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RATIONAL ORTHOGONAL VERSUS REAL ORTHOGONAL*
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Abstract. The main question raised here is the following one: Given a real orthogonal n X n
matrix X, is it true that there exists a rational orthogonal matrix Y having the same zero-pattern?
It is conjectured that this is the case and proved for n < 5. The related problem for symmetric
orthogonal matrices is also considered.
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1. Introduction. Let X = [X; ;] be an m x n matrix over any field. The zero-
pattern of X, denoted by X = [X, ;], is the m x n (0, 1)-matrix such that
X, = ]., lf Xi’j 7é 0;

©J 0, if X’L',j =0.

We shall say that X is the support of X.

A square matrix X is said to be unitary if its entries are complex and X Xt = I,
where X1 is the transpose conjugate of X and I is the identity matrix. A square
matrix X is said to be real orthogonal (or, equivalently, orthogonal) if its entries are
real and X X7 = I, where X7 is the transpose of X. A square matrix X is said to be
rational orthogonal if it is orthogonal and its entries are rational. The sets of unitary,
orthogonal, and rational orthogonal matrices of size n are denoted by U(n), O(n) and
0,,(Q), respectively.

The notion and the study of the zero-patterns of unitary matrices go back to [5]
(see also [4]) in the mathematical context, and to [11] (see also [10]), motivated by
foundational questions in quantum mechanics. An extended list of references on this
topic is contained in [15]. For a comprehensive reference in matrix theory see, e.g.,
[8].
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When discussing properties of zero-patterns, it is natural to ask whether the
number field influences their structure. Specifically, in this paper we formulate and
support the following two conjectures.

CONJECTURE 1.1. For any X € U(n) there exists Y € O(n) such that X =Y.

CONJECTURE 1.2. For any Y € O(n) there exists Z € O,(Q) such thatY = Z

Our main tool of analysis will be the notion of a strongly quadrangular matrix
introduced in [14]. This extends naturally the concept of quadrangularity (or, equiv-
alently, combinatorial orthogonality [1]). A matrix X is said to be quadrangular if
every two rows and every two columns “intersect” in more than a single entry when-
ever their intersection is nonempty. In other words, the inner product of every two
rows and every two columns of X is not 1. Let X = [X ;] be a complex m x n matrix.
We write X > 0if all X;; > 0. For R C {1,2,...,m} and C C {1,2,...,n}, we denote
by X¢ the |R| x |C| submatrix of X in the intersection of the rows and the columns
indexed by R and C, respectively.

DEFINITION 1.3 (Strongly quadrangular matrix). We say that an m x n {0,1}-
matriz X = [X; ;] is row strongly quadrangular (RSQ) if there does not exist R C
{1,2,...,m} with |R| > 2 such that, defining R’ = {k: X; ;X1 =1 for some i # j in
R}, we have |R'| < |R| and X&' has no zero-rows. We say that an mxn {0,1}-matriz
X is strongly quadrangular (SQ) if both X and X are RSQ.

In [14], it was proved that if X € U(n) then X is SQ, but the converse is not
necessarily true (see also [12]). Proposition 2.1 below gives the smallest possible SQ
zero-patterns that do not support unitary matrices.

So far we have been unable to exhibit counterexamples which would disprove
Conjecture 1.1 or Conjecture 1.2. We can however get a feeling about the problem,
by explicitly working out concrete situations. For instance, Beasley, Brualdi and
Shader [1] have shown that if X is a real matrix with zero-pattern
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11010010001
11101001000
01110100100
00111010010
00011101001
X=(10001110100
01000111010
001 00011101
10010001110
01 0010O0O01 11
L1 01 0 01 0 O0O0 1 1]

then X ¢ O(11). Once verified that that X is SQ, we observe that X is not a
candidate for a counterexample to Conjecture 1.1, therefore corroborating the idea
that the number field does not have a strong role in determining a zero-pattern. We
can proceed as follows in four steps:

e By multiplying the columns 1,2,4,7, and 11 by suitable phase factors, all
entries in the first row are real;
e By multiplying the rows 2,3,5,6,7,9,10 and 11 by phase factors, the entries

(2,1),(3,2),(5,4),(6,1),(7,2),(9,1),(10,2) and (11,1)

are real;
e By multiplying the columns 3,5,6,8 and 9 by phase factors, the entries

(2,3),(2,5),(2,8),(3,6) and (3,9)

are real;
e Finally, by multiplying the rows 4 and 8, and the column 10 by phase factors,
the entries

(4,3),(8,3) and (4, 10)
are real.

At this point, all the entries mentioned above are real. If X € U(n) then the
inner products of different rows of the matrix obtained with these steps must vanish.
It follows that X is a real matrix, but we know that X ¢ O(11) by [1].

