nonnegativity of the diagonal entries aj , j = p,

p + 1, . . . , n.From (3.9) and condition (3.18), we obtain

ap =

λ(p)Pp−1

(
λ(p)

) − p−1∑
k=1

b2
k

p−1∏
i=1
i�=k

(
λ(p) − ai

)

Pp−1

(
λ(p)

) ≥ 0.

Finally, from (3.10) and (3.19), for j = p + 1, . . . , n, we have

aj = λ(n) − bj−1
xp

xj
≥ 0.

4. Examples.

Example 4.1. The given numbers

λ
(6)
1 λ

(5)
1 λ

(4)
1 λ

(3)
1 λ

(2)
1 λ

(1)
1

−11.8001 −11.7127 −11.3826 −9.2151 −5.8980 −4.5178

λ
(2)
2 λ

(3)
3 λ

(4)
4 λ

(5)
5 λ

(6)
6

−3.1377 0.1794 2.3469 2.6770 2.7644
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satisfy conditions (2.18) and (2.19) of Corollary 2.6, with p = 2. The resultant matrix,
with constant diagonal entries, is

A =




−4.5178 1.3802
1.3802 −4.5178 4.4899 5.0061 2.1542 1.1250

4.4899 −4.5178
5.0061 −4.5178
2.1542 −4.5178
1.1250 −4.5178




.

Example 4.2. The given numbers

λ
(6)
1 λ

(5)
1 λ

(4)
1 λ

(3)
1 λ

(2)
1 λ

(1)
1

−5.2702 −5.0130 −2.7101 0.8992 0.8992 0.8992

λ
(2)
2 λ

(3)
3 λ

(4)
4 λ

(5)
5 λ

(6)
6

1.1538 1.3960 4.1261 6.8664 8.1710
,

satisfy conditions (2.20)-(2.23) of Corollary 2.7. Then we may construct the symmet-
ric nonnegative doubly arrow matrix A, with p = 4,

A =




0.8992 0.8546
1.1538 0.8909

1.3960 3.1197
0.8546 0.8909 3.1197 0.0679 4.8156 2.2621

4.8156 1.9926
2.2621 6.2755




Example 4.3. Let the numbers

λ(1) λ(2) λ(3) λ(4) λ(5)

2.2630 2.2291 6.4834 5.6679 7.3089

and the vector

x =
[
0.2071 0.6072 0.6299 0.3705 0.5751

]T
,

be given and satisfying Corollary 3.2, for p = 3. Then we compute the nonnegative
matrix

A =




2.2630 1.6593
2.2291 4.8968

1.6593 4.8968 0.1946 0.8015 1.5079
0.8015 5.9462
1.5079 05.6575




with the required spectral properties.
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