SPECTRALLY ARBITRARY COMPLEX SIGN PATTERN MATRICES*

YUBIN GAO^{\dagger}, YANLING SHAO^{\dagger}, AND YIZHENG FAN ${ }^{\ddagger}$

Abstract

An $n \times n$ complex sign pattern matrix \mathcal{S} is said to be spectrally arbitrary if for every monic nth degree polynomial $f(\lambda)$ with coefficients from \mathbb{C}, there is a complex matrix in the complex sign pattern class of \mathcal{S} such that its characteristic polynomial is $f(\lambda)$. If \mathcal{S} is a spectrally arbitrary complex sign pattern matrix, and no proper subpattern of \mathcal{S} is spectrally arbitrary, then \mathcal{S} is a minimal spectrally arbitrary complex sign pattern matrix. This paper extends the NilpotentJacobian method for sign pattern matrices to complex sign pattern matrices, establishing a means to show that an irreducible complex sign pattern matrix and all its superpatterns are spectrally arbitrary. This method is then applied to prove that for every $n \geq 2$ there exists an $n \times n$ irreducible, spectrally arbitrary complex sign pattern with exactly $3 n$ nonzero entries. In addition, it is shown that every $n \times n$ irreducible, spectrally arbitrary complex sign pattern matrix has at least $3 n-1$ nonzero entries.

Key words. Complex sign pattern, Spectrally arbitrary pattern, Nilpotent.

AMS subject classifications. 15A18, 05C15.

1. Introduction. The sign of a real number a, denoted by $\operatorname{sgn}(a)$, is defined to be $1,-1$ or 0 , according to $a>0, a<0$ or $a=0$. A sign pattern matrix \mathcal{A} is a matrix whose entries are in the set $\{1,-1,0\}$. The sign pattern of a real matrix B, denoted by $\operatorname{sgn}(B)$, is the matrix obtained from B by replacing each entry by its sign.

Associated with each $n \times n$ sign pattern matrix \mathcal{A} is a class of real matrices, called the sign pattern class of \mathcal{A}, defined by

$$
Q(\mathcal{A})=\{A \mid A \text { is an } n \times n \text { real matrix, and } \operatorname{sgn}(A)=\mathcal{A}\}
$$

For two $n \times n$ sign pattern matrices $\mathcal{A}=\left(a_{k l}\right)$ and $\mathcal{B}=\left(b_{k l}\right)$, if $a_{k l}=b_{k l}$ whenever $b_{k l} \neq 0$, then \mathcal{A} is a superpattern of \mathcal{B}, and \mathcal{B} is a subpattern of \mathcal{A}. Note that each sign pattern matrix is a superpattern and a subpattern of itself. For a subpattern \mathcal{B} of \mathcal{A}, if $\mathcal{B} \neq \mathcal{A}$, then \mathcal{B} is a proper subpattern of \mathcal{A}.

[^0]Let \mathcal{A} be a sign pattern matrix of order $n \geq 2$. If for any given real monic polynomial $f(\lambda)$ of degree n, there is a real matrix $A \in Q(\mathcal{A})$ having characteristic polynomial $f(\lambda)$, then \mathcal{A} is a spectrally arbitrary sign pattern matrix.

The problem of classifying the spectrally arbitrary sign pattern matrices was introduced in [1] by Drew et al. In their article, they developed the Nilpotent-Jacobian method for showing that a sign pattern matrix and all its superpatterns are spectrally arbitrary. Work on spectrally arbitrary sign pattern matrices has continued in several articles including [1-9], where families of spectrally arbitrary sign pattern matrices have been presented. In particular, in [3], Britz et al. showed that every $n \times n$ irreducible, spectrally arbitrary sign pattern matrix must have at least $2 n-1$ nonzero entries and they provided families of sign pattern matrices that have exactly $2 n$ nonzero entries. Recently this work has extended to zero-nonzero patterns and ray patterns, respectively $([10,11])$.

Now we introduce some concepts on complex sign pattern matrices.
For $n \times n$ sign pattern matrices $\mathcal{A}=\left(a_{k l}\right)$ and $\mathcal{B}=\left(b_{k l}\right)$, the matrix $\mathcal{S}=\mathcal{A}+i \mathcal{B}$ is called a complex sign pattern matrix of order n, where $i^{2}=-1$ ([12]). Clearly, the (k, l)-entry of \mathcal{S} is $a_{k l}+i b_{k l}$ for $k, l=1,2, \ldots, n$. Associated with an $n \times n$ complex sign pattern matrix $\mathcal{S}=\mathcal{A}+i \mathcal{B}$ is a class of complex matrices, called the complex sign pattern class of \mathcal{S}, defined by
$Q_{c}(\mathcal{S})=\{C=A+i B \mid A$ and B are $n \times n$ real matrices, $\operatorname{sgn}(A)=\mathcal{A}, \operatorname{sgn}(B)=\mathcal{B}\}$.

For two $n \times n$ complex sign pattern matrices $\mathcal{S}_{1}=\mathcal{A}_{1}+i \mathcal{B}_{1}$ and $\mathcal{S}_{2}=\mathcal{A}_{2}+i \mathcal{B}_{2}$, if \mathcal{A}_{1} is a subpattern of \mathcal{A}_{2}, and \mathcal{B}_{1} is a subpattern of \mathcal{B}_{2}, then \mathcal{S}_{1} is a subpattern of \mathcal{S}_{2}, and \mathcal{S}_{2} is a superpattern of \mathcal{S}_{1}. If \mathcal{S}_{1} is a subpattern of \mathcal{S}_{2} and $\mathcal{S}_{1} \neq \mathcal{S}_{2}$, then \mathcal{S}_{1} is a proper subpattern of \mathcal{S}_{2}.

For a complex sign pattern matrix $\mathcal{S}=\mathcal{A}+i \mathcal{B}$ of order n, the sign pattern matrices \mathcal{A} and \mathcal{B} are the real part and complex part of \mathcal{S}, respectively, and the number of nonzero entries of both \mathcal{A} and \mathcal{B} is the number of nonzero entries of \mathcal{S}.

It is clear that complex sign pattern matrix and ray pattern are different generalization of sign pattern matrix. For a complex sign pattern matrix $\mathcal{S}=\mathcal{A}+i \mathcal{B}$, if $\mathcal{B}=0$, then $\mathcal{S}=\mathcal{A}$ is a sign pattern matrix.

Let $\mathcal{S}=\mathcal{A}+i \mathcal{B}$ be a complex sign pattern matrix of order $n \geq 2$. If there is a complex matrix $C \in Q_{c}(\mathcal{S})$ having characteristic polynomial $f(\lambda)=\lambda^{n}$, then \mathcal{S} is potentially nilpotent, and C is a nilpotent complex matrix. If for every monic nth degree polynomial $f(\lambda)$ with coefficients from \mathbb{C}, there is a complex matrix in $Q_{c}(\mathcal{S})$ such that its characteristic polynomial is $f(\lambda)$, then \mathcal{S} is said to be a spectrally arbitrary complex sign pattern matrix. If \mathcal{S} is a spectrally arbitrary complex sign
pattern matrix, and no proper subpattern of \mathcal{S} is spectrally arbitrary, then \mathcal{S} is a minimal spectrally arbitrary complex sign pattern matrix.

Let $\mathcal{S} \mathcal{A}_{n}$ represent the set of all $n \times n$ spectrally arbitrary complex sign pattern matrices. Then the following result holds.

Lemma 1.1. The set $\mathcal{S} \mathcal{A}_{n}$ is closed under the following operations:
(i) Negation,
(ii) Transposition,
(iii) Permutational similarity,
(iv) Signature similarity, and
(v) Conjugation.

Proof. The results are clear for cases (i)-(iv). We only prove the case (v). Note that for any $n \times n$ complex matrix C and its conjugate complex matrix \bar{C}, the corresponding coefficients of the characteristic polynomials of C and \bar{C} are conjugate, that is, if the characteristic polynomial of C is

$$
|\lambda I-C|=\lambda^{n}+\left(f_{1}+i g_{1}\right) \lambda^{n-1}+\cdots+\left(f_{n-1}+i g_{n-1}\right) \lambda+\left(f_{n}+i g_{n}\right)
$$

where $f_{i}, g_{i}, i=1,2, \ldots, n$, are real, then the characteristic polynomial of \bar{C} is

$$
|\lambda I-\bar{C}|=\lambda^{n}+\left(f_{1}-i g_{1}\right) \lambda^{n-1}+\cdots+\left(f_{n-1}-i g_{n-1}\right) \lambda+\left(f_{n}-i g_{n}\right)
$$

By the definition of spectrally arbitrary complex sign pattern matrix, the result holds for the case (v).

