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SPECTRALLY ARBITRARY COMPLEX SIGN PATTERN
MATRICES∗
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Abstract. An n × n complex sign pattern matrix S is said to be spectrally arbitrary if for

every monic nth degree polynomial f(λ) with coefficients from C, there is a complex matrix in the

complex sign pattern class of S such that its characteristic polynomial is f(λ). If S is a spectrally

arbitrary complex sign pattern matrix, and no proper subpattern of S is spectrally arbitrary, then

S is a minimal spectrally arbitrary complex sign pattern matrix. This paper extends the Nilpotent-

Jacobian method for sign pattern matrices to complex sign pattern matrices, establishing a means

to show that an irreducible complex sign pattern matrix and all its superpatterns are spectrally

arbitrary. This method is then applied to prove that for every n ≥ 2 there exists an n×n irreducible,

spectrally arbitrary complex sign pattern with exactly 3n nonzero entries. In addition, it is shown

that every n × n irreducible, spectrally arbitrary complex sign pattern matrix has at least 3n − 1

nonzero entries.
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1. Introduction. The sign of a real number a, denoted by sgn(a), is defined to
be 1,−1 or 0, according to a > 0, a < 0 or a = 0. A sign pattern matrix A is a matrix
whose entries are in the set {1,−1, 0}. The sign pattern of a real matrix B, denoted
by sgn(B), is the matrix obtained from B by replacing each entry by its sign.

Associated with each n×n sign pattern matrix A is a class of real matrices, called
the sign pattern class of A, defined by

Q(A) = {A | A is an n× n real matrix, and sgn(A) = A}.

For two n×n sign pattern matrices A = (akl) and B = (bkl), if akl = bkl whenever
bkl �= 0, then A is a superpattern of B, and B is a subpattern of A. Note that each
sign pattern matrix is a superpattern and a subpattern of itself. For a subpattern B
of A, if B �= A, then B is a proper subpattern of A.
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Let A be a sign pattern matrix of order n ≥ 2. If for any given real monic
polynomial f(λ) of degree n, there is a real matrix A ∈ Q(A) having characteristic
polynomial f(λ), then A is a spectrally arbitrary sign pattern matrix.

The problem of classifying the spectrally arbitrary sign pattern matrices was in-
troduced in [1] by Drew et al. In their article, they developed the Nilpotent-Jacobian
method for showing that a sign pattern matrix and all its superpatterns are spec-
trally arbitrary. Work on spectrally arbitrary sign pattern matrices has continued
in several articles including [1–9], where families of spectrally arbitrary sign pattern
matrices have been presented. In particular, in [3], Britz et al. showed that every
n× n irreducible, spectrally arbitrary sign pattern matrix must have at least 2n− 1
nonzero entries and they provided families of sign pattern matrices that have exactly
2n nonzero entries. Recently this work has extended to zero-nonzero patterns and
ray patterns, respectively ([10, 11]).

Now we introduce some concepts on complex sign pattern matrices.

For n× n sign pattern matrices A = (akl) and B = (bkl), the matrix S = A+ iB
is called a complex sign pattern matrix of order n, where i2 = −1 ([12]). Clearly, the
(k, l)-entry of S is akl + ibkl for k, l = 1, 2, . . . , n. Associated with an n× n complex
sign pattern matrix S = A + iB is a class of complex matrices, called the complex
sign pattern class of S, defined by

Qc(S) = {C = A+ iB | A and B are n× n real matrices, sgn(A) = A, sgn(B) = B}.

For two n× n complex sign pattern matrices S1 = A1 + iB1 and S2 = A2 + iB2,
if A1 is a subpattern of A2, and B1 is a subpattern of B2, then S1 is a subpattern of
S2, and S2 is a superpattern of S1. If S1 is a subpattern of S2 and S1 �= S2, then S1

is a proper subpattern of S2.

For a complex sign pattern matrix S = A+iB of order n, the sign pattern matrices
A and B are the real part and complex part of S, respectively, and the number of
nonzero entries of both A and B is the number of nonzero entries of S.

It is clear that complex sign pattern matrix and ray pattern are different gener-
alization of sign pattern matrix. For a complex sign pattern matrix S = A + iB, if
B = 0, then S = A is a sign pattern matrix.

Let S = A + iB be a complex sign pattern matrix of order n ≥ 2. If there
is a complex matrix C ∈ Qc(S) having characteristic polynomial f(λ) = λn, then
S is potentially nilpotent, and C is a nilpotent complex matrix. If for every monic
nth degree polynomial f(λ) with coefficients from C, there is a complex matrix in
Qc(S) such that its characteristic polynomial is f(λ), then S is said to be a spectrally
arbitrary complex sign pattern matrix. If S is a spectrally arbitrary complex sign
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pattern matrix, and no proper subpattern of S is spectrally arbitrary, then S is a
minimal spectrally arbitrary complex sign pattern matrix.

Let SAn represent the set of all n× n spectrally arbitrary complex sign pattern
matrices. Then the following result holds.

Lemma 1.1. The set SAn is closed under the following operations:

(i) Negation,

(ii) Transposition,

(iii) Permutational similarity,

(iv) Signature similarity, and

(v) Conjugation.

Proof. The results are clear for cases (i)–(iv). We only prove the case (v). Note
that for any n× n complex matrix C and its conjugate complex matrix C, the corre-
sponding coefficients of the characteristic polynomials of C and C are conjugate, that
is, if the characteristic polynomial of C is

|λI − C| = λn + (f1 + ig1)λn−1 + · · ·+ (fn−1 + ign−1)λ+ (fn + ign),

where fi, gi, i = 1, 2, . . . , n, are real, then the characteristic polynomial of C is

|λI − C| = λn + (f1 − ig1)λn−1 + · · ·+ (fn−1 − ign−1)λ+ (fn − ign).