Here we adopt a systematic approach to our conjectures. In Section 2, we verify
Conjecture 1.1 and Conjecture 1.2 for all (0,1)-matrices of size n < 5. For this
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purpose, we use the tables in [15] of all SQ (0, 1)-matrices of small size. On the way,
we prove that some of those are not zero-patterns of unitary matrices, thus refining
the classification of [15]. In Section 3, we construct examples of symmetric rational
orthogonal matrices with specified indecomposable zero-pattern and specified trace.
In Section 4, we construct some infinite families of rational orthogonal matrices. The
constructions are based on orthogonal designs, graphs and combinatorial arguments.
We conclude our paper in Section 5 with four intriguing open problems.

Recall that an n x n matrix X that contains an s X (n — s) zero submatrix for
0 < s < n is said to be decomposable. If no such submatrix exists then X is said to
be indecomposable.

2. Rational orthogonal matrices of small size. We shall consider the inde-
composable SQ zero-patterns of size n < 5. Two (0, 1)-matrices X and Y are said to
be equivalent if there are permutation matrices P and ) such that PXQ =Y. A list
of representatives for equivalence classes of indecomposable SQ zero-patterns of size
n < 5 was drawn in [15]. We construct rational orthogonal matrices for each specific
zero-pattern. This is not possible for the cases 14,15 and 16, because it turns out
that those do not support unitary matrices. Here is a formal statement of such a fact:

PROPOSITION 2.1. There is no matric X € U(5) such that X is one of the
following zero-patterns:

00 1 11 001 11 001 11
001 11 001 11 001 11
11 0 11 , 11 0 11 , 11 0 11
11 1 11 111 01 111 01
r1r111], 11117, 11 10];,

Proof. Suppose that such X exists. Let Y = xh2 and 7z = x4 By

(34,5} {345}
inspecting the above three zero-patterns, we conclude that Z has rank 2. Since
X is unitary, we have YTZ = 0 and so the two columns of Y must be linearly

dependent. Consequently, the first two columns of X are linearly dependent, which
is a contradiction. O

The main result of the paper is essentially the following theorem:
THEOREM 2.2. Conjecture 1.1 and Conjecture 1.2 are true for n < 5.

Proof. Clearly it suffices to consider only the indecomposable SQ zero-patterns.
For n < 5, these zero-patterns have been enumerated in [15] (up to equivalence).
All of these zero-patterns support unitary matrices, except the three cases for n =5
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mentioned in Proposition 2.1. Thus, in order to prove the theorem it suffices to
construct a matrix in O, (Q) for each of the remaining zero-patterns. This is done in
the list below. Many of these matrices have been constructed by using an exhaustive
search but in some cases this was not possible and we have resorted to ad hoc methods.
Some of these methods are sketched in Section 4. O

In our list, a matrix X will be written in the form

k

where k is simply a numerical label for the equivalence classes of zero-patterns, iden-
tical to the labels in [15]. We say that the denominator d is minimal if it is the
smallest possible denominator among all rational orthogonal matrices with the same
zero-pattern. All denominators in the list are minimal except for a few cases, when
n = 5. Exceptions are the cases 6, 7, 19, 28, and 31.

2.1. n=2.
R
514 -3
1
2.2. n=3.
16 12 15 2 -1
1 1
= | 12 9 —20 | -1
15 —20 0|, 2 2 -1 ],
2.3. n=4.
8 —3 6 0 3 —6
1| -3 0 1 0 1
9 2 6 -4 5 9 3 8 -2 2
2 6 5 —4], -6 4 2 =5,
16 7 0 —28 1 2 -2 0
1 7 0 32 4 1 20 1 2
33 0 32 -1 8 31 -2 1 o
—28 4 8 -—15 0 2 2 -1
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—16
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12
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-96
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40
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—12
—16

Gl

N[—=

=
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&=

0 0 9 12
2 14 -4 3
10 =5 -8 6
12 8 -6 ],
1 1 1 -1
1 1 -1 1
1 -1 1 1
-1 11 1]
4 -3 2 4 2
-3 4 2 4 2
2 2 3 -4 4
4 4 -4 1 0
2 4 0 -5
3 -2 2 2
2 1 -4 0
-2 2 0 4
2 -4 0 -1 2
2 0 4 2 -1
256 240 192
240 225 180
192 180 144
375 0 —500
300 —500 225
16 12 0 12
12 9 0 -16
0 0 0 15
12 —-16 15 0
—9 12 20 0O
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0 0 2 6 9 0 0 0 6 8
1 -2 -6 8 —4 1 -7 -5 —4 3
1 1
Ll 2 7 6 4 —4 L1 -7 5 4 -3
4 -8 6 1 -2 7 1 -5 4 -3
0 2 -3 -2 2] T 1 5 -4 3]
0 0 0 27 36 0 o0 0 27 -36
0 42 6 12 -9 0 35 2 16 12
1 1
L1 5 —16 12 32 —24 L11s 0 -30 24 18
20 2 -39 8 —6 30 —20 25 8 6
40 1 18 -8 6 |, 30 20 —10 —20 —15
0 0 0 132 —99 0 0 15 36
80 35 84 112 28 5 —6 24 —10
1 1
T 5 0 160 —24 —32 ~1 2 18 —32 —12 5
60 -35 0 12 16 27 —4 10 —24 10
—40 —140 20 45 60 |, 2 34 19 0 0
0 o0 0 9 12 0 0 o0 99 132
0 14 2 4 -3 0 35 140 64 —48
1 1
L1110 —4 3 8 —6 = | 160 0 —20 28 —21
10 3 4 -8 6 40 20 75 —112 84
5 2 —14 0 w0 5 —160 40 0 0
[ o 0 0 9 12 ] [0 o 7 14 14 ]
0 10 10 4 -3 0 7 0 14 —14
1 1
L1110 0 -5 8 —6 L1 —6 18 6 —6 3
10 5 0 -8 6 9 8 —-16 2 6
| 5 10 10 0 0], 18 2 10 -3 -2 ]
[0 o 6 18 9 | [0 o 6 9 18 |
0 14 0 -7 14 0 14 ~14 7
1 1
L1 13 8 12 0 -8 120 1 6 0 -2
4 10 -15 8 —6 4 10 —-15 10 O
|16 -9 -6 -2 8], -5 12 12 8 -8,