We note that, if a complex sign pattern matrix $\mathcal{S}=\mathcal{A}+i \mathcal{B}$ is spectrally arbitrary, then sign pattern matrices \mathcal{A} and \mathcal{B} are not necessarily spectrally arbitrary. For example,

$$
\mathcal{S}_{3}=\left[\begin{array}{ccc}
1-i & 1 & 0 \\
1+i & 0 & -1 \\
1 & 0 & -1+i
\end{array}\right]
$$

is a spectrally arbitrary complex sign pattern matrix (This fact will be proved in Section 3), but both sign pattern matrices

$$
\mathcal{A}=\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & -1 \\
1 & 0 & -1
\end{array}\right] \text { and } \mathcal{B}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

are not spectrally arbitrary. On the other hand, if both \mathcal{A} and \mathcal{B} are spectrally arbitrary, then the complex sign pattern matrix $\mathcal{S}=\mathcal{A}+i \mathcal{B}$ is not necessarily spectrally
arbitrary. For example, let

$$
\mathcal{A}=\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right], \quad \mathcal{B}=\left[\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right]
$$

From [1], both \mathcal{A} and \mathcal{B} are spectrally arbitrary sign pattern matrices. Consider the complex sign pattern matrix

$$
\mathcal{S}=\mathcal{A}+i \mathcal{B}=\left[\begin{array}{ll}
-1-i & 1-i \\
-1+i & 1+i
\end{array}\right]
$$

Note that for any

$$
C=\left[\begin{array}{ll}
-a_{1}-i b_{1} & a_{2}-i b_{2} \\
-a_{3}+i b_{3} & a_{4}+i b_{4}
\end{array}\right] \in Q_{c}(\mathcal{S})
$$

where $a_{j}>0$ and $b_{j}>0$ for $j=1,2,3,4$, the characteristic polynomial of C is

$$
\begin{gathered}
|\lambda I-C|=\lambda^{2}+\left(\left(a_{1}-a_{4}\right)+i\left(b_{1}-b_{4}\right)\right) \lambda+\left(a_{2} a_{3}-a_{1} a_{4}-b_{2} b_{3}+b_{1} b_{4}\right) \\
-i\left(a_{4} b_{1}+a_{3} b_{2}+a_{2} b_{3}+a_{1} b_{4}\right)
\end{gathered}
$$

Since $-\left(a_{4} b_{1}+a_{3} b_{2}+a_{2} b_{3}+a_{1} b_{4}\right)<0, \mathcal{S}$ is not spectrally arbitrary.
In Section 2 we extend the Nilpotent-Jacobian method for sign pattern matrices to complex sign pattern matrices, establishing a means to show that an irreducible complex sign pattern matrix and all its superpatterns are spectrally arbitrary. In Section 3 we give an $n \times n(n \geq 2)$ irreducible spectrally arbitrary complex sign pattern matrix \mathcal{S}_{n} with exactly $3 n$ nonzero entries. In Section 4 we prove that every $n \times n(n \geq 2)$ irreducible spectrally arbitrary complex sign pattern matrix has at least $3 n-1$ nonzero entries, and conjecture that for $n \geq 2$, an $n \times n$ irreducible spectrally arbitrary complex sign pattern matrix has at least $3 n$ nonzero entries.
2. The Nilpotent-Jacobian method. In this section, we extend the Nilpotent -Jacobian method on sign pattern matrices in [1] to the case of complex sign pattern matrices.

Let $\mathcal{S}=\mathcal{A}+i \mathcal{B}$ be a complex sign pattern matrix of order $n \geq 2$ with at least $2 n$ nonzero entries.

- Find a nilpotent complex matrix $C=A+i B$ in the complex sign pattern class $Q_{c}(\mathcal{S})$, where both A and B are real matrices, and $A \in Q(\mathcal{A})$ and $B \in Q(\mathcal{B})$.
- Change the $2 n$ nonzero entries (denoted $r_{1}, r_{2}, \ldots, r_{2 n}$) in A and B to variables $x_{1}, x_{2}, \ldots, x_{2 n}$. Denote the resulting matrix by X.
- Express the characteristic polynomial of X as:

$$
\begin{aligned}
|\lambda I-X|= & \lambda^{n}+\left(f_{1}\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)+i g_{1}\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)\right) \lambda^{n-1}+\cdots \\
+ & \left(f_{n-1}\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)+i g_{n-1}\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)\right) \lambda \\
& +\left(f_{n}\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)+i g_{n}\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)\right)
\end{aligned}
$$

- Find the Jacobian matrix

$$
J=\frac{\partial\left(f_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{n}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)}
$$

- If the determinant of J, evaluated at $\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)=\left(r_{1}, r_{2}, \ldots, r_{2 n}\right)$ is nonzero, then by continuity of the determinant in the entries of a matrix, there is a neighborhood U of $\left(r_{1}, r_{2}, \ldots, r_{2 n}\right)$ such that all the vectors in U are strictly positive and the determinant of J evaluated at any of these vectors is nonzero. Moreover, by the Implicit Function Theorem, there is a neighborhood $V \subseteq U$ of $\left(r_{1}, r_{2}, \ldots, r_{2 n}\right) \subseteq \mathbb{R}^{2 n}$, a neighborhood W of $(0,0, \ldots, 0) \subseteq \mathbb{R}^{2 n}$, and a function $\left(h_{1}, \ldots, h_{2 n}\right)$ from W into V such that for any $\left(y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{n}\right) \in W$, there exists a strictly positive vector $\left(s_{1}, s_{2}, \ldots, s_{2 n}\right)=\left(h_{1}, \ldots, h_{2 n}\right)\left(y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{n}\right) \in V$ where $f_{k}\left(s_{1}, s_{2}, \ldots, s_{2 n}\right)=y_{k}$ and $g_{k}\left(s_{1}, s_{2}, \ldots, s_{2 n}\right)=z_{k}$ for $k=1,2, \ldots, n$. Taking positive scalar multiples of the corresponding matrices, we see that each monic nth degree polynomial over \mathbb{C} is the characteristic polynomial of some matrix in the complex sign pattern class $Q_{c}(\mathcal{S})$. That is, \mathcal{S} is a spectrally arbitrary complex sign pattern matrix.

Next consider a superpattern of the complex sign pattern matrix \mathcal{S}. Represent the new nonzero entries of A by $p_{1}, \ldots, p_{m_{1}}$, and the new nonzero entries of B by $q_{1}, \ldots, q_{m_{2}}$, Let $\hat{f}_{k}\left(x_{1}, x_{2}, \ldots, x_{2 n}, p_{1}, \ldots, p_{m_{1}}, q_{1}, \ldots, q_{m_{2}}\right)$ and $\hat{g}_{k}\left(x_{1}, x_{2}, \ldots, x_{2 n}, p_{1}, \ldots, p_{m_{1}}, q_{1}, \ldots, q_{m_{2}}\right)$ represent the new functions in the characteristic polynomial, and $\hat{J}=\frac{\partial\left(\hat{f}_{1}, \ldots, \hat{f}_{n}, \hat{g}_{1}, \ldots, \hat{g}_{n}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)}$ the new Jacobian matrix. As above, let $\left(y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{n}\right) \in W$ and $\left(s_{1}, s_{2}, \ldots, s_{2 n}\right)=$ $\left(h_{1}, \ldots, h_{2 n}\right)\left(y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{n}\right)$. Then $y_{k}=f_{k}\left(s_{1}, s_{2}, \ldots, s_{2 n}\right)=\hat{f}_{k}\left(s_{1}\right.$, $\left.s_{2}, \ldots, s_{2 n}, 0, \ldots, 0\right), z_{k}=g_{k}\left(s_{1}, s_{2}, \ldots, s_{2 n}\right)=\hat{g}_{k}\left(s_{1}, s_{2}, \ldots, s_{2 n}, 0, \ldots, 0\right)$, and the determinant of \hat{J} evaluated at $\left(x_{1}, \ldots, x_{2 n}, p_{1}, \ldots, p_{m_{1}}, q_{1}, \ldots, q_{m_{2}}\right)=$ $\left(s_{1}, \ldots, s_{2 n}, 0,0, \ldots, 0\right)$ is equal to the determinant of J evaluated at $\left(x_{1}, x_{2}\right.$, $\left.\ldots, x_{2 n}\right)=\left(s_{1}, s_{2}, \ldots, s_{2 n}\right)$ and hence is nonzero. By the Implicit Function Theorem, there exists a neighborhood $\hat{V} \subseteq V$ of $\left(s_{1}, s_{2}, \ldots, s_{2 n}\right)$, a neighborhood T of $(0,0, \ldots, 0) \in \mathbb{R}^{m_{1}+m_{2}}$ and a function $\left(\hat{h}_{1}, \hat{h}_{2}, \ldots, \hat{h}_{2 n}\right)$ from T into \hat{V} such that for any vector $\left(d_{1}, \ldots, d_{m_{1}+m_{2}}\right) \in T$ there exists a strictly positive vector $\left(e_{1}, e_{2}, \ldots, e_{2 n}\right)=\left(\hat{h}_{1}, \hat{h}_{2}, \ldots, \hat{h}_{2 n}\right)\left(d_{1}, \ldots, d_{m_{1}+m_{2}}\right) \in \hat{V}$ where
$\hat{f}_{k}\left(e_{1}, \ldots, e_{2 n}, d_{1}, \ldots, d_{m_{1}+m_{2}}\right)=y_{k}$ and $\hat{g}_{k}\left(e_{1}, \ldots, e_{2 n}, d_{1}, \ldots, d_{m_{1}+m_{2}}\right)=$ z_{k}. Choosing $\left(d_{1}, \ldots, d_{m_{1}+m_{2}}\right) \in T$ strictly positive we see that there are also matrices in the superpattern's class with every characteristic polynomial corresponding to a vector in W. Taking positive scalar multiples of the corresponding matrices, we see that each monic nth degree polynomial over \mathbb{C} is the characteristic polynomial of some matrix in this superpattern's class. Thus each superpattern of \mathcal{S} is a spectrally arbitrary complex sign pattern matrix.