By the definition of spectrally arbitrary complex sign pattern matrix, the result holds
for the case (v).

We note that, if a complex sign pattern matrix S = A+ iB is spectrally arbitrary,
then sign pattern matrices A and B are not necessarily spectrally arbitrary. For
example,

S3 =


 1− i 1 0
1 + i 0 −1
1 0 −1 + i




is a spectrally arbitrary complex sign pattern matrix (This fact will be proved in
Section 3), but both sign pattern matrices

A =


 1 1 0
1 0 −1
1 0 −1


 and B =


 −1 0 0

1 0 0
0 0 1




are not spectrally arbitrary. On the other hand, if both A and B are spectrally arbi-
trary, then the complex sign pattern matrix S = A+ iB is not necessarily spectrally

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 674-692, November 2009



ELA

Spectrally Arbitrary Complex Sign Pattern Matrices 677

arbitrary. For example, let

A =
[

−1 1
−1 1

]
, B =

[
−1 −1
1 1

]
.

From [1], both A and B are spectrally arbitrary sign pattern matrices. Consider the
complex sign pattern matrix

S = A+ iB =
[

−1− i 1− i

−1 + i 1 + i

]
.

Note that for any

C =
[

−a1 − ib1 a2 − ib2
−a3 + ib3 a4 + ib4

]
∈ Qc(S),

where aj > 0 and bj > 0 for j = 1, 2, 3, 4, the characteristic polynomial of C is

|λI − C| = λ2 + ((a1 − a4) + i(b1 − b4))λ+ (a2a3 − a1a4 − b2b3 + b1b4)

−i(a4b1 + a3b2 + a2b3 + a1b4).

Since −(a4b1 + a3b2 + a2b3 + a1b4) < 0, S is not spectrally arbitrary.

In Section 2 we extend the Nilpotent-Jacobian method for sign pattern matrices
to complex sign pattern matrices, establishing a means to show that an irreducible
complex sign pattern matrix and all its superpatterns are spectrally arbitrary. In
Section 3 we give an n × n (n ≥ 2) irreducible spectrally arbitrary complex sign
pattern matrix Sn with exactly 3n nonzero entries. In Section 4 we prove that every
n×n (n ≥ 2) irreducible spectrally arbitrary complex sign pattern matrix has at least
3n− 1 nonzero entries, and conjecture that for n ≥ 2, an n× n irreducible spectrally
arbitrary complex sign pattern matrix has at least 3n nonzero entries.

2. The Nilpotent-Jacobian method. In this section, we extend the Nilpotent
-Jacobian method on sign pattern matrices in [1] to the case of complex sign pattern
matrices.

Let S = A+ iB be a complex sign pattern matrix of order n ≥ 2 with at least 2n
nonzero entries.

• Find a nilpotent complex matrix C = A+iB in the complex sign pattern class
Qc(S), where both A and B are real matrices, and A ∈ Q(A) and B ∈ Q(B).

• Change the 2n nonzero entries (denoted r1, r2, . . . , r2n) in A and B to vari-
ables x1, x2, . . . , x2n. Denote the resulting matrix by X .
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• Express the characteristic polynomial of X as:

|λI −X | = λn + (f1(x1, x2, . . . , x2n) + ig1(x1, x2, . . . , x2n))λn−1 + · · ·

+(fn−1(x1, x2, . . . , x2n) + ign−1(x1, x2, . . . , x2n))λ

+(fn(x1, x2, . . . , x2n) + ign(x1, x2, . . . , x2n)).

• Find the Jacobian matrix

J =
∂(f1, . . . , fn, g1, . . . , gn)

∂(x1, x2, . . . , x2n)
.

• If the determinant of J , evaluated at (x1, x2, . . . , x2n) = (r1, r2, . . . , r2n)
is nonzero, then by continuity of the determinant in the entries of a ma-
trix, there is a neighborhood U of (r1, r2, . . . , r2n) such that all the vec-
tors in U are strictly positive and the determinant of J evaluated at any
of these vectors is nonzero. Moreover, by the Implicit Function Theorem,
there is a neighborhood V ⊆ U of (r1, r2, . . . , r2n) ⊆ R2n, a neighbor-
hood W of (0, 0, . . . , 0) ⊆ R2n, and a function (h1, . . . , h2n) from W into
V such that for any (y1, . . . , yn, z1, . . . , zn) ∈ W , there exists a strictly posi-
tive vector (s1, s2, . . . , s2n) = (h1, . . . , h2n)(y1, . . . , yn, z1, . . . , zn) ∈ V where
fk(s1, s2, . . . , s2n) = yk and gk(s1, s2, . . . , s2n) = zk for k = 1, 2, . . . , n. Tak-
ing positive scalar multiples of the corresponding matrices, we see that each
monic nth degree polynomial over C is the characteristic polynomial of some
matrix in the complex sign pattern class Qc(S). That is, S is a spectrally
arbitrary complex sign pattern matrix.
Next consider a superpattern of the complex sign pattern matrix S. Rep-

resent the new nonzero entries of A by p1, . . . , pm1 , and the new nonzero
entries of B by q1, . . . , qm2 , Let f̂k(x1, x2, . . . , x2n, p1, . . . , pm1 , q1, . . . , qm2)
and ĝk(x1, x2, . . . , x2n, p1, . . . , pm1 , q1, . . . , qm2) represent the new functions
in the characteristic polynomial, and Ĵ = ∂(f̂1,...,f̂n,ĝ1,...,ĝn)