31

29
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0 0 0 9 12 0O O 4 3 12
0o —-12 -9 0 1 10 0 -8 2
1 1
Ll 5 -6 8 -8 6 = 2 6 8 —4
10 -3 4 8§ —6 8§ 2 -9 2
10 6 -8 —4 3 36 —-10 —6 4 37
0 0 5 —10 10 0o 11 22 22
3 -12 0 6 6 8§ 15 0 —-20 20
1 1
=012 1 8 0 -4 =10 12 26 0 -13
—6 4 10 8 3 30 —-12 -6 3 0
6 8 —6 5 8 28 5 24 -16 14 -6 30
[0 0o 0 25 60 0 0 0 45 60
-7 60 24 0 0 0 0 60 36 —27
=24 20 57 0 o0 =] -10 7 15 —16 12
36 9 —-12 —-48 20 50 25 =30 32 —24
i 48 12 —-16 36 —15 2 55 —10 30 —32 24 "
[ o 0 0 39 52 0 0 0 75 100
0 0 25 —48 36 0 75 100 0 0
1 1
=125 60 0 0 0 4| 0 60 —45 80 —60
36 15 48 16 —12 100 —48 36 36 —27
I 48 20 —-36 —12 9 19 75 64 —48 —48 36 3

3. Symmetric rational orthogonal matrices. A square matrix X is involu-
tory if X2 = I. Tt is well known that a matrix X € U(n) is hermitian if and only
if it is involutory. In particular, a matrix X € O(n) is symmetric if and only if it is
involutory.

One can easily formulate the symmetric analogues of Conjecture 1.1 and Conjec-
ture 1.2. For the sake of simplicity we shall formulate just the combined conjecture.

CONJECTURE 3.1. For any hermitian X € U(n) there exists a symmetric Z €
0, (Q) such that X = Z and Tr (X) = Tr (2).

Let X = X' € U(n). Then X? = I, and so the eigenvalues of X belong to
{£1}. Consequently, Tr(X) is an integer congruent to nmod2. Since —X = X
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and Tr(—X) = —Tr(X), in proving this conjecture we may assume that Tr(X) > 0.
Clearly, we can also assume that the zero-pattern X is indecomposable (we also know
that it is necessarily SQ). There are further restrictions on possible values of the trace.

PROPOSITION 3.2. There is no indecomposable hermitian matriz X € U(n),
n>2, with X1 0=0 and Tr (X) =n —2.

Proof. Suppose that such a matrix, X, exists. As X2 = I and X # +I, the
eigenvalues of X are +1 and —1 and the two eigenspaces of X are orthogonal to each
other. By indecomposability we have X3 2 # 1. Let {eq,...,en} be the standard basis
of C". Since X; 2 = 0, the vector Xey is orthogonal to e; and also Xep # es. Thus
the vector v = Xey — €5 is nonzero and v | e;. As Xv = —v and the —1-eigenspace
of X is 1-dimensional, we conclude that the subspace v is the +1-eigenspace of X.
Hence Xe; = ey, i.e., X117 = 1. This contradicts the indecomposability of X. O

The objective of this section is to provide a support for the above conjecture
by constructing examples of symmetric rational orthogonal matrices with specified
indecomposable zero-pattern and specified trace. We shall consider zero-patterns of
size n < 5.

Two symmetric (0,1)-matrices X and Y are said to be congruent if there is
a permutation matrix P such that PXPT = Y. In graph-theoretical terms, the
permutation matrix P represents an isomorphism between the undirected graph with
adjacency matrix X and the undirected graph with adjacency matrix Y.