Theorem 2.1. Let $\mathcal{S}=\mathcal{A}+i \mathcal{B}$ be a complex sign pattern matrix of order $n \geq 2$, and suppose that there exists some nilpotent complex matrix $C=A+i B \in$ $Q_{c}(\mathcal{S})$, where $A \in Q(\mathcal{A}), B \in Q(\mathcal{B})$, and A and B have at least $2 n$ nonzero entries, say $a_{i_{1} j_{1}}, \ldots, a_{i_{n_{1}} j_{n_{1}}}, b_{i_{n_{1}+1} j_{n_{1}+1}}, \ldots, b_{i_{2 n} j_{2 n}}$. Let X be the complex matrix obtained by replacing these entries in C by variables $x_{1}, \ldots, x_{2 n}$, and let the characteristic polynomial of X be

$$
\begin{aligned}
|\lambda I-X|= & \lambda^{n}+\left(f_{1}\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)+i g_{1}\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)\right) \lambda^{n-1}+\cdots \\
+ & \left(f_{n-1}\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)+i g_{n-1}\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)\right) \lambda \\
& +\left(f_{n}\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)+i g_{n}\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)\right)
\end{aligned}
$$

If the Jacobian matrix $J=\frac{\partial\left(f_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{n}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)}$ is nonsingular at $\left(x_{1}, \ldots, x_{2 n}\right)=$ $\left(a_{i_{1} j_{1}}, \ldots, a_{i_{n_{1}} j_{n_{1}}}, b_{i_{n_{1}+1} j_{n_{1}+1}}, \ldots, b_{i_{2 n} j_{2 n}}\right)$, then the complex sign pattern matrix \mathcal{S} is spectrally arbitrary, and every superpattern of \mathcal{S} is a spectrally arbitrary complex sign pattern matrix.
3. Minimal spectrally arbitrary complex sign pattern matrices. In this section we first consider the following $n \times n(n \geq 7)$ complex sign pattern matrix
(3.1) $\mathcal{S}_{n}=\mathcal{A}_{n}+i \mathcal{B}_{n}=\left[\begin{array}{cccccccc}1+i & 1 & & & & & & \\ 1-i & 0 & -1 & & & & & \\ 1+i & & 0 & 1 & & & & \\ 1-i & & \ddots & -1 & & & \\ \vdots & & & & \ddots & \ddots & & \\ \vdots & & & & & 0 & \ddots & \\ 1+(-1)^{n} i & & & & & & -i & (-1)^{n} \\ 0 & 0 & 0 & (-1)^{\left\lceil\frac{n+1}{2}\right\rceil} & 0 & \cdots & 0 & -1\end{array}\right]$.

We will prove that \mathcal{S}_{n} is a minimal spectrally arbitrary complex sign pattern matrix, and every superpattern of \mathcal{S}_{n} is a spectrally arbitrary complex sign pattern matrix.

Take an $n \times n$ complex matrix
$\left.\left.(3.2) C=\left[\begin{array}{ccccccc}a_{1}+i b_{1} & 1 & & & & & \\ a_{2}-i b_{2} & 0 & -1 & & & & \\ a_{3}+i b_{3} & & 0 & 1 & & & \\ a_{4}-i b_{4} & & & \ddots & -1 & & \\ \vdots & & & \ddots & \ddots & & \\ \vdots & & & & 0 & \ddots & \\ a_{n-1}+(-1)^{n} i b_{n-1} & & & & & & -i b_{n} \\ 0 & 0 & 0 & (-1)^{\left\lceil\frac{n+1}{2}\right\rceil} a_{n} & 0 & \cdots & 0\end{array}\right]-1\right)^{n}\right]$,
where $a_{k}>0$ and $b_{k}>0$ for $k=1,2, \ldots, n$. Then $C \in Q_{c}\left(\mathcal{S}_{n}\right)$. Denote

$$
|\lambda I-C|=\lambda^{n}+\alpha_{1} \lambda^{n-1}+\alpha_{2} \lambda^{n-2}+\cdots+\alpha_{k} \lambda^{n-k}+\cdots+\alpha_{n-1} \lambda+\alpha_{n}
$$

and $\alpha_{k}=f_{k}+i g_{k}, k=1,2, \ldots, n$.
Lemma 3.1. Let $a_{0}=1$ and $b_{0}=0$. Then

$$
\begin{aligned}
f_{1}= & 1-a_{1}, \\
f_{k}= & (-1)^{\left\lceil\frac{3 k+3}{2}\right\rceil} a_{k}+(-1)^{\left\lceil\frac{3 k}{2}\right\rceil} a_{k-1}+(-1)^{\left\lceil\frac{5 k+2}{2}\right\rceil} b_{k-1} b_{n}+(-1)^{\left\lceil\frac{5 k-3}{2}\right\rceil} b_{k-2} b_{n}, \\
& k=2,3, \ldots, n-4, \\
f_{n-3} & =(-1)^{n} a_{n}+(-1)^{\left\lceil\frac{3 n-6}{2}\right\rceil} a_{n-3}+(-1)^{\left\lceil\frac{3 n-9}{2}\right\rceil} a_{n-4}+(-1)^{\left\lceil\frac{5 n-13}{2}\right\rceil} b_{n-4} b_{n} \\
& +(-1)^{\left\lceil\frac{5 n-18}{2}\right\rceil} b_{n-5} b_{n}, \\
f_{n-2} & =(-1)^{n+1} a_{1} a_{n}+(-1)^{\left\lceil\frac{3 n-3}{2}\right\rceil} a_{n-2}+(-1)^{\left\lceil\frac{3 n-6}{2}\right\rceil} a_{n-3}+(-1)^{\left\lceil\frac{5 n-8}{2}\right\rceil} b_{n-3} b_{n} \\
& +(-1)^{\left\lceil\frac{5 n-13}{2}\right\rceil} b_{n-4} b_{n}, \\
f_{n-1} & =(-1)^{n+1} a_{2} a_{n}+(-1)^{\left\lceil\frac{3 n}{2}\right\rceil} a_{n-1}+(-1)^{\left\lceil\frac{3 n-3}{2}\right\rceil} a_{n-2}+(-1)^{\left\lceil\frac{5 n-3}{2}\right\rceil} b_{n-2} b_{n} \\
& +(-1)^{\left\lceil\frac{5 n-8}{2}\right\rceil} b_{n-3} b_{n}, \\
f_{n}= & (-1)^{n} a_{3} a_{n}+(-1)^{\left\lceil\frac{3 n}{2}\right\rceil} a_{n-1}+(-1)^{\left\lceil\frac{5 n-3}{2}\right\rceil} b_{n-2} b_{n},
\end{aligned}
$$

and

$$
\begin{aligned}
g_{1}= & -b_{1}+b_{n}, \\
g_{k}= & (-1)^{\left\lceil\frac{5(k+1)}{2}\right\rceil} b_{k}+(-1)^{\left\lceil\frac{5 k}{2}\right\rceil} b_{k-1}+(-1)^{\left\lceil\frac{3 k}{2}\right\rceil} a_{k-1} b_{n}+(-1)^{\left\lceil\frac{3(k-1)}{2}\right\rceil} a_{k-2} b_{n}, \\
& k=2,3, \ldots, n-3, \\
g_{n-2} & =(-1)^{n+1} a_{n} b_{1}+(-1)^{\left\lceil\frac{5(n-1)}{2}\right\rceil} b_{n-2}+(-1)^{\left\lceil\frac{5(n-2)}{2}\right\rceil} b_{n-3}+(-1)^{\left\lceil\frac{3(n-2)}{2}\right\rceil} a_{n-3} b_{n} \\
& +(-1)^{\left\lceil\frac{3(n-3)}{2}\right\rceil} a_{n-4} b_{n}, \\
g_{n-1} & =(-1)^{n+2} a_{n} b_{2}+(-1)^{\left\lceil\frac{5 n}{2}\right\rceil} b_{n-1}+(-1)^{\left\lceil\frac{5(n-1)}{2}\right\rceil} b_{n-2}+(-1)^{\left\lceil\frac{3(n-1)}{2}\right\rceil} a_{n-2} b_{n} \\
& +(-1)^{\left\lceil\frac{3(n-2)}{2}\right\rceil} a_{n-3} b_{n}, \\
g_{n}= & (-1)^{n} a_{n} b_{3}+(-1)^{\left\lceil\frac{5 n}{2}\right\rceil} b_{n-1}+(-1)^{\left\lceil\frac{3 n-3}{2}\right\rceil} a_{n-2} b_{n} .
\end{aligned}
$$