∂(x1,x2,...,x2n) the new Jacobian
matrix. As above, let (y1, . . . , yn, z1, . . . , zn) ∈ W and (s1, s2, . . . , s2n) =
(h1, . . . , h2n) (y1, . . . , yn, z1, . . . , zn). Then yk = fk(s1, s2, . . . , s2n) = f̂k(s1,

s2, . . . , s2n, 0, . . . , 0), zk = gk(s1, s2, . . . , s2n) = ĝk(s1, s2, . . . , s2n, 0, . . . , 0),
and the determinant of Ĵ evaluated at (x1, . . . , x2n, p1, . . . , pm1 , q1, . . . , qm2) =
(s1, . . . , s2n, 0, 0, . . . , 0) is equal to the determinant of J evaluated at (x1, x2,
. . . , x2n) = (s1, s2, . . . , s2n) and hence is nonzero. By the Implicit Function
Theorem, there exists a neighborhood V̂ ⊆ V of (s1, s2, . . . , s2n), a neighbor-
hood T of (0, 0, . . . , 0) ∈ Rm1+m2 and a function (ĥ1, ĥ2, . . . , ĥ2n) from T into
V̂ such that for any vector (d1, . . . , dm1+m2) ∈ T there exists a strictly pos-
itive vector (e1, e2, . . . , e2n) = (ĥ1, ĥ2, . . . , ĥ2n)(d1, . . . , dm1+m2) ∈ V̂ where
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f̂k(e1, . . . , e2n, d1, . . . , dm1+m2) = yk and ĝk(e1, . . . , e2n, d1, . . . , dm1+m2) =
zk. Choosing (d1, . . . , dm1+m2) ∈ T strictly positive we see that there are
also matrices in the superpattern’s class with every characteristic polynomial
corresponding to a vector in W . Taking positive scalar multiples of the cor-
responding matrices, we see that each monic nth degree polynomial over C

is the characteristic polynomial of some matrix in this superpattern’s class.
Thus each superpattern of S is a spectrally arbitrary complex sign pattern
matrix.

Theorem 2.1. Let S = A + iB be a complex sign pattern matrix of order
n ≥ 2, and suppose that there exists some nilpotent complex matrix C = A + iB ∈
Qc(S), where A ∈ Q(A), B ∈ Q(B), and A and B have at least 2n nonzero entries,
say ai1j1 , . . . , ain1jn1

, bin1+1jn1+1 , . . . , bi2nj2n . Let X be the complex matrix obtained
by replacing these entries in C by variables x1, . . . , x2n, and let the characteristic
polynomial of X be

|λI −X | = λn + (f1(x1, x2, . . . , x2n) + ig1(x1, x2, . . . , x2n))λn−1 + · · ·

+(fn−1(x1, x2, . . . , x2n) + ign−1(x1, x2, . . . , x2n))λ

+(fn(x1, x2, . . . , x2n) + ign(x1, x2, . . . , x2n)).

If the Jacobian matrix J =
∂(f1, . . . , fn, g1, . . . , gn)

∂(x1, x2, . . . , x2n)
is nonsingular at (x1, . . . , x2n) =

(ai1j1 , . . . , ain1jn1
, bin1+1jn1+1 , . . . , bi2nj2n), then the complex sign pattern matrix S is

spectrally arbitrary, and every superpattern of S is a spectrally arbitrary complex sign
pattern matrix.

3. Minimal spectrally arbitrary complex sign pattern matrices. In this
section we first consider the following n× n (n ≥ 7) complex sign pattern matrix

Sn = An + iBn =




1 + i 1
1− i 0 −1
1 + i 0 1

1− i
. . . −1

...
. . . . . .

... 0
. . .

1+(−1)ni −i (−1)n
0 0 0 (−1)�n+1

2 � 0 · · · 0 −1




.(3.1)

We will prove that Sn is a minimal spectrally arbitrary complex sign pattern matrix,
and every superpattern of Sn is a spectrally arbitrary complex sign pattern matrix.
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Take an n× n complex matrix

C =




a1 + ib1 1
a2 − ib2 0 −1
a3 + ib3 0 1

a4 − ib4
. . . −1

...
. . . . . .

... 0
. . .

an−1+ (−1)nibn−1 −ibn (−1)n
0 0 0 (−1)�n+1

2 �an 0 · · · 0 −1




,(3.2)

where ak > 0 and bk > 0 for k = 1, 2, . . . , n. Then C ∈ Qc(Sn). Denote

|λI − C| = λn + α1λ
n−1 + α2λ

n−2 + · · ·+ αkλ
n−k + · · ·+ αn−1λ+ αn,

and αk = fk + igk, k = 1, 2, . . . , n.