Let X = [X; ;] € U(n) be a hermitian matrix. We say that X is in quasi-normal
form if Tr(X) > 0 and X741 > Xo9 > --- > X, .. In our list a matrix X will be
written in the form

where k£ and [ are simply numerical labels and ¢ is the trace of the matrix. The index
k corresponds to the one used for the matrices in Section 2. The index [ specifies the
congruence class of symmetric zero-patterns within the k-th equivalence class.

Our list is not complete. We are in fact unable to construct symmetric rational
orthogonal matrices with specified trace for exactly two among all zero-patterns. For
these matrices, we give examples of matrices as close as possible to symmetric rational
one in Section 5. All denominators in the list are minimal except for a few cases, when
n = 5. Exceptions are the cases (k,l) = (2,2),(3,2),(6,1),(11,2),(22,2).
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3.1. n=2
0
1[3 4]
1 B .
4 =3 ],
3.2. n=3.
1
16 12 15 2 -1
1 1
% | 12 9 —20 11 2
15 —20 0], 2 2
3.3. n=4.
0
8 -3 2 2 8 2
;| -3 0 6 6 ) 2 5
9 2 6 -4 5 91 —2 4
2 6 5 —4] 3 —6
0
6 0 3 —6 8 5
f 01 8 4 f 5 0
9 3 8 —2 2 91 —10 10
—6 4 2 5] 6 10
6 7 0 —28 2 0
N 7 0 32 4 1|0 2
33 0 32 -1 8 3192 1
28 4 8 —15], 1 -2
0
1 2 -2 25 0
f 2 0 1 N 0 0
31 21 o0 65| —36 52
02 2 -1], 48 39
0
1 -1 1 1 1
P T T B 1 1 1
2 1 1 -1 1 2 1 -1
1 1 1 -1 -1 1
8

ELA

—36
52

12

659

48
39
12
—16
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3.4. n=>5.

3 1
3 11 -2 19 4 -12 12 8
1 3 -1 -1 2 4 16 6 —-15 14
il 1 -1 3 -1 2 = | -12 6 9 18 12
1 -1 -1 3 2 12 -15 18 0 6
-2 2 2 2 0] 8 14 12 6 -17 |
1 1
4 =3 2 4 2 200 90 120 125 —250
-3 4 2 4 2 90 168 —276 150 75
sl 2 2 3 -4 4 75 | 120 —276 7 200 100
4 4 -4 1 0 125 150 200 O 250
2 2 4 0 5|, -250 75 100 250 0J,,
1 1
8 4 1 2 -6 245 84 80 —140 112
4 5 -4 0 38 84 80 112 35 —280
1 1
41 1 -4 o0 10 2 5 80 112 0 280 91
2 0 10 -1 4 —140 35 280 0 80
6 8 2 4 -1], 112 —280 91 80 0,,
1 1
3.2 -2 2 2 4 0 1 -2 2
2 2 1 -4 0 0 4 -2 1 2
-2 1 2 o0 4 1 -2 0 4 2
2 -4 0 -1 2 -2 1 4 0 2
2 0 4 2 -1 2 2 2 2 -3
4,1 4,2
1
145 8 0 14 -18 256 240 192 375 300
8 51 80 -112 0 240 225 180 0 —500
1 1
i 0 80 47 70 90 w5 | 192 180 144 —500 225
14 —112 70 0 63 375 0 —500 0 0
-18 0 9 63 —96 300 —500 225 0 0

5,1
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50 —25 0
—25 50 0
1
- 0o 0 o0
30 30 60
40 40 —45
8 2 2 0
2 4 —6 3
1
5l 2 -6 1 6
0 3 6 0
-3 4 2 6
;L
27
50320
27156
78625 0
—46620
27183
4 4 2 6
4 4 2 -3
1
12 2 1 -6
6 -3 —6 0
3 -6 6 0
5 4 0 -6
4 3 —4 6
sl 0 -4 1 o0
—6 6 0 0
2 2 8 3

30
30
60
-9
—12

40
40
—45
—12
—16

—12

15
18

27156
28305

—43680

S w oo N N

51408
9620

18

1

1
25
7
19
12
1
= 8
—12
4
10 9
15 18
2 0
0 0
—20 18
0
—43680
0
12025
64260
8
0
1
i1 -3
2
2
400
0
=41 100
441
105

116

12

—20
12

1

—46620

51408
12025

0
34944

400
80
84

—145

ELA

12 0 12
9 0 -16
0 0 15
—-16 15 O
12 20 O
8 —12 4
—20 12 4
3 0 16
0 0 21
16 21 O
1,1
1
27183
9620
64260
34944
0 11,2
1
3 2 2
0 4 —4
0 6 6
6 -3 4
6 4 -3 .
100 105
80 84
41 —420
—420 0
0 0