Proof. Denote $c_{0}=1$, and $c_{k}=a_{k}+(-1)^{k+1} i b_{k}$ for $k=1,2, \ldots, n-1$. Then

$$
\begin{aligned}
& |\lambda I-C|=\left|\begin{array}{cccccccc}
\lambda-c_{1} & -1 & & & & & & \\
-c_{2} & \lambda & 1 & & & & \\
-c_{3} & & \ddots & -1 & & & & \\
-c_{4} & & & \ddots & 1 & & & \\
\vdots & & & & \ddots & \ddots & & \\
\vdots & & & & & \lambda & \ddots & \\
-c_{n-1} & & & & & & \lambda+i b_{n} & (-1)^{n-1} \\
0 & 0 & 0 & (-1)^{\left\lceil\frac{n+3}{2}\right\rceil} a_{n} & 0 & \cdots & 0 & \lambda+1
\end{array}\right| \\
& =(\lambda+1)\left|\begin{array}{ccccccc}
\lambda-c_{1} & -1 & & & & & \\
-c_{2} & \lambda & 1 & & & & \\
-c_{3} & & \ddots & -1 & & & \\
-c_{4} & & & \ddots & 1 & & \\
\vdots & & & & \ddots & \ddots & \\
\vdots & & & & & \lambda & (-1)^{n-2} \\
-c_{n-1} & & & & & & \lambda+i b_{n}
\end{array}\right|_{n-1} \\
& +(-1)^{\left\lceil\frac{n+3}{2}\right\rceil+n+4+\left\lceil\frac{n-5}{2}\right\rceil} a_{n}\left|\begin{array}{ccc}
\lambda-c_{1} & -1 & 0 \\
-c_{2} & \lambda & 1 \\
-c_{3} & 0 & \lambda
\end{array}\right| \\
& =(-1)^{n} a_{n}\left(\lambda^{3}-c_{1} \lambda^{2}-c_{2} \lambda+c_{3}\right)+(\lambda+1)(-1)^{\left\lceil\frac{3 n}{2}\right\rceil} c_{n-1}+(\lambda+1)\left(\lambda+i b_{n}\right) \Delta_{n-2},
\end{aligned}
$$

where

$$
\begin{aligned}
& \Delta_{n-2}=\left|\begin{array}{cccccc}
\lambda-c_{1} & -1 & & & & \\
-c_{2} & \lambda & 1 & & & \\
-c_{3} & & \ddots & -1 & & \\
-c_{4} & & & \ddots & \ddots & \\
\vdots & & & & \ddots & (-1)^{n-3} \\
-c_{n-2} & & & & & \lambda
\end{array}\right|_{n-2} \\
& =(-1)^{\left\lceil\frac{3 n-3}{2}\right\rceil} c_{n-2}+\lambda \Delta_{n-3} \\
& =(-1)^{\left\lceil\frac{3 n-3}{2}\right\rceil} c_{n-2}+(-1)^{\left\lceil\frac{3 n-6}{2}\right\rceil} c_{n-3} \lambda+\lambda^{2} \Delta_{n-4} \\
& =\cdots . . \\
& =(-1)^{\left\lceil\frac{3 n-3}{2}\right\rceil} c_{n-2}+(-1)^{\left\lceil\frac{3 n-6}{2}\right\rceil} c_{n-3} \lambda+(-1)^{\left\lceil\frac{3 n-9}{2}\right\rceil} c_{n-4} \lambda^{2}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& +(-1)^{\left\lceil\frac{3(n-k-1)}{2}\right\rceil} c_{n-k-2} \lambda^{k}+\cdots-c_{2} \lambda^{n-4}-c_{1} \lambda^{n-3}+\lambda^{n-2} \\
= & \sum_{k=0}^{n-2}(-1)^{\left\lceil\frac{3(k+1)}{2}\right\rceil} c_{k} \lambda^{n-k-2} .
\end{aligned}
$$

So

$$
\begin{aligned}
|\lambda I-C|= & (-1)^{n} a_{n}\left(\lambda^{3}-c_{1} \lambda^{2}-c_{2} \lambda+c_{3}\right)+(\lambda+1)(-1)^{\left\lceil\frac{3 n}{2}\right\rceil} c_{n-1} \\
& +\left(\lambda^{2}+\left(1+i b_{n}\right) \lambda+i b_{n}\right) \sum_{k=0}^{n-2}(-1)^{\left\lceil\frac{3(k+1)}{2}\right\rceil} c_{k} \lambda^{n-k-2}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\alpha_{1}= & -c_{1}+\left(1+i b_{n}\right) \\
\alpha_{k}= & (-1)^{\left\lceil\frac{3(k+1)}{2}\right\rceil} c_{k}+(-1)^{\left\lceil\frac{3 k}{2}\right\rceil} c_{k-1}\left(1+i b_{n}\right)+(-1)^{\left\lceil\frac{3(k-1)}{2}\right\rceil} i c_{k-2} b_{n}, \\
& k=2,3, \ldots, n-4, \\
\alpha_{n-3}= & (-1)^{n} a_{n}+(-1)^{\left\lceil\frac{3 n-6}{2}\right\rceil} c_{n-3}+(-1)^{\left\lceil\frac{3 n-9}{2}\right\rceil} c_{n-4}\left(1+i b_{n}\right)+(-1)^{\left\lceil\frac{3 n-12}{2}\right\rceil} i c_{n-5} b_{n}, \\
\alpha_{n-2}= & (-1)^{n+1} a_{n} c_{1}+(-1)^{\left\lceil\frac{3 n-3}{2}\right\rceil} c_{n-2}+(-1)^{\left\lceil\frac{3 n-6}{2}\right\rceil} c_{n-3}\left(1+i b_{n}\right) \\
& +(-1)^{\left\lceil\frac{3 n-9}{2}\right\rceil} i c_{n-4} b_{n}, \\
\alpha_{n-1}= & (-1)^{n+1} a_{n} c_{2}+(-1)^{\left\lceil\frac{3 n}{2}\right\rceil} c_{n-1}+(-1)^{\left\lceil\frac{3 n-3}{2}\right\rceil} c_{n-2}\left(1+i b_{n}\right) \\
& +(-1)^{\left\lceil\frac{3 n-6}{2}\right\rceil} i c_{n-3} b_{n}, \\
\alpha_{n}= & (-1)^{n} a_{n} c_{3}+(-1)^{\left\lceil\frac{3 n}{2}\right\rceil} c_{n-1}+(-1)^{\left\lceil\frac{3 n-3}{2}\right\rceil} i c_{n-2} b_{n} .
\end{aligned}
$$

Noticing that $c_{k}=a_{k}+(-1)^{k+1} i b_{k}$ for $k=1,2, \ldots, n-1$, the lemma holds. \square
LEMMA 3.2. There are unique positive integers \hat{a}_{k} and $\hat{b}_{k}, k=1,2, \ldots, n$, such that when $a_{k}=\hat{a}_{k}$ and $b_{k}=\hat{b}_{k}$ for $k=1,2, \ldots, n$, the complex matrix C having the form (3.2) is nilpotent. Further, $\left.\operatorname{det}\left(\frac{\partial\left(f_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{n}\right)}{\partial\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right)}\right)\right|_{a_{k}=\hat{a}_{k}, b_{k}=\hat{b}_{k}, k=1, \ldots, n}$ $=(-1)^{\left\lceil\frac{n+2}{2}\right\rceil} 6$.

Proof. We prove the lemma according to the four cases $n=4 m, n=4 m+1$, $n=4 m+2$, and $n=4 m+3$.