Lemma 3.1. Let a0 = 1 and b0 = 0. Then

f1 = 1− a1,

fk = (−1)� 3k+3
2 �ak + (−1)� 3k

2 �ak−1 + (−1)� 5k+2
2 �bk−1bn + (−1)� 5k−3

2 �bk−2bn,

k = 2, 3, . . . , n− 4,
fn−3 = (−1)nan + (−1)� 3n−6

2 �an−3 + (−1)� 3n−9
2 �an−4 + (−1)� 5n−13

2 �bn−4bn

+(−1)� 5n−18
2 �bn−5bn,

fn−2 = (−1)n+1a1an + (−1)� 3n−3
2 �an−2 + (−1)� 3n−6

2 �an−3 + (−1)� 5n−8
2 �bn−3bn

+(−1)� 5n−13
2 �bn−4bn,

fn−1 = (−1)n+1a2an + (−1)� 3n
2 �an−1 + (−1)� 3n−3

2 �an−2 + (−1)� 5n−3
2 �bn−2bn

+(−1)� 5n−8
2 �bn−3bn,

fn = (−1)na3an + (−1)� 3n
2 �an−1 + (−1)� 5n−3

2 �bn−2bn,

and

g1 = −b1 + bn,

gk = (−1)�
5(k+1)

2 �bk + (−1)� 5k
2 �bk−1 + (−1)� 3k

2 �ak−1bn + (−1)�
3(k−1)

2 �ak−2bn,

k = 2, 3, . . . , n− 3,
gn−2 = (−1)n+1anb1 + (−1)� 5(n−1)

2 �bn−2 + (−1)� 5(n−2)
2 �bn−3 + (−1)� 3(n−2)

2 �an−3bn

+(−1)�
3(n−3)

2 �an−4bn,

gn−1 = (−1)n+2anb2 + (−1)� 5n
2 �bn−1 + (−1)� 5(n−1)

2 �bn−2 + (−1)� 3(n−1)
2 �an−2bn

+(−1)� 3(n−2)
2 �an−3bn,

gn = (−1)nanb3 + (−1)� 5n
2 �bn−1 + (−1)� 3n−3

2 �an−2bn.
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Proof. Denote c0 = 1, and ck = ak + (−1)k+1ibk for k = 1, 2, . . . , n− 1. Then

|λI − C| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− c1 −1
−c2 λ 1

−c3
. . . −1

−c4
. . . 1

...
. . . . . .

... λ
. . .

−cn−1 λ+ ibn (−1)n−1

0 0 0 (−1)�n+3
2 �an 0 · · · 0 λ+ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (λ+ 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− c1 −1
−c2 λ 1

−c3
. . . −1

−c4
. . . 1

...
. . . . . .

... λ (−1)n−2

−cn−1 λ+ ibn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n−1

+(−1)�n+3
2 �+n+4+�n−5

2 �an

∣∣∣∣∣∣
λ− c1 −1 0
−c2 λ 1
−c3 0 λ

∣∣∣∣∣∣
= (−1)nan(λ3 − c1λ

2 − c2λ+ c3) + (λ+ 1)(−1)�
3n
2 �cn−1 + (λ+ 1)(λ+ ibn)∆n−2,

where

∆n−2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− c1 −1
−c2 λ 1

−c3
. . . −1

−c4
. . . . . .

...
. . . (−1)n−3

−cn−2 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n−2

= (−1)� 3n−3
2 �cn−2 + λ∆n−3

= (−1)� 3n−3
2 �cn−2 + (−1)� 3n−6

2 �cn−3λ+ λ2∆n−4

= · · · · · ·

= (−1)� 3n−3
2 �cn−2 + (−1)� 3n−6

2 �cn−3λ+ (−1)� 3n−9
2 �cn−4λ

2 + · · ·
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+(−1)� 3(n−k−1)
2 �cn−k−2λ

k + · · · − c2λ
n−4 − c1λ

n−3 + λn−2

=
n−2∑
k=0

(−1)�
3(k+1)

2 �ckλ
n−k−2.

So

|λI − C| = (−1)nan(λ3 − c1λ
2 − c2λ+ c3) + (λ+ 1)(−1)� 3n

2 �cn−1

+(λ2 + (1 + ibn)λ+ ibn)
n−2∑
k=0

(−1)�
3(k+1)

2 �ckλ
n−k−2.

Thus

α1 = −c1 + (1 + ibn),

αk = (−1)� 3(k+1)
2 �ck + (−1)� 3k

2 �ck−1(1 + ibn) + (−1)� 3(k−1)
2 �ick−2bn,

k = 2, 3, . . . , n− 4,

αn−3 = (−1)nan+(−1)�
3n−6

2 �cn−3+(−1)�
3n−9

2 �cn−4(1+ibn)+(−1)�
3n−12

2 �icn−5bn,

αn−2 = (−1)n+1anc1 + (−1)� 3n−3
2 �cn−2 + (−1)� 3n−6

2 �cn−3(1 + ibn)

+(−1)� 3n−9
2 �icn−4bn,

αn−1 = (−1)n+1anc2 + (−1)� 3n
2 �cn−1 + (−1)� 3n−3

2 �cn−2(1 + ibn)

+(−1)� 3n−6
2 �icn−3bn,

αn = (−1)nanc3 + (−1)� 3n
2 �cn−1 + (−1)� 3n−3

2 �icn−2bn.
Noticing that ck = ak + (−1)k+1ibk for k = 1, 2, . . . , n− 1, the lemma holds.

Lemma 3.2. There are unique positive integers âk and b̂k, k = 1, 2, . . . , n, such
that when ak = âk and bk = b̂k for k = 1, 2, . . . , n, the complex matrix C having

the form (3.2) is nilpotent. Further, det(
∂(f1, . . . , fn, g1, . . . , gn)
∂(a1, . . . , an, b1, . . . , bn)

)|ak=âk,bk=b̂k,k=1,...,n

= (−1)�n+2
2 �6.