661

12
20

10

116
—145

0
—400

19
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1 1
3 3 3 -3 0 18 0 6 0 -9
3 -3 3 0 0 17 6 —-10 4
1
z -3 1 1 4 x| 6 6 0 15 12
-3 3 1 1 4 0 —-10 15 -4 10
0 0 4 4 2] -9 4 12 10 -10 |
1
0 0 3 4 10 39 0 —48 30 30
0 10 8 -5 0 25 0 —50 50
1 1
= 3 6 6 -12 0 = -48 0 11 40 40
4 8 -12 -1 0 30 =50 40 0 25
10 -5 0 0 -10|,, 30 50 40 25
3
32 2 -2 -2 3.2 2 2 =2
2 -2 2 2 2 3 -2 -2 2
02 -2 3 -2 2 2 -2 3 -2 2
—2 2 -2 3 2 -2 -2 3 2
-2 3 -2, -2 2 2 2 3],

4. Infinite families of rational orthogonal matrices. In this section we
employ different techniques to construct infinite families of symmetric rational or-
thogonal matrices with specified zero-pattern and trace. The following well-known
fact will be useful. We include a proof for the sake of completeness.

PROPOSITION 4.1. The set SO, (Q) is dense in SO(n) (in Euclidean topology).
Proof. Tt is sufficient to observe that the Cayley transformation

I+ X

X Y =——
[ I_X’

from the space of n x n real skew-symmetric matrices to SO(n) has dense image, and
if X is a rational matrix so is Y. O

Let A, i be the n x n zero-pattern all of whose entries are 1 except for the first
k diagonal entries which are 0.

COROLLARY 4.2. Let 0 < k < 1 < n. If there exists X = XT € 0,(Q) with
X = Ay, then there exists Y = YT € 0,(Q) with X = Ak and Tr(X) = Tr(Y).
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Proof. Without any loss of generality we may assume that [ = k + 1. Let
X = X7 € 0,(Q) besuch that X = A, ;. Set Y = Px PT where P = [,&6R®I, 11
and R is the rotation matrix

cos —sinf
sin @ cosf |’

Clearly we can choose 6 € R such that Y = A,, . Since the rational points on the unit
circle are dense (see Proposition 4.1), we can replace R with Ry € SO2(Q) without
affecting the zero-pattern of Y. O

4.1. Symmetric rational orthogonal matrices with few zero entries. Ob-
serve that the matrix X,, = I,, — % » is rational orthogonal and involutory, where
Jp, denotes the all-ones matrix. Moreover, Tr(X,,) = n — 2 and, if n > 2, X,, has no
zero entries, i.e., X = J,. This X, is often called Grover matriz in the literature of
quantum computation (see, e.g., [13]).

PROPOSITION 4.3. Let t = n — 2k where k € {1,2,...,n— 1}. Then there exists
a symmetric matriz X € O, (Q) such that Tr(X) =1t and X = J,.

Proof. Note that the assertion is vacuous for n = 1 and trivial for n = 2. We
proceed by induction on n > 3. We may assume that ¢ > 0. If £ = 1 the above
observation shows that the assertion is true. Let k£ > 1. Then t = n—2k < n—4 implies
that n > 4. By induction hypothesis there exists a symmetric matrix Y € O, _2(Q)
such that Tr(Y) =t and Y = J,_2. The matrix

Z-YVaoi
S

1{3 4
5

|con@

is symmetric with Tr(Z) = t. By using Proposition 4.1, we can choose P € 0,(Q)
such that X = PZP7T has no zero entries, i.e., X = J,. O

PROPOSITION 4.4, Let X = XT € 0,(Q) be such that X;, #0 for 1 <i < n.
Then, m > n > 1, there exists Y = YT € O, (Q) such that X;; = 0 if and only if
Y;; =0, for1<i,5<n,andY;; #0, fori >n. Moreover, Y can be chosen so that
Tr(Y)=m—n+Tr(X).

Proof. Without any loss of generality we may assume that m = n + 1. Then we
can take Y = P (X @ [1]) PT, where

chq@[“ b]
b —a

and a,b € Q* are chosen such that a® + b?> = 1 and a?/b? # —Xf}l. O
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By using the fact that Ao supports a matrix X = X7 € 04(Q) such that
Tr(X) = 0, if follows from the above proposition that A, 2, m > 4, supports a
matrix Y = Y7 € 0,,(Q) with Tr(Y) = m — 4.

4.2. Symmetric rational orthogonal matrices with zero-pattern J, —I,,.
If there exists a symmetric matrix X € O(n) with zero-pattern J,, — I,, then n must
be even. Indeed since such X is involutory, its trace is an integer of the same parity
as n.

A conference matriz of order n is an n X n matrix C' with zero diagonal and all
other entries in {£1} and such that CCT = (n—1)I,,. If a conference matrix of order
n > 1 exists, then n must be even. It is known that they exist for all even orders
n = 2m < 64 except for m = 11,17 and 29 (when they do not exist). A conference
matrix is normalized if all entries in the first row and column are equal to 1, except
the (1,1) entry which is 0.