Let $n=4 m$. By Lemma 3.1, we have

$$
\left\{\begin{array}{l}
f_{1}=1-a_{1}, \\
f_{k}=(-1)^{\left\lceil\frac{3 k+3}{2}\right\rceil} a_{k}+(-1)^{\left\lceil\frac{3 k}{2}\right\rceil} a_{k-1}+(-1)^{\left\lceil\frac{5 k+2}{2}\right\rceil} b_{k-1} b_{n}+(-1)^{\left\lceil\frac{5 k-3}{2}\right\rceil} b_{k-2} b_{n} \\
\quad k=2,3, \ldots, n-4, \\
f_{n-3}=a_{n}-a_{n-3}+a_{n-4}+b_{n-4} b_{n}-b_{n-5} b_{n} \\
f_{n-2}=-a_{1} a_{n}-a_{n-2}-a_{n-3}+b_{n-3} b_{n}+b_{n-4} b_{n} \\
f_{n-1}=-a_{2} a_{n}+a_{n-1}-a_{n-2}-b_{n-2} b_{n}+b_{n-3} b_{n} \\
f_{n}=a_{3} a_{n}+a_{n-1}-b_{n-2} b_{n}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
g_{1}=-b_{1}+b_{n}, \\
g_{k}=(-1)^{\left\lceil\frac{5(k+1)}{2}\right\rceil} b_{k}+(-1)^{\left\lceil\frac{5 k}{2}\right\rceil} b_{k-1}+(-1)^{\left\lceil\frac{3 k}{2}\right\rceil} a_{k-1} b_{n}+(-1)^{\left\lceil\frac{3(k-1)}{2}\right\rceil} a_{k-2} b_{n}, \\
\quad k=2,3, \ldots, n-3, \\
g_{n-2}=-a_{n} b_{1}+b_{n-2}-b_{n-3}-a_{n-3} b_{n}+a_{n-4} b_{n}, \\
g_{n-1}=a_{n} b_{2}+b_{n-1}+b_{n-2}-a_{n-2} b_{n}-a_{n-3} b_{n}, \\
g_{n}=a_{n} b_{3}+b_{n-1}-a_{n-2} b_{n} .
\end{array}\right.
$$

Let $f_{k}=0$ and $g_{k}=0$ for $k=1,2, \ldots, n$. Then

$$
\left\{\begin{array}{l}
a_{1}=1 \\
a_{2 k}=a_{2 k+1}, k=1,2, \ldots, \frac{n}{2}-3 \\
a_{n-4}=a_{n-3}-a_{n} \\
a_{n-2}=a_{n-1}-2 a_{n} b_{1}^{2}-a_{2} a_{n} \\
a_{n-1}=b_{n-2} b_{n}-a_{3} a_{n} \\
a_{2 k-1}+a_{2 k}=b_{1}^{2 k}, k=1,2, \ldots, \frac{n}{2}-2 \\
a_{n-3}+a_{n-2}=b_{1}^{n-2}-a_{n}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
b_{1}=b_{2}=b_{n} \\
b_{2 k+1}=b_{2 k+2}, k=1,2, \ldots, \frac{n}{2}-3 \\
b_{n-3}=b_{n-2}-2 a_{n} b_{1} \\
b_{n-1}=a_{n-2} b_{n}-a_{n} b_{3} \\
b_{2 k}+b_{2 k+1}=b_{1}^{2 k+1}, k=1,2, \ldots, \frac{n}{2}-2 \\
b_{n-2}+b_{n-1}=b_{1}^{n-1}-a_{n} b_{1}-a_{n} b_{2}
\end{array}\right.
$$

We have that

$$
\left\{\begin{array}{l}
a_{1}=1, \\
a_{2 k}=a_{2 k+1}=\sum_{j=0}^{k}(-1)^{k-j} b_{1}^{2 j}, k=1,2, \ldots, \frac{n}{2}-3 \\
a_{n-4}=\sum_{j=0}^{\frac{n}{2}-2}(-1)^{\frac{n}{2}-j} b_{1}^{2 j}, \\
a_{n-3}=a_{n}+\sum_{j=0}^{\frac{n}{2}-2}(-1)^{\frac{n}{2}-j} b_{1}^{2 j}, \\
a_{n-2}=-2 a_{n}+\sum_{j=0}^{\frac{n}{2}-1}(-1)^{\frac{n}{2}-1-j} b_{1}^{2 j} \\
a_{n-1}=2 a_{n} b_{1}^{2}+a_{2} a_{n}-2 a_{n}+\sum_{j=0}^{\frac{n}{2}-1}(-1)^{\frac{n}{2}-1-j} b_{1}^{2 j} \\
a_{n-1}=2 a_{n} b_{1}^{2}-a_{3} a_{n}+\sum_{j=1}^{\frac{n}{2}-1}(-1)^{\frac{n}{2}-1-j} b_{1}^{2 j}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
b_{1}=b_{2}=b_{n} \\
b_{2 k+1}=b_{2 k+2}=\sum_{j=0}^{k}(-1)^{k-j} b_{1}^{2 j+1}, k=1,2, \ldots, \frac{n}{2}-3, \\
b_{n-3}=\sum_{j=0}^{\frac{n}{2}-2}(-1)^{\frac{n}{2}-2-j} b_{1}^{2 j+1}, \\
b_{k}=b_{1} a_{k-1}, k=3,4, \ldots, n-3, \\
b_{n-2}=2 a_{n} b_{1}+\sum_{j=0}^{\frac{n}{2}-2}(-1)^{\frac{n}{2}-2-j} b_{1}^{2 j+1}, \\
b_{n-1}=-a_{n} b_{3}-2 a_{n} b_{1}+\sum_{j=0}^{\frac{n}{2}-1}(-1)^{\frac{n}{2}-1-j} b_{1}^{2 j+1}, \\
b_{n-1}=-4 a_{n} b_{1}+\sum_{j=0}^{\frac{n}{2}-1}(-1)^{\frac{n}{2}-1-j} b_{1}^{2 j+1} .
\end{array}\right.
$$

From the second equation and last two equations in the second set of equations, respectively, we have $b_{3}=-b_{1}+b_{1}^{3}$, and $a_{n} b_{3}+2 a_{n} b_{1}=4 a_{n} b_{1}$, so $b_{1}=\sqrt{3}$. From the second equation and last two equations in the first set of equations, respectively, we have $a_{2}=-1+b_{1}^{2}$, and $2 a_{2} a_{n}-2 a_{n}-1=0$, so $a_{n}=\frac{1}{2 b_{1}^{2}-4}=\frac{1}{2}$. Thus there is
unique solution for $f_{k}=0$ and $g_{k}=0, k=1,2, \ldots, n$, as follows.

$$
\left\{\begin{array}{l}
\hat{a}_{1}=1, \quad \hat{a}_{n}=\frac{1}{2}, \quad \hat{b}_{1}=\hat{b}_{2}=\hat{b}_{n}=\sqrt{3}, \\
\hat{a}_{2 k}=\hat{a}_{2 k+1}=\sum_{j=0}^{k}(-1)^{k-j} \hat{b}_{1}^{2 j}, k=1,2, \ldots, \frac{n}{2}-3, \\
\hat{a}_{n-4}=\sum_{j=0}^{\frac{n}{2}-2}(-1)^{\frac{n}{2}-j} \hat{b}_{1}^{2 j}, \\
\hat{a}_{n-3}=\hat{a}_{n}+\sum_{j=0}^{\frac{n}{2}-2}(-1)^{\frac{n}{2}-j} \hat{b}_{1}^{2 j}, \\
\hat{a}_{n-2}=-2 \hat{a}_{n}+\sum_{j=0}^{\frac{n}{2}-1}(-1)^{\frac{n}{2}-1-j} \hat{b}_{1}^{2 j}, \\
\hat{a}_{n-1}=2 \hat{a}_{n} \hat{b}_{1}^{2}+\hat{a}_{2} \hat{a}_{n}-2 \hat{a}_{n}+\sum_{j=0}^{\frac{n}{2}-1}(-1)^{\frac{n}{2}-1-j} \hat{b}_{1}^{2 j} \\
\hat{b}_{k}=\hat{b}_{1} \hat{a}_{k-1}, k=3,4, \ldots, n-3, \\
\hat{b}_{n-2}=2 \hat{a}_{n} \hat{b}_{1}+\sum_{j=0}^{\frac{n}{2}-2}(-1)^{\frac{n}{2}-2-j} \hat{b}_{1}^{2 j+1}, \\
\hat{b}_{n-1}=-\hat{a}_{n} \hat{b}_{3}-2 \hat{a}_{n} \hat{b}_{1}+\sum_{j=0}^{\frac{n}{2}-1}(-1)^{\frac{n}{2}-1-j} \hat{b}_{1}^{2 j+1} .
\end{array}\right.
$$

Since $\operatorname{det}(J)=\operatorname{det}\left(\frac{\partial\left(f_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{n}\right)}{\partial\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right)}\right)=$