Proof. We prove the lemma according to the four cases n = 4m, n = 4m + 1,
n = 4m+ 2, and n = 4m+ 3.
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Let n = 4m. By Lemma 3.1, we have




f1 = 1− a1,

fk = (−1)� 3k+3
2 �ak + (−1)� 3k

2 �ak−1 + (−1)� 5k+2
2 �bk−1bn + (−1)� 5k−3

2 �bk−2bn,

k = 2, 3, . . . , n− 4,
fn−3 = an − an−3 + an−4 + bn−4bn − bn−5bn,

fn−2 = −a1an − an−2 − an−3 + bn−3bn + bn−4bn,

fn−1 = −a2an + an−1 − an−2 − bn−2bn + bn−3bn,

fn = a3an + an−1 − bn−2bn,

and




g1 = −b1 + bn,

gk = (−1)�
5(k+1)

2 �bk + (−1)� 5k
2 �bk−1 + (−1)� 3k

2 �ak−1bn + (−1)�
3(k−1)

2 �ak−2bn,

k = 2, 3, . . . , n− 3,
gn−2 = −anb1 + bn−2 − bn−3 − an−3bn + an−4bn,

gn−1 = anb2 + bn−1 + bn−2 − an−2bn − an−3bn,

gn = anb3 + bn−1 − an−2bn.

Let fk = 0 and gk = 0 for k = 1, 2, . . . , n. Then




a1 = 1,
a2k = a2k+1, k = 1, 2, . . . , n

2 − 3,
an−4 = an−3 − an,

an−2 = an−1 − 2anb
2
1 − a2an,

an−1 = bn−2bn − a3an,

a2k−1 + a2k = b2k
1 , k = 1, 2, . . . , n

2 − 2,
an−3 + an−2 = bn−2

1 − an,

and




b1 = b2 = bn,

b2k+1 = b2k+2, k = 1, 2, . . . , n
2 − 3,

bn−3 = bn−2 − 2anb1,

bn−1 = an−2bn − anb3,

b2k + b2k+1 = b2k+1
1 , k = 1, 2, . . . , n

2 − 2,
bn−2 + bn−1 = bn−1

1 − anb1 − anb2.
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We have that




a1 = 1,

a2k = a2k+1 =
k∑

j=0

(−1)k−jb2j
1 , k = 1, 2, . . . ,

n

2
− 3,

an−4 =

n
2 −2∑
j=0

(−1)n
2 −jb2j

1 ,

an−3 = an +

n
2 −2∑
j=0

(−1)n
2 −jb2j

1 ,

an−2 = −2an +

n
2 −1∑
j=0

(−1)n
2 −1−jb2j

1 ,

an−1 = 2anb
2
1 + a2an − 2an +

n
2 −1∑
j=0

(−1)n
2 −1−jb2j

1 ,

an−1 = 2anb
2
1 − a3an +

n
2 −1∑
j=1

(−1)n
2 −1−jb2j

1 ,

and




b1 = b2 = bn

b2k+1 = b2k+2 =
k∑

j=0

(−1)k−jb2j+1
1 , k = 1, 2, . . . ,

n

2
− 3,

bn−3 =

n
2 −2∑
j=0

(−1)n
2 −2−jb2j+1

1 ,

bk = b1ak−1, k = 3, 4, . . . , n− 3,

bn−2 = 2anb1 +

n
2 −2∑
j=0

(−1)n
2 −2−jb2j+1

1 ,

bn−1 = −anb3 − 2anb1 +

n
2 −1∑
j=0

(−1)n
2 −1−jb2j+1

1 ,

bn−1 = −4anb1 +

n
2 −1∑
j=0

(−1)n
2 −1−jb2j+1

1 .

From the second equation and last two equations in the second set of equations,
respectively, we have b3 = −b1 + b31, and anb3 + 2anb1 = 4anb1, so b1 =

√
3. From

the second equation and last two equations in the first set of equations, respectively,
we have a2 = −1 + b21, and 2a2an − 2an − 1 = 0, so an = 1

2b21−4
= 1

2 . Thus there is
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unique solution for fk = 0 and gk = 0, k = 1, 2, . . . , n, as follows.



â1 = 1, ân = 1
2 , b̂1 = b̂2 = b̂n =

√
3,

â2k = â2k+1 =
k∑

j=0

(−1)k−j b̂2j
1 , k = 1, 2, . . . ,

n

2
− 3,

ân−4 =

n
2 −2∑
j=0

(−1)n
2 −j b̂2j

1 ,

ân−3 = ân +

n
2 −2∑
j=0

(−1)n
2 −j b̂2j

1 ,

ân−2 = −2ân +

n
2 −1∑
j=0

(−1)n
2 −1−j b̂2j

1 ,

ân−1 = 2ânb̂
2
1 + â2ân − 2ân +

n
2 −1∑
j=0

(−1)n
2 −1−j b̂2j

1 ,

b̂k = b̂1âk−1, k = 3, 4, . . . , n− 3,

b̂n−2 = 2ânb̂1 +

n
2 −2∑
j=0

(−1)n
2 −2−j b̂2j+1

1 ,

b̂n−1 = −ânb̂3 − 2ânb̂1 +

n
2 −1∑
j=0

(−1)n
2 −1−j b̂2j+1

1 .

Since det(J) = det(
∂(f1, . . . , fn, g1, . . . , gn)
∂(a1, . . . , an, b1, . . . , bn)

) =

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

−1 0 0

−1 −1 bn b1
−1 1 bn −bn b1 − b2

1 1 −bn −bn −b2 − b3

1
. . .

. . .
. . .

...