Let C be a normalized conference matrix of order n. If n =2 (mod 4), then C' is
necessarily symmetric. On the other hand, if n = 0 (mod 4), then the submatrix of
C obtained by deleting the first row and column is necessarily skew-symmetric. By a
well known construction of Paley (see, e.g. [7]), we know that there exist conference
matrices of order n = 1 4 p¥ for any odd prime p and any positive integer k. From
these facts we deduce the following result.

PROPOSITION 4.5. Let C be a normalized conference matriz of order n = 1+m?,
where m is an odd positive integer. Then %C’ is a symmetric rational orthogonal
matriz with zero-pattern J, — I,. Such C exists if m is an odd prime power.

4.3. Symmetric rational orthogonal matrices from orthogonal designs.
An orthogonal design (see, e.g., [6]) of order n and type (s1,s2,...,8,) for s; > 0,
on the commuting variables z1,xo,...,x,, i an n X n matrix M with entries from
{0,+2;:¢=1,2,...,u} such that

MMT = <st2> I.
i=1

Such design can be used to construct infinitely many rational orthogonal matrices
with the same zero-pattern. As an example, consider the following orthogonal design:
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2 y =z 0 a 0 0 =b]
Yy -z 0 —=z 0 —a b 0
z 0 —x y 0 =b —a 0
0 —=z T b 0 0 a
X = g ,
a 0 0 b —x gy z 0
0 —a -b 0 Y x 0 —=z
0 b —a 0 z 0 =z y
| —b 0 0 a 0 —z y —z |

XXT:(x2+y2+22+a2+b2)I.

Ifwesetx =y=2=1/4,a=1/2, and b = 3/4, we then obtain a symmetric matrix
in Og(Q), with the same zero-pattern as X.

4.4. Indecomposable rational orthogonal matrices with maximal num-
ber of zero entries. We recall from [1] that the maximum number of the zero entries
in an indecomposable n X n unitary matrix, n > 2, is (n — 2)2. Let us say that an
indecomposable n x n zero-pattern is mazimal if it has exactly (n — 2)2 zero entries.
In the same paper it is shown that, for n > 5, the maximal zero-patterns form either a
single equivalence class or two equivalence classes which are transposes of each other.
We shall see below that both possibilities occur. It is also known (see [2]) that the
number of zero entries in indecomposable n X n unitary matrices can take any of the
values 0,1,2, ..., (n — 2)°.

We shall use the special zigzag matrices introduced in [3]. These are the matrices

X defined by means of two sequences xg, 1, 2, ... and y1,ys, . .. as follows:
[ zoxy Toy1 0 0 0 0 0 1
—Y1T2 T1T2 Y23 You3 0 0 0
Y1y2  —T1Y2 TaT3 T2Y3 0 0 0
0 0 —yszy T3T4 Y4Ts YaYs 0
X = . (4.1)
0 0 Y3Y4 T3Ys  T4Ts T4Y5 0
0 0 0 0 —ysxg T5T6 | YeXr
0 0 0 0 YsYe —TsYe TeTr

If the above sequences are infinite, X will be an infinite matrix and we shall
denote it by X.. If X is of size n then we shall denote it by X,,. Thus X, is defined
by two finite sequences: xg,x1,...,T, and y1,¥y2,...,Yn_1. Note that X,, is just the
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n x n submatrix lying in the left upper corner of Xo. If 22 +y2 =1for 1 <k <n-—1
and xo,z, € {£1}, then X, € O(n).

PROPOSITION 4.6. If M is a mazimal n X n zero-pattern then there exists X €
0,(Q) such that X = M.

Proof. In the above matrix X,, we can chose the rational values for x; and ys
such that 22 +y2 = 1 and ay, # 0, for 1 <k <n —1, and set 79 = z,, = 1. Then
X € 0,(Q) and it has the desired zero-pattern. It remains to observe that X,, must
be equivalent to M or M” by a result of [1]. O

Let Y, be the matrix obtained from X, by reversing the order of its rows. Let
us denote its zero-pattern by A,,. This is an example of a maximal zero-pattern (see

[1)-

We set g = x, = 1 and impose the conditions xzx = Tp_k, Y» = Yn—k and
z? +y? =1for 1 <k <n. We can choose such zj and yj, to be rational and nonzero.
Hence, in that case maximal zero-patterns form just one equivalence class. If n is
odd, then A, and Y,, are symmetric matrices. On the other hand, if n is even then
A, is not symmetric. In fact, in that case the equivalence class of A,, contains no
symmetric patterns. This follows by comparing the row sums and column sums of
A,,. For n = 6, we have verified that the maximal zero-patterns form two equivalence
classes.

Now let n = 2m be even. Denote by A# the n x n symmetric zero-pattern in the
following infinite sequence:

—_ = =

o
o Ol

A¥ =

— = =
e

©C O O~ ~
©C O O~ K~

1

S O
el = =)
1

©C O OO~ R~ K~
©C O O Ol V= = =

= = e

el === = ]
e === =]

ﬂ

Ol— = = = RO O

OOOOOO‘»—*»—!

o o O
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S OO0 o oo oo

ﬁ

— - RO 00000

—_ =

:

e e k=R =R = =R e ]
O OlR = = = =0 O O

O Ol Rk = = RO OO
SO0 OO~ R~ =IO OO
©C O OO0 Ol K+~ K~

Note that A# has exactly 4n — 3 ones.

