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GROUP INVERSES OF MATRICES ASSOCIATED WITH CERTAIN GRAPH CLASSES∗
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Abstract. We obtain formulae for group inverses of matrices that are associated with a new class of digraphs obtained

from stars. This new class contains both bipartite and non-bipartite graphs. Expressions for the group inverse of matrices

corresponding to double star digraphs and the adjacency matrix of certain undirected multi-star graphs are also proven. A

blockwise representation of the inverse or group inverse of the adjacency matrix of the Dutch windmill graph is presented.
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1. Introduction. An interesting challenge in matrix theory is to provide a succinct formula for the

inverse or the group inverse of a matrix, based on its graph structure. The results in the literature focus

on determining the inverse ([17], [5], [1], [4]) and group inverse ([10], [11], [8], [19], [9], [12]) of the matrix

associated with graphs. In this article, we include results relating to digraphs and to undirected graphs.

Also, we give a new blockwise representation for the group inverse of a matrix associated with double star

digraphs and the adjacency matrix of certain undirected multi-star graphs. As another contribution, we

present a formula for the inverse or group inverse of the adjacency matrix of a Dutch windmill graph.

We begin with some definitions. Let G be a simple undirected graph on n vertices {v1, v2, . . . , vn}.
Define the adjacency matrix of G to be the n× n matrix A = (aij) given by

aij =

{
1 if vivj is an edge of G,

0 otherwise.

If A is non-singular (singular), then we say that the graph G is non-singular (singular). Note that the

adjacency matrix, by definition, is always symmetric and this fact will be useful in the last two sections of

this article.

Let A = (aij) be an n× n matrix. The digraph corresponding to the matrix A is D(A) = (V,E) having

vertex set V = {v1, v2, . . . , vn} and edge set E, where (vi, vj) ∈ E if and only if aij 6= 0. The digraph D(A)

corresponding to a matrix A is called a tree graph if it is strongly connected and all of its cycles have length

2. If the digraph D(A) of a matrix A is a tree graph, then A is referred to as a combinatorially symmetric

matrix.

∗Received by the editors on November 11, 2021. Accepted for publication on March 10, 2022. Handling Editor: Froilán

Dopico. Corresponding Author: K.C. Sivakumar.
†Department of Mathematics and Statistics, Washington State University, Pullman, Washington 99164-3113, USA

(jmcdonald1@wsu.edu).
‡Department of Mathematics, Indian Institute of Technology Madras, Chennai 600036, India (rajunandirkm@gmail.com,

kcskumar@iitm.ac.in).

mailto:jmcdonald1@wsu.edu
mailto:rajunandirkm@gmail.com
mailto:kcskumar@iitm.ac.in


Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 204-220, March 2022.

205 Group inverses of matrices associated with certain graph classes

Next, let us recall that for a real n × n matrix A, the group inverse, if it exists, is the unique matrix

A# that satisfies the equations AA#A = A,A#AA# = A# and AA# = A#A. For a symmetric matrix A,

the group inverse A# exists. Further, (as was observed in [19]) it follows that, if A is symmetric and X

satisfies the equations AXA = A and AX = XA, then X = A#. Moreover, if A,X are symmetric and the

product AX is symmetric, then AX = (AX)T = XTAT = XA. This means that if A,X are symmetric,

the product AX is symmetric and AXA = A, then we have X = A#. This fact will be used in one of the

proofs. Let us recall that for a real rectangular matrix A, the Moore–Penrose inverse of A is the unique

matrix A† that satisfies the equations AA†A = A, A†AA† = A†, (AA†)T = AA† and (A†A)T = A†A.

We refer the reader to [6] for more details on these notions of generalized inverses and Moore–Penrose

inverses.

In what follows, we present a brief survey of the literature on the topic that we have considered here.

A formula for determining the inverse of the adjacency matrix of an undirected tree with a perfect

matching in terms of alternating paths appeared in [17] and was extended to bipartite graphs with a unique

perfect matching in [5, 1, 4].

We recall some well-known results on the role of group inverses in graph theory. In [10], a formula

for the group inverse of a 2 × 2 block matrix corresponding to a bipartite digraph, as well as a graphical

description for the entries of group inverse of a matrix A with path digraph D(A), is presented. In the

work [11], a necessary and sufficient condition for the existence of the group inverse of a special bipartite

matrix is given and a formula is obtained for the group inverse in terms of block submatrices. Also, in [11],

a graphical description for the entries of the group inverse of a matrix A such that D(A) is a broom tree is

presented.

A formula for the entries of the group inverse of a symmetric matrix can be derived from a result of [8]

stated in terms of undirected bipartite graphs associated with arbitrary matrices (with the vertex set being

the union of row and column indices of a matrix), in the special case when the graph corresponding to the

given symmetric matrix is acyclic. The authors of [19] derived a formula for the entries of the group inverse

of the adjacency matrix of an undirected weighted tree. The entries are given in terms of graph notions

relative to the given graph. In a recent work, a group inverse formula for the adjacency matrix of undirected

singular cycle is given in [18].

In this last part of the introduction, we recall some notation and introduce the terminology. Let Jkl
denote the all ones matrix of order k × l. When k = l, we denote Jkl by Jk. I will stand for the identity

matrix of an order that will be clear from the context. We denote the i-th column of I by ei. For a real

square matrix A, ρ(A) denote the spectral radius of A and R(A) denote the range space of A. We denote

the cycle on n vertices by Cn and the path on n vertices by Pn.

2. Group inverses of matrices with digraph linked stars.

Definition 2.1. Let D be any digraph on n vertices v1, v2, . . . , vn and let K1,r1 ,K1,r2 , . . . ,K1,rn denote

directed star graphs. The digraph linked stars, by digraph D, denoted gls(D, r1, r2, . . . , rn) are obtained by

taking K1,r1 ,K1,r2 , . . . ,K1,rn and introducing an edge from the center vertex of the i-th star K1,ri to the

center vertex of the j-th star K1,rj when (vi, vj) is an edge in D.
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Example 2.2. Consider the digraph D given by

v1
v2

v3v4

Figure 1. D.

Then the graph linked stars digraph gls(D, 2, 1, 2, 3) is