. . . −1 1 −bn bn −bn−5 + bn−4

−an −1 −1 −a1 bn bn bn−4 + bn−3

−an −1 1 −a2 bn −bn bn−3 − bn−2

an 1 a3 −bn 0 −bn−2

0 −1 1

−bn −1 1 1− a1

−bn −bn 1 1 −a1 − a2

−bn bn 1 −1 −a2 + a3

. . .
. . .

. . .
. . .

...

bn bn −1 −1 an−5 + an−4

bn −bn −b1 −an −1 1 an−4 − an−3

−bn −bn b2 an 1 1 −an−3 − an−2

−bn 0 b3 an 1 −an−2

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

2n
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=

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

−1 0 0

−1 bn b1
1 −bn −b2

1 −bn −b3
. . .

. . .
...

−1 1 bn bn−4

−1 −a1 − 1 bn bn−3

0 −an 1 −a2 + a1 + 1 −bn −bn−2

0 an an a3+a2−a1−1 0 0

0 −1 1

0 1 −a1

0 −bn 1 −a2

bn −1 a3

. . .
. . .

...

bn −1 an−4

−bn −b1 −an 1 −an−3

−bn b2 + b1 an an 1 −an−2

0 b3 − b2 − b1 −an −an an 0

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
2n

= −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 0 0 bn 0 0 b1
0 1 0 0 −bn 0 −b2
an an a3 + a2 − a1 − 1 0 0 0 0
0 0 0 −1 0 0 1
0 0 0 0 1 0 −a1

−bn 0 0 0 0 1 −a2

0 0 b3 − b2 − b1 −an −an an 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

we have

det(J)|ak=âk,bk=b̂k,k=1,2,...,n = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 0 0
√
3 0 0

√
3

0 1 0 0 −
√
3 0 −

√
3

1
2

1
2 2 0 0 0 0

0 0 0 −1 0 0 1
0 0 0 0 1 0 −1

−
√
3 0 0 0 0 1 −2

0 0 0 − 1
2 − 1

2
1
2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −6.

As for cases n = 4m+ 1, n = 4m+2 and n = 4m+ 3, noting that if n = 4m+1,
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then


f1 = 1− a1,

fk = (−1)� 3k+3
2 �ak + (−1)� 3k

2 �ak−1 + (−1)� 5k+2
2 �bk−1bn + (−1)� 5k−3

2 �bk−2bn,

k = 2, 3, . . . , n− 4,
fn−3 = −an − an−3 − an−4 + bn−4bn + bn−5bn,

fn−2 = a1an + an−2 − an−3 − bn−3bn + bn−4bn,

fn−1 = a2an + an−1 + an−2 − bn−2bn − bn−3bn,

fn = −a3an + an−1 − bn−2bn,

and


g1 = −b1 + bn,

gk = (−1)� 5(k+1)
2 �bk + (−1)� 5k

2 �bk−1 + (−1)� 3k
2 �ak−1bn + (−1)� 3(k−1)

2 �ak−2bn,

k = 2, 3, . . . , n− 3,
gn−2 = anb1 + bn−2 + bn−3 − an−3bn − an−4bn,

gn−1 = −anb2 − bn−1 + bn−2 + an−2bn − an−3bn,

gn = −anb3 − bn−1 + an−2bn;

if n = 4m+ 2, then


f1 = 1− a1,

fk = (−1)� 3k+3
2 �ak + (−1)� 3k

2 �ak−1 + (−1)� 5k+2
2 �bk−1bn + (−1)� 5k−3

2 �bk−2bn,

k = 2, 3, . . . , n− 4,
fn−3 = an + an−3 − an−4 − bn−4bn + bn−5bn,

fn−2 = −a1an + an−2 + an−3 − bn−3bn − bn−4bn,

fn−1 = −a2an − an−1 + an−2 + bn−2bn − bn−3bn,

fn = a3an − an−1 + bn−2bn,

and


g1 = −b1 + bn,

gk = (−1)� 5(k+1)
2 �bk + (−1)� 5k

2 �bk−1 + (−1)� 3k
2 �ak−1bn + (−1)� 3(k−1)

2 �ak−2bn,

k = 2, 3, . . . , n− 3,
gn−2 = −anb1 − bn−2 + bn−3 + an−3bn − an−4bn,

gn−1 = anb2 − bn−1 − bn−2 + an−2bn + an−3bn,

gn = anb3 − bn−1 + an−2bn;

if n = 4m+ 3, then


f1 = 1− a1,

fk = (−1)� 3k+3
2 �ak + (−1)� 3k

2 �ak−1 + (−1)� 5k+2
2 �bk−1bn + (−1)� 5k−3

2 �bk−2bn,

k = 2, 3, . . . , n− 4,
fn−3 = −an + an−3 + an−4 − bn−4bn − bn−5bn,

fn−2 = a1an − an−2 + an−3 + bn−3bn − bn−4bn,

fn−1 = a2an − an−1 − an−2 + bn−2bn + bn−3bn,

fn = −a3an − an−1 + bn−2bn,
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and



g1 = −b1 + bn,

gk = (−1)�
5(k+1)

2 �bk + (−1)� 5k
2 �bk−1 + (−1)� 3k

2 �ak−1bn + (−1)�
3(k−1)

2 �ak−2bn,

k = 2, 3, . . . , n− 3,
gn−2 = anb1 − bn−2 − bn−3 + an−3bn + an−4bn,

gn−1 = −anb2 + bn−1 − bn−2 − an−2bn + an−3bn,

gn = −anb3 + bn−1 − an−2bn,

the proof methods are similar to the case n = 4m, and we omit them.

By Theorem 2.1 and Lemma 3.2, the following theorem is immediately.