== B e B e B e Bl e ] I Y i R =

©C O OO O OO ==

©C O OO OO O ==

ELA

667

THEOREM 4.7. For odd (resp. even) n > 2 there exist symmetric rational or-
thogonal matrices with zero-pattern A, (resp. A¥f ).

Proof. We have already taken care of the odd case. In the even case, we shall
construct the required matrices Z,, for n = 4,6 and 8 only. It will be obvious how to

proceed for bigger values of n. For (zx,yx), kK > 0, we can choose any rational point
on the unit circle 22 4+ y? = 1 such that zy, # 0. For n = 4,6 we take the matrices

in the forms

For n = 8 we take

Z3

©c O o oo

Y23
ToX3

Y3

Zy =

S © OO

Y2
X2

©c O o oo

Y2Y3
T2Y3
—x3

37033% ToT1Y1r YoT1
ToT1yr  Toyi Yoyr
Yoxy YoYy1  —o
(1 —x 0
0 0 0
xoﬁ ToT1Y1 Yol
ToT1y1  Toyi  Your
Yox1 Yoyr —To
Y1Ta —IT1T2 0
—Y1Y2 T1Y2 0
0 0 0
0 0 0
xoxf ToT1Y1 YoT1
Tox1yr  Toyi  Your
Yox1 Yoyi1 —o
Y1T2 —T1T2 0
—1Y2 T1Y2 0
0 0 0

n
—1
0

0

Y2
Y122

—T1T2

Y273
Y2Y3
Y122
—T172

© © o

—Y1Y2
T1Y2

—Y1Y2

)

T2X3

Z2Yys —I3

Z1Y2

© © O
oo ooo
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In each of these cases Z,, is orthogonal and symmetric, and so involutory matrix, with

zero-pattern A% . In general, the construction can be best understood by considering
the infinite matrix

Yalys T4Ys5
Y23 23 Y3Tq —Y3ya
Y23 r2Y3 —T3%4 r3Y4
onf ToT1Y1 YoT1 Y12 —Y1Yy2
7 = ToT1Y1 onf YoyY1 —IT1x2 r1Y2
YoT1 Yoy1 —Zo
Y213 Y2Yys3 Y12 —ZT1X2
T2X3 T2Y3 —Y1Y2 T1Y2
Yays Y3y4 —ZI3%4
Z4Ys —Y3Ya Z3Ya

We remark here, however, that the set of n xn zero-patterns having exactly 4n—3
ones may contain many equivalence classes. In particular, for n = 6 the following
two non-symmetric matrices, and of course, their transpose are nonequivalent to the
pattern of Zg above:

_= =0 O O O
e i i S e B )
— == OO
O O = == O
O O = ==
O O = ==
_ == O O O
— = O == O
— O =) = = O
O = = = = O
oS O O = ==
O O O = =

It is easy to see that both matrices support unitaries.

4.5. Symmetric rational orthogonal matrices from hypercubes. The Ham-
ming distance between two words v, w € {0,1}", denoted by d (v, w), is the number of
coordinates in which the words differ: d (v, w) := Y"1, |v; — w;|. The n-dimensional
hypercube, denoted by Q,, is the graph defined as follows: V(Q,,) = {0,1}"; {v,w} €
E(Q,) if and only d(v,w) = 1. The adjacency matrix of @, can be constructed
recursively:

M(Q1) = < - > M(Qn) = < M@n-) M(énil) > for n > 2.

It is simple to verify that the following matrices are real orthogonal:

0 —1 M,.1 I
My = M, = L n f > 2.
' [1 0]’ [ I Mn_ﬂ}’ o=

Clearly, M, = M(Qn).
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PROPOSITION 4.8. For each n > 2, there exist infinitely many symmetric matri-

ces Yy, € Ogn(Q) such that Y, = M(Qy).
Proof. Let x1,x2, ... be indeterminates. We define the matrices X, recursively by

0 =z } X - [ X1 Tl

f > 2.
I 0 QCnI —Xn,1 ’ orm =

|

Note that X! = X,, and one can easily verify by induction that
X2=(2f+a3+ - +a2) Ion.

For a given n > 1, we choose nonzero rational numbers a1, ag, ..., a, such that a? +
a3 +---+a2 = 1. Then if we set zx = a; (k = 1,2,...,n) in X,,, we obtain a
symmetric rational orthogonal matrix Y;, with Y, = M(Q,). O

4.6. Hessenberg rational orthogonal matrices. Let H, be the lower trian-
gular n x n Hessenberg zero-pattern:

i - -
11
01 1 1
H, =
0 1 1
0 0 1

We consider here the corresponding symmetric zero-pattern S, H,,, where
0 1
S, =
1 0
is the antidiagonal permutation matrix.