686
Y. Gao, Y. Shao, and Y. Fan

$=-\left|\begin{array}{ccc|cccc}-1 & 0 & 0 & b_{n} & 0 & 0 & b_{1} \\ 0 & 1 & 0 & 0 & -b_{n} & 0 & -b_{2} \\ a_{n} & a_{n} & a_{3}+a_{2}-a_{1}-1 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & -a_{1} \\ -b_{n} & 0 & 0 & 0 & 0 & 1 & -a_{2} \\ 0 & 0 & b_{3}-b_{2}-b_{1} & -a_{n} & -a_{n} & a_{n} & 0\end{array}\right|$,
we have

$$
\left.\operatorname{det}(J)\right|_{a_{k}=\hat{a}_{k}, b_{k}=\hat{b}_{k}, k=1,2, \ldots, n}=-\left|\begin{array}{ccccccc}
-1 & 0 & 0 & \sqrt{3} & 0 & 0 & \sqrt{3} \\
0 & 1 & 0 & 0 & -\sqrt{3} & 0 & -\sqrt{3} \\
\frac{1}{2} & \frac{1}{2} & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & -1 \\
-\sqrt{3} & 0 & 0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right|=-6 .
$$

As for cases $n=4 m+1, n=4 m+2$ and $n=4 m+3$, noting that if $n=4 m+1$,
then

$$
\left\{\begin{array}{l}
f_{1}=1-a_{1} \\
f_{k}=(-1)^{\left\lceil\frac{3 k+3}{2}\right\rceil} a_{k}+(-1)^{\left\lceil\frac{3 k}{2}\right\rceil} a_{k-1}+(-1)^{\left\lceil\frac{5 k+2}{2}\right\rceil} b_{k-1} b_{n}+(-1)^{\left\lceil\frac{5 k-3}{2}\right\rceil} b_{k-2} b_{n} \\
\quad k=2,3, \ldots, n-4 \\
f_{n-3}=-a_{n}-a_{n-3}-a_{n-4}+b_{n-4} b_{n}+b_{n-5} b_{n} \\
f_{n-2}=a_{1} a_{n}+a_{n-2}-a_{n-3}-b_{n-3} b_{n}+b_{n-4} b_{n} \\
f_{n-1}=a_{2} a_{n}+a_{n-1}+a_{n-2}-b_{n-2} b_{n}-b_{n-3} b_{n} \\
f_{n}=-a_{3} a_{n}+a_{n-1}-b_{n-2} b_{n}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
g_{1}=-b_{1}+b_{n} \\
g_{k}=(-1)^{\left\lceil\frac{5(k+1)}{2}\right\rceil} b_{k}+(-1)^{\left\lceil\frac{5 k}{2}\right\rceil} b_{k-1}+(-1)^{\left\lceil\frac{3 k}{2}\right\rceil} a_{k-1} b_{n}+(-1)^{\left\lceil\frac{3(k-1)}{2}\right\rceil} a_{k-2} b_{n} \\
\quad k=2,3, \ldots, n-3 \\
g_{n-2}=a_{n} b_{1}+b_{n-2}+b_{n-3}-a_{n-3} b_{n}-a_{n-4} b_{n} \\
g_{n-1}=-a_{n} b_{2}-b_{n-1}+b_{n-2}+a_{n-2} b_{n}-a_{n-3} b_{n} \\
g_{n}=-a_{n} b_{3}-b_{n-1}+a_{n-2} b_{n}
\end{array}\right.
$$

if $n=4 m+2$, then

$$
\left\{\begin{array}{l}
f_{1}=1-a_{1} \\
f_{k}=(-1)^{\left\lceil\frac{3 k+3}{2}\right\rceil} a_{k}+(-1)^{\left\lceil\frac{3 k}{2}\right\rceil} a_{k-1}+(-1)^{\left\lceil\frac{5 k+2}{2}\right\rceil} b_{k-1} b_{n}+(-1)^{\left\lceil\frac{5 k-3}{2}\right\rceil} b_{k-2} b_{n} \\
\quad k=2,3, \ldots, n-4 \\
f_{n-3}=a_{n}+a_{n-3}-a_{n-4}-b_{n-4} b_{n}+b_{n-5} b_{n} \\
f_{n-2}=-a_{1} a_{n}+a_{n-2}+a_{n-3}-b_{n-3} b_{n}-b_{n-4} b_{n} \\
f_{n-1}=-a_{2} a_{n}-a_{n-1}+a_{n-2}+b_{n-2} b_{n}-b_{n-3} b_{n} \\
f_{n}=a_{3} a_{n}-a_{n-1}+b_{n-2} b_{n}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
g_{1}=-b_{1}+b_{n} \\
g_{k}=(-1)^{\left\lceil\frac{5(k+1)}{2}\right\rceil} b_{k}+(-1)^{\left\lceil\frac{5 k}{2}\right\rceil} b_{k-1}+(-1)^{\left\lceil\frac{3 k}{2}\right\rceil} a_{k-1} b_{n}+(-1)^{\left\lceil\frac{3(k-1)}{2}\right\rceil} a_{k-2} b_{n} \\
\quad k=2,3, \ldots, n-3 \\
g_{n-2}=-a_{n} b_{1}-b_{n-2}+b_{n-3}+a_{n-3} b_{n}-a_{n-4} b_{n} \\
g_{n-1}=a_{n} b_{2}-b_{n-1}-b_{n-2}+a_{n-2} b_{n}+a_{n-3} b_{n} \\
g_{n}=a_{n} b_{3}-b_{n-1}+a_{n-2} b_{n}
\end{array}\right.
$$

if $n=4 m+3$, then

$$
\left\{\begin{array}{l}
f_{1}=1-a_{1}, \\
f_{k}=(-1)^{\left\lceil\frac{3 k+3}{2}\right\rceil} a_{k}+(-1)^{\left\lceil\frac{3 k}{2}\right\rceil} a_{k-1}+(-1)^{\left\lceil\frac{5 k+2}{2}\right\rceil} b_{k-1} b_{n}+(-1)^{\left\lceil\frac{5 k-3}{2}\right\rceil} b_{k-2} b_{n} \\
\quad k=2,3, \ldots, n-4 \\
f_{n-3}=-a_{n}+a_{n-3}+a_{n-4}-b_{n-4} b_{n}-b_{n-5} b_{n} \\
f_{n-2}=a_{1} a_{n}-a_{n-2}+a_{n-3}+b_{n-3} b_{n}-b_{n-4} b_{n} \\
f_{n-1}=a_{2} a_{n}-a_{n-1}-a_{n-2}+b_{n-2} b_{n}+b_{n-3} b_{n} \\
f_{n}=-a_{3} a_{n}-a_{n-1}+b_{n-2} b_{n}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
g_{1}=-b_{1}+b_{n}, \\
g_{k}=(-1)^{\left\lceil\frac{5(k+1)}{2}\right\rceil} b_{k}+(-1)^{\left\lceil\frac{5 k}{2}\right\rceil} b_{k-1}+(-1)^{\left\lceil\frac{3 k}{2}\right\rceil} a_{k-1} b_{n}+(-1)^{\left\lceil\frac{3(k-1)}{2}\right\rceil} a_{k-2} b_{n}, \\
\quad k=2,3, \ldots, n-3, \\
g_{n-2}=a_{n} b_{1}-b_{n-2}-b_{n-3}+a_{n-3} b_{n}+a_{n-4} b_{n}, \\
g_{n-1}=-a_{n} b_{2}+b_{n-1}-b_{n-2}-a_{n-2} b_{n}+a_{n-3} b_{n}, \\
g_{n}=-a_{n} b_{3}+b_{n-1}-a_{n-2} b_{n},
\end{array}\right.
$$

the proof methods are similar to the case $n=4 m$, and we omit them.
By Theorem 2.1 and Lemma 3.2, the following theorem is immediately.
THEOREM 3.3. For $n \geq 7$, the $n \times n$ complex sign pattern matrix \mathcal{S}_{n} having the form (3.1) is spectrally arbitrary, and every superpattern of \mathcal{S}_{n} is a spectrally arbitrary complex sign pattern matrix.

THEOREM 3.4. For $n \geq 7$, the $n \times n$ complex sign pattern matrix \mathcal{S}_{n} having the form (3.1) is a minimal spectrally arbitrary complex sign pattern matrix.

Proof. Let $\mathcal{S}_{n}=\left(s_{k l}\right), \mathcal{T}=\left(t_{k l}\right)$ be a subpattern of \mathcal{S}_{n} and \mathcal{T} be spectrally arbitrary.

Firstly, it is easy to see that $t_{k k}=s_{k k}$ for $k=1, n-1, n$.
Secondly, note that if all matrices in $Q_{c}(\mathcal{T})$ are singular, or all matrices in $Q_{c}(\mathcal{T})$ are nonsingular, then \mathcal{T} is not spectrally arbitrary. Thus $t_{k, k+1}=s_{k, k+1}$ for $k=$ $1,2, \ldots, n-1$.

Finally, since \mathcal{T} is spectrally arbitrary, there is a complex matrix $C \in Q_{c}(\mathcal{T})$ which is nilpotent. We may assume C has been scaled so that the (n, n) entry of C is -1 . We can also assume that the $(k, k+1)$ entry of C is 1 or -1 for $k=1,2, \ldots, n-1$ (otherwise they can be adjusted to be 1 or -1 by suitable similarities). Thus, without loss of generality, suppose that C has the form (3.2). From $f_{k}=0$ and $g_{k}=0$ for $k=1,2, \ldots, n$, as in Lemma 3.1, we can conclude that $a_{k} \neq 0$ for $k=2, \ldots, n$, and $b_{k} \neq 0$ for $k=2, \ldots, n-1$.