Theorem 3.3. For n ≥ 7, the n× n complex sign pattern matrix Sn having the
form (3.1) is spectrally arbitrary, and every superpattern of Sn is a spectrally arbitrary
complex sign pattern matrix.

Theorem 3.4. For n ≥ 7, the n× n complex sign pattern matrix Sn having the
form (3.1) is a minimal spectrally arbitrary complex sign pattern matrix.

Proof. Let Sn = (skl), T = (tkl) be a subpattern of Sn and T be spectrally
arbitrary.

Firstly, it is easy to see that tkk = skk for k = 1, n− 1, n.

Secondly, note that if all matrices in Qc(T ) are singular, or all matrices in Qc(T )
are nonsingular, then T is not spectrally arbitrary. Thus tk,k+1 = sk,k+1 for k =
1, 2, . . . , n− 1.

Finally, since T is spectrally arbitrary, there is a complex matrix C ∈ Qc(T )
which is nilpotent. We may assume C has been scaled so that the (n, n) entry of C is
−1. We can also assume that the (k, k+1) entry of C is 1 or −1 for k = 1, 2, . . . , n−1
(otherwise they can be adjusted to be 1 or −1 by suitable similarities). Thus, without
loss of generality, suppose that C has the form (3.2). From fk = 0 and gk = 0 for
k = 1, 2, . . . , n, as in Lemma 3.1, we can conclude that ak �= 0 for k = 2, . . . , n, and
bk �= 0 for k = 2, . . . , n− 1.

Then T = Sn, and so Sn is a minimal spectrally arbitrary complex sign pattern
matrix.

Lemma 3.5. Let complex sign pattern matrices

S2 =
[
1− i 1
i −1 + i

]
,S3 =


 1− i 1 0
1 + i 0 −1
1 0 −1 + i


 ,S4 =



1 + i 1 0 0
1 + i 0 −1 0
−1 i −i 1
0 0 1 −1


 ,
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S5 =




1 + i 1 0 0 0
1− i 0 −1 0 0
1 + i 0 0 1 0
1− i 0 0 −i −1
0 0 0 −1 −1



, S6 =




1 + i 1 0 0 0 0
−1− i 0 −1 0 0 0
1 + i 0 0 1 0 0
−1 −i 0 0 −1 0
−1 i 0 0 −i 1
0 0 0 −1 0 −1



.

Then Sj, j = 2, 3, 4, 5, 6 are minimal spectrally arbitrary complex sign pattern matri-
ces.

Proof. First, we prove that each Sj is spectrally arbitrary. For S2, we are able to
obtain a nilpotent complex matrix

C2 =
[

a1 − ib1 1
ia2 −1 + ib2

]
∈ Qc(S2),

where a2 = 2, a1 = b1 = b2 = 1. Replacing the entries a1, b1, a2, b2 of C2 by variables
in using Theorem 2.1, it can be verified that S2 is spectrally arbitrary.

For S3, we are able to obtain a nilpotent complex matrix

C3 =


 a1 − ib1 1 0

a2 + ib2 0 −1
a3 0 −1 + ib3


 ∈ Qc(S3),

where a1 = 1, a2 = 2, a3 = 8, b1 = b3 =
√
3, b2 = 2

√
3. Replacing the entries

a1, b1, a2, b2, a3, b3 of C3 by variables in using Theorem 2.1, it can be verified that S3

is spectrally arbitrary.

For S4, we are able to obtain a nilpotent complex matrix

C4 =




a1 + ib1 1 0 0
a2 + ib2 0 −1 0
−a3 ib3 −ib4 1
0 0 a4 −1


 ∈ Qc(S4),

where a1 = 1, , a2 =
√
5, a3 = 2(7+4

√
5), a4 = 2+

√
5, b1 = b2 = b4 =

√
3 + 2

√
5, b3 =

2
√
3 + 2

√
5. Replacing the entries a1, b1, a2, b2, a3, b3, a4, b4 of C4 by variables in using

Theorem 2.1, it can be verified that S4 is spectrally arbitrary.

For S5, we are able to obtain a nilpotent complex matrix

C5 =




a1 + ib1 1 0 0 0
a2 − ib2 0 −1 0 0
a3 + ib3 0 0 1 0
a4 − ib4 0 0 −ib5 −1

0 0 0 −a5 −1



∈ Qc(S5),
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where a1 = 1, a2 = 1 +
√
2, a3 = 2, a4 = 6

√
2, a5 =

√
2 − 1, b1 = b2 = b5 =√

1 + 2
√
2, b3 = 2

√
1 + 2

√
2, b4 = 2(2

√
1 + 2

√
2 −

√
2(1 + 2

√
2)). Replacing the

entries a1, b1, a2, b2, a3, b3, a4, b4, a5, b5 of C5 by variables in using Theorem 2.1, it can
be verified that S5 is spectrally arbitrary.

For S6, we are able to obtain a nilpotent complex matrix

C6 =




a1 + ib1 1 0 0 0 0
−a2 − ib2 0 −1 0 0 0
a3 + ib3 0 0 1 0 0
−a4 −ib4 0 0 −1 0
−a5 ib5 0 0 −ib6 1
0 0 0 −a6 0 −1



∈ Qc(S6),

where a1 = 1, a2 = 4
3 −

√
37
6 , a3 = 1

6 (2
√
37 − 1), a4 = 2, a5 = 1

12 (4 + 19
√
37), a6 =

1
6 (7 +

√
37), b1 = b2 = b6 =

√√
37
6 − 1

3 , b3 = 2
√√

37
6 − 1

3 , b4 = 10
3

√√
37
6 − 1

3 −
1
6

√
37(

√
37
6 − 1

3 ), b5 =
13
3

√√
37
6 − 1

3+
1
3

√
37(

√
37
6 − 1

3 ). Replacing the entries a1, b1, a2,
b2, a3, b3, a4, b4, a5, b5, a6, b6 of C6 by variables in using Theorem 2.1, it can be verified
that S6 is spectrally arbitrary.