PROPOSITION 4.9. There ezist infinitely many Y, = Y,l € O,(Q) with Y, =
SpH,y,.

Proof. Let a,b € Q be nonzero and such that a? + b2 = 1. We define recursively
the matrices X,, € 0,(Q), n > 2, by
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for n > 3. The matrices Y,, = S, H, are symmetric and satisty Y,, = S, H,,. Indeed,

we have
b u 0 b a
Y = { 0 —b } , Y; = b a? —ab
a —ab b2
0 o b a o 0 0 f “
0 b & —ab 0 0 b a —ab
Y, = 5 9 o |, and Ys=1]0 b a? —a?b ab?
b a® —a“b ab 9 9 S 3
o —ab ab? b3 b a® —a“b a*b® —ab
a —ab ab® —ab® b

By induction on n one can prove that

0 0 0 b a
0 0 a? —ab
0 0 b a? —a?b ab?
b a? —a?b a?b? —ab?
Yo = _ _ _ _ _
0 0 0 a2 (=b)"% a2 (=b)" % 2 (=) 7 a2 (=b)" % a(-p)"7°
0 0 b a> a2 (=) % a2 (=b)"" a2 (=b)" % a2 (-b)"° a(-b)"?
0 b a2 —a? a2 (=b)" 7 a2 (=" a2 (b))% a2 (-b)"?t a(-p)" 3
b a?® —a?b a2b? a2 (=b)" 7% a2 (=% a2 (-b)"* a2 (-b)" % a(-b)"?
| a —ab ab®>  —ab? a(=b)"7°  a(=b)"*t  a(=p)" 3 a(=b)" 2 (=p)n1!

Note that the trace of Y,, is zero for n even and one for n odd.

5. Open problems. In addition to the conjectures formulated in the paper, we
state here some further open problems.

The first problem is of purely combinatorial nature.

PROBLEM 5.1. Let X be an n x n zero-pattern and assume that X7 is equivalent
to X. Is it true that X is equivalent to a symmetric pattern?

We have verified that the answer to the above problem is affirmative for n < 5.

PROBLEM 5.2. Are there symmetric rational orthogonal matrices with the follow-
ing zero-patterns:

1 0 1 1 1 11 1 1 0
01 1 1 1 11 1 0 1
1 1 0 1 1 , 1 1 0 1 1 ?
1 1 1 01 1 01 01
11 1 1 0 01 1 1 1
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As mentioned in Section 3, in spite of much effort we were not able to construct
such matrices. Below we give some examples of matrices with the same zero-pattern
as close as possible to be rational. For the first zero-patten we give two examples.

The first one minimizes the denominator:

2 0 2 V3-1 —V3-1
0 2 2 —/3-1 V3-1

i 2 2 0 2 2 ,
V3—1 —vV3-1 2 0 2
—V3-1 V3-1 2 2 0

5,2

16 0 10  4v5 NG
. 0 5 4 —4v5 85
T 10 4 0 —-7V5 —4V5
45 —4v5 —7V5 0 6
V5 85 —4v5 6 0

We give four examples for the next zero-pattern. The first example minimizes the

5,2

square root, the second has the smallest denominator, the third minimizes the number

of square roots, and the last one contains the smallest prime number under square

root:
225 40 18V15 —14V/15 0
. 40 45 —40v/15 0 180
5 18V15 —40v15 0 175 6V15 ,
—14/15 0 175 0 42V15
0 180 6V15  42V15  -25 |
98 28 V22 —3v22 0ol
. 28 12 —20v22 0 44
— V22 —20v/22 0 42 /22 :
108
—3v22 0 42 0 21v22
0 44 V22 2122 -2 ],
2457 124/195 —420 380 o]
) 12v/195 343 80v/195 0 —160195
5507 —420 801195 0 2223 140 ,
380 0 2223 0 1140

0 —-160v195 140 1140 —273 12
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1
403200 546017 —79040 74841 0
546017 110864 3551117 0 —90972v17
118241 —79040 3551117 0 381780 38532
74841 0 381780 0 153520
0 —90972v17 153520 38532 —95823

12

In connection with Proposition 4.5, we raise the following special case of Conjec-
ture 3.1 as a separate interesting problem.

PROBLEM 5.3. For even n, show that there exists X = XT € 0,(Q) with
X = J, —I,. For odd n > 3, show that there exists X = X1 € 0,(Q) with
X=A, 2 and Tr(X)=1.

Many of the matrices in Section 2 and Section 3 have been constructed with the
help of a computer. It is natural to raise the following problem:

PROBLEM 5.4. Determine the computational complexity of the following decision
problem:

o Given: A square (0,1)-matriz M of size n.
o Task: Determine if M is the zero-pattern of a real orthogonal matriz.

The size of M gives the length of the input.
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