Then $\mathcal{T}=\mathcal{S}_{n}$, and so \mathcal{S}_{n} is a minimal spectrally arbitrary complex sign pattern matrix.

Lemma 3.5. Let complex sign pattern matrices

$$
\mathcal{S}_{2}=\left[\begin{array}{cc}
1-i & 1 \\
i & -1+i
\end{array}\right], \mathcal{S}_{3}=\left[\begin{array}{ccc}
1-i & 1 & 0 \\
1+i & 0 & -1 \\
1 & 0 & -1+i
\end{array}\right], \mathcal{S}_{4}=\left[\begin{array}{cccc}
1+i & 1 & 0 & 0 \\
1+i & 0 & -1 & 0 \\
-1 & i & -i & 1 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

$$
\mathcal{S}_{5}=\left[\begin{array}{ccccc}
1+i & 1 & 0 & 0 & 0 \\
1-i & 0 & -1 & 0 & 0 \\
1+i & 0 & 0 & 1 & 0 \\
1-i & 0 & 0 & -i & -1 \\
0 & 0 & 0 & -1 & -1
\end{array}\right], \mathcal{S}_{6}=\left[\begin{array}{cccccc}
1+i & 1 & 0 & 0 & 0 & 0 \\
-1-i & 0 & -1 & 0 & 0 & 0 \\
1+i & 0 & 0 & 1 & 0 & 0 \\
-1 & -i & 0 & 0 & -1 & 0 \\
-1 & i & 0 & 0 & -i & 1 \\
0 & 0 & 0 & -1 & 0 & -1
\end{array}\right]
$$

Then $\mathcal{S}_{j}, j=2,3,4,5,6$ are minimal spectrally arbitrary complex sign pattern matrices.

Proof. First, we prove that each \mathcal{S}_{j} is spectrally arbitrary. For \mathcal{S}_{2}, we are able to obtain a nilpotent complex matrix

$$
C_{2}=\left[\begin{array}{cc}
a_{1}-i b_{1} & 1 \\
i a_{2} & -1+i b_{2}
\end{array}\right] \in Q_{c}\left(\mathcal{S}_{2}\right)
$$

where $a_{2}=2, a_{1}=b_{1}=b_{2}=1$. Replacing the entries $a_{1}, b_{1}, a_{2}, b_{2}$ of C_{2} by variables in using Theorem 2.1, it can be verified that \mathcal{S}_{2} is spectrally arbitrary.

For \mathcal{S}_{3}, we are able to obtain a nilpotent complex matrix

$$
C_{3}=\left[\begin{array}{ccc}
a_{1}-i b_{1} & 1 & 0 \\
a_{2}+i b_{2} & 0 & -1 \\
a_{3} & 0 & -1+i b_{3}
\end{array}\right] \in Q_{c}\left(\mathcal{S}_{3}\right)
$$

where $a_{1}=1, a_{2}=2, a_{3}=8, b_{1}=b_{3}=\sqrt{3}, b_{2}=2 \sqrt{3}$. Replacing the entries $a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}$ of C_{3} by variables in using Theorem 2.1, it can be verified that \mathcal{S}_{3} is spectrally arbitrary.

For \mathcal{S}_{4}, we are able to obtain a nilpotent complex matrix

$$
C_{4}=\left[\begin{array}{cccc}
a_{1}+i b_{1} & 1 & 0 & 0 \\
a_{2}+i b_{2} & 0 & -1 & 0 \\
-a_{3} & i b_{3} & -i b_{4} & 1 \\
0 & 0 & a_{4} & -1
\end{array}\right] \in Q_{c}\left(\mathcal{S}_{4}\right)
$$

where $a_{1}=1$, , $a_{2}=\sqrt{5}, a_{3}=2(7+4 \sqrt{5}), a_{4}=2+\sqrt{5}, b_{1}=b_{2}=b_{4}=\sqrt{3+2 \sqrt{5}}, b_{3}=$ $2 \sqrt{3+2 \sqrt{5}}$. Replacing the entries $a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, a_{4}, b_{4}$ of C_{4} by variables in using Theorem 2.1, it can be verified that \mathcal{S}_{4} is spectrally arbitrary.

For \mathcal{S}_{5}, we are able to obtain a nilpotent complex matrix

$$
C_{5}=\left[\begin{array}{ccccc}
a_{1}+i b_{1} & 1 & 0 & 0 & 0 \\
a_{2}-i b_{2} & 0 & -1 & 0 & 0 \\
a_{3}+i b_{3} & 0 & 0 & 1 & 0 \\
a_{4}-i b_{4} & 0 & 0 & -i b_{5} & -1 \\
0 & 0 & 0 & -a_{5} & -1
\end{array}\right] \in Q_{c}\left(\mathcal{S}_{5}\right)
$$

where $a_{1}=1, a_{2}=1+\sqrt{2}, a_{3}=2, a_{4}=6 \sqrt{2}, a_{5}=\sqrt{2}-1, b_{1}=b_{2}=b_{5}=$ $\sqrt{1+2 \sqrt{2}}, b_{3}=2 \sqrt{1+2 \sqrt{2}}, b_{4}=2(2 \sqrt{1+2 \sqrt{2}}-\sqrt{2(1+2 \sqrt{2})})$. Replacing the entries $a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, a_{4}, b_{4}, a_{5}, b_{5}$ of C_{5} by variables in using Theorem 2.1, it can be verified that \mathcal{S}_{5} is spectrally arbitrary.

For \mathcal{S}_{6}, we are able to obtain a nilpotent complex matrix

$$
C_{6}=\left[\begin{array}{cccccc}
a_{1}+i b_{1} & 1 & 0 & 0 & 0 & 0 \\
-a_{2}-i b_{2} & 0 & -1 & 0 & 0 & 0 \\
a_{3}+i b_{3} & 0 & 0 & 1 & 0 & 0 \\
-a_{4} & -i b_{4} & 0 & 0 & -1 & 0 \\
-a_{5} & i b_{5} & 0 & 0 & -i b_{6} & 1 \\
0 & 0 & 0 & -a_{6} & 0 & -1
\end{array}\right] \in Q_{c}\left(\mathcal{S}_{6}\right)
$$

where $a_{1}=1, a_{2}=\frac{4}{3}-\frac{\sqrt{37}}{6}, a_{3}=\frac{1}{6}(2 \sqrt{37}-1), a_{4}=2, a_{5}=\frac{1}{12}(4+19 \sqrt{37}), a_{6}=$ $\frac{1}{6}(7+\sqrt{37}), b_{1}=b_{2}=b_{6}=\sqrt{\frac{\sqrt{37}}{6}-\frac{1}{3}}, b_{3}=2 \sqrt{\frac{\sqrt{37}}{6}-\frac{1}{3}}, b_{4}=\frac{10}{3} \sqrt{\frac{\sqrt{37}}{6}-\frac{1}{3}}-$ $\frac{1}{6} \sqrt{37\left(\frac{\sqrt{37}}{6}-\frac{1}{3}\right)}, b_{5}=\frac{13}{3} \sqrt{\frac{\sqrt{37}}{6}-\frac{1}{3}}+\frac{1}{3} \sqrt{37\left(\frac{\sqrt{37}}{6}-\frac{1}{3}\right)}$. Replacing the entries a_{1}, b_{1}, a_{2}, $b_{2}, a_{3}, b_{3}, a_{4}, b_{4}, a_{5}, b_{5}, a_{6}, b_{6}$ of C_{6} by variables in using Theorem 2.1, it can be verified that \mathcal{S}_{6} is spectrally arbitrary.

Next, by the same argument as in Theorem 3.4, we see that each \mathcal{S}_{j} is minimal spectrally arbitrary.

Theorem 3.4 and Lemma 3.5 immediately yield the following.
Theorem 3.6. For $n \geq 2$, there exists an $n \times n$ minimal, irreducible, spectrally arbitrary complex sign pattern matrix.
4. The minimum number of nonzero entries in a spectrally arbitrary complex sign pattern matrix. Recall that the number of nonzero entries of a complex sign pattern matrix \mathcal{S} is the number of nonzero entries of both the real and imaginary parts of \mathcal{S}. In this section we will study the minimum number of nonzero entries in a irreducible spectrally arbitrary complex sign pattern matrix.

Given a sign pattern \mathcal{A}, let $D(\mathcal{A})$ be its associated digraph. For any digraph D, let $G(D)$ denote the underlying multigraph of D, i.e., the graph obtained from D by ignoring the direction of each arc.