Next, by the same argument as in Theorem 3.4, we see that each Sj is minimal
spectrally arbitrary.

Theorem 3.4 and Lemma 3.5 immediately yield the following.

Theorem 3.6. For n ≥ 2, there exists an n× n minimal, irreducible, spectrally
arbitrary complex sign pattern matrix.

4. The minimum number of nonzero entries in a spectrally arbitrary
complex sign pattern matrix. Recall that the number of nonzero entries of a
complex sign pattern matrix S is the number of nonzero entries of both the real and
imaginary parts of S. In this section we will study the minimum number of nonzero
entries in a irreducible spectrally arbitrary complex sign pattern matrix.

Given a sign pattern A, let D(A) be its associated digraph. For any digraph D,
let G(D) denote the underlying multigraph of D, i.e., the graph obtained from D by
ignoring the direction of each arc.

Lemma 4.1. ([3]) Let A be an n × n sign pattern and let A ∈ Q(A). If T is
a subdigraph of D(A) such that G(T ) is a forest, then A has a realization that is
positive diagonally similar to A such that each entry corresponding to an arc of T has
magnitude 1. In particular, if A is irreducible, then G(D(A)) contains a spanning
tree, and A must therefore have a realization with at least n − 1 off-diagonal entries
in {−1, 1} that is positive diagonally similar to A.
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We easily extend Lemma 4.1 to complex sign pattern matrices.

Lemma 4.2. Let S = A+ iB be an n×n irreducible complex sign pattern matrix,
and let C = A + iB ∈ Qc(S). Then there is a complex matrix Ĉ = Â + iB̂ ∈ Qc(S)
(where Â and B̂ are real matrices, Â ∈ Q(A) and B̂ ∈ Q(B)) such that the following
two conditions hold.

(1) Ĉ has at least n − 1 off-diagonal entries in which either the real part or
complex part of each entry is in {−1, 1};

(2) Ĉ is positive diagonally similar to C.

Let Q[X ] be the set of polynomials with rational coefficients and finite degree. A
set H ⊆ R is algebraically independent if, for all h1, h2, . . . , hn ∈ H and each nonzero
polynomial p(x1, x2, . . . , xn) ∈ Q[X ], p(h1, h2, . . . , hn) �= 0 (see [13, p.316] for further
details). Let Q(H) denote the field of rational expressions

{p(h1, h2, . . . , hm)
q(t1, t2, . . . , tn)

| p(x1, x2, . . . , xm), q(x1, x2, . . . , xn) ∈ Q[X ],

h1, h2, . . . , hm, t1, t2, . . . , tn ∈ H},

and let the transcendental degree of H be

tr.d.H = sup{|T | | T ⊆ H, T is algebraically independent}.

In [3] it was shown that every n× n irreducible spectrally arbitrary sign pattern
matrix contains at least 2n− 1 nonzero entries. We adapt that proof to the complex
sign pattern matrix case to obtain:

Theorem 4.3. For n ≥ 2, an n× n irreducible spectrally arbitrary complex sign
pattern matrix must have at least 3n− 1 nonzero entries.

Proof. Let S = A+ iB be an n× n irreducible spectrally arbitrary complex sign
pattern matrix with m nonzero entries. Choose a set V = {f1, g1, · · · , fn, gn} ⊆ R

that tr.d.V = 2n. By Lemma 4.2, there is a complex matrix Ĉ = Â + iB̂ ∈ Qc(S)
(where Â and B̂ are real matrices, Â ∈ Q(A) and B̂ ∈ Q(B)) with characteristic
polynomial

λn + (f1 + ig1)λn−1 + · · ·+ (fn−1 + ign−1)λ+ (fn + ign)

such that Ĉ satisfies the two conditions in Lemma 4.2.

Denote Â = (âkl), B̂ = (b̂kl), and H = {âkl | 1 ≤ k, l ≤ n} ∪ {b̂kl | 1 ≤ k, l ≤ n}.
Since for each 1 ≤ k ≤ n, fk and gk are polynomials in the entries of H with rational
coefficients, it follows that Q(V ) ⊆ Q(H). Then

2n = tr.d.Q(V ) ≤ tr.d.Q(H) ≤ m− (n− 1).
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Thus m ≥ 3n− 1.

Note that the spectrally arbitrary complex sign pattern Sn (n ≥ 2) in Section
3 is irreducible, and has exactly 3n nonzero entries. Then for every n ≥ 2 there
exists an n×n irreducible, spectrally arbitrary complex sign pattern with exactly 3n
nonzero entries. By Theorem 4.3 the minimum number of nonzero entries in an n×n

irreducible, spectrally arbitrary complex sign pattern must be either 3n or 3n− 1.

A well known conjecture in [3] is that for n ≥ 2, an n× n irreducible spectrally
arbitrary sign pattern matrix has at least 2n nonzero entries. Here, we extend the
conjecture to complex sign pattern matrix case.

Corollary 4.4. For n ≥ 2, an n × n irreducible spectrally arbitrary complex
sign pattern matrix has at least 3n nonzero entries.
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