Lemma 4.1. ([3]) Let \mathcal{A} be an $n \times n$ sign pattern and let $A \in Q(\mathcal{A})$. If T is a subdigraph of $D(\mathcal{A})$ such that $G(T)$ is a forest, then \mathcal{A} has a realization that is positive diagonally similar to A such that each entry corresponding to an arc of T has magnitude 1. In particular, if \mathcal{A} is irreducible, then $G(D(\mathcal{A})$) contains a spanning tree, and \mathcal{A} must therefore have a realization with at least $n-1$ off-diagonal entries in $\{-1,1\}$ that is positive diagonally similar to A.

We easily extend Lemma 4.1 to complex sign pattern matrices.
Lemma 4.2. Let $\mathcal{S}=\mathcal{A}+i \mathcal{B}$ be an $n \times n$ irreducible complex sign pattern matrix, and let $C=A+i B \in Q_{c}(\mathcal{S})$. Then there is a complex matrix $\hat{C}=\hat{A}+i \hat{B} \in Q_{c}(\mathcal{S})$ (where \hat{A} and \hat{B} are real matrices, $\hat{A} \in Q(\mathcal{A})$ and $\hat{B} \in Q(\mathcal{B})$) such that the following two conditions hold.
(1) \hat{C} has at least $n-1$ off-diagonal entries in which either the real part or complex part of each entry is in $\{-1,1\}$;
(2) \hat{C} is positive diagonally similar to C.

Let $\mathbb{Q}[X]$ be the set of polynomials with rational coefficients and finite degree. A set $H \subseteq \mathbb{R}$ is algebraically independent if, for all $h_{1}, h_{2}, \ldots, h_{n} \in H$ and each nonzero polynomial $p\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{Q}[X], p\left(h_{1}, h_{2}, \ldots, h_{n}\right) \neq 0$ (see [13, p.316] for further details). Let $\mathbb{Q}(H)$ denote the field of rational expressions

$$
\begin{gathered}
\left\{\left.\frac{p\left(h_{1}, h_{2}, \ldots, h_{m}\right)}{q\left(t_{1}, t_{2}, \ldots, t_{n}\right)} \right\rvert\, p\left(x_{1}, x_{2}, \ldots, x_{m}\right), q\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{Q}[X],\right. \\
\left.h_{1}, h_{2}, \ldots, h_{m}, t_{1}, t_{2}, \ldots, t_{n} \in H\right\},
\end{gathered}
$$

and let the transcendental degree of H be

$$
\text { tr.d. } H=\sup \{|T| \mid T \subseteq H, T \text { is algebraically independent }\}
$$

In [3] it was shown that every $n \times n$ irreducible spectrally arbitrary sign pattern matrix contains at least $2 n-1$ nonzero entries. We adapt that proof to the complex sign pattern matrix case to obtain:

Theorem 4.3. For $n \geq 2$, an $n \times n$ irreducible spectrally arbitrary complex sign pattern matrix must have at least $3 n-1$ nonzero entries.

Proof. Let $\mathcal{S}=\mathcal{A}+i \mathcal{B}$ be an $n \times n$ irreducible spectrally arbitrary complex sign pattern matrix with m nonzero entries. Choose a set $V=\left\{f_{1}, g_{1}, \cdots, f_{n}, g_{n}\right\} \subseteq \mathbb{R}$ that tr.d. $V=2 n$. By Lemma 4.2, there is a complex matrix $\hat{C}=\hat{A}+i \hat{B} \in Q_{c}(\mathcal{S})$ (where \hat{A} and \hat{B} are real matrices, $\hat{A} \in Q(\mathcal{A})$ and $\hat{B} \in Q(\mathcal{B})$) with characteristic polynomial

$$
\lambda^{n}+\left(f_{1}+i g_{1}\right) \lambda^{n-1}+\cdots+\left(f_{n-1}+i g_{n-1}\right) \lambda+\left(f_{n}+i g_{n}\right)
$$

such that \hat{C} satisfies the two conditions in Lemma 4.2.
Denote $\hat{A}=\left(\hat{a}_{k l}\right), \hat{B}=\left(\hat{b}_{k l}\right)$, and $H=\left\{\hat{a}_{k l} \mid 1 \leq k, l \leq n\right\} \cup\left\{\hat{b}_{k l} \mid 1 \leq k, l \leq n\right\}$. Since for each $1 \leq k \leq n, f_{k}$ and g_{k} are polynomials in the entries of H with rational coefficients, it follows that $\mathbb{Q}(V) \subseteq \mathbb{Q}(H)$. Then

$$
2 n=t r \cdot d \cdot \mathbb{Q}(V) \leq t r \cdot d \cdot \mathbb{Q}(H) \leq m-(n-1)
$$

Thus $m \geq 3 n-1$.
Note that the spectrally arbitrary complex sign pattern $\mathcal{S}_{n}(n \geq 2)$ in Section 3 is irreducible, and has exactly $3 n$ nonzero entries. Then for every $n \geq 2$ there exists an $n \times n$ irreducible, spectrally arbitrary complex sign pattern with exactly $3 n$ nonzero entries. By Theorem 4.3 the minimum number of nonzero entries in an $n \times n$ irreducible, spectrally arbitrary complex sign pattern must be either $3 n$ or $3 n-1$.

A well known conjecture in [3] is that for $n \geq 2$, an $n \times n$ irreducible spectrally arbitrary sign pattern matrix has at least $2 n$ nonzero entries. Here, we extend the conjecture to complex sign pattern matrix case.

Corollary 4.4. For $n \geq 2$, an $n \times n$ irreducible spectrally arbitrary complex sign pattern matrix has at least $3 n$ nonzero entries.

Acknowledgment. The authors would like to thank the referee for valuable suggestions and comments, which have greatly improved the original manuscript.

REFERENCES

[1] J.H. Drew, C.R. Johnson, D.D. Olesky, and P. van den Driessche. Spectrally arbitrary patterns. Linear Algebra and its Applications, 308:121-137, 2000.
[2] J.J. McDonald, D.D. Olesky, M.J. Tsatsomeros, and P. van den Driessche. On the spectra of striped sign patterns. Linear and Multilinear Algebra, 51:39-48, 2003.
[3] T. Britz, J.J. McDonald, D.D. Olesky, and P. van den Driessche. Minimal spectrally arbitrary sign patterns. SIAM Journal on Matrix Analysis and Applications, 26:257-271, 2004.
[4] M.S. Cavers, I.-J. Kim, B.L. Shader, and K.N. Vander Meulen. On determining minimal spectrally arbitrary patterns. Electronic Journal of Linear Algebra, 13:240-248, 2005.
[5] M.S. Cavers and K.N. Vander Meulen. Spectrally and inertially arbitrary sign patterns. Linear Algebra and its Applications, 394:53-72, 2005.
[6] B.D. Bingham, D.D. Olesky, and P. van den Driessche. Potentially nilpotent and spectrally arbitrary even cycle sign patterns. Linear Algebra and its Applications, 421:24-44, 2007.
[7] I.-J. Kim, D.D. Olesky, and P. van den Driessche. Inertially arbitrary sign patterns with no nilpotent realization. Linear Algebra and its Applications, 421:264-283, 2007.
[8] L.M. DeAlba, I.R. Hentzel, L. Hogben, J. McDonald, R. Mikkelson, O. Pryporova, B.L. Shader, and K.N. Vander Meulen. Spectrally arbitrary patterns: Reducibility and the $2 n$ conjecture for $n=5$. Linear Algebra and its Applications, 423:262-276, 2007.
[9] Shoucang Li and Yubin Gao. Two new classes of spectrally arbitrary sign patterns. Ars Combinatoria, 90:209-220, 2009.
[10] L. Corpuz and J.J. McDonald. Spectrally arbitrary zero-nonzero patterns of order 4. Linear and Multilinear Algebra, 55:249-273, 2007.
[11] J.J. McDonald and J. Stuart. Spectrally arbitrary ray patterns. Linear Algebra and its Applications, 429:727-734, 2008.
[12] C.A. Eschenbach, F.J. Hall, and Z. Li. From real to complex sign pattern matrices. Bulletin of the Australian Mathematical Society., 57:159-172, 1998.
[13] T. Hungerford, Algebra, 2nd ed., Graduate Texts in Math., 73, Springer-Verlag, New YorkBerlin, 1980.

[^0]: *Received by the editors August 13, 2009. Accepted for publication October 28, 2009. Handling Editor: Michael J. Tsatsomeros.
 ${ }^{\dagger}$ Department of Mathematics, North University of China, Taiyuan, Shanxi 030051, P.R. China (ybgao@nuc.edu.cn, ylshao@nuc.edu.cn). Supported by NSF of Shanxi (No. 2007011017, 2008011009).
 \ddagger School of Mathematics and Computation Sciences, Anhui University, Hefei 230039, P.R. China (fanyz@ahu.edu.cn). Supported by NNSF of China (No. 10601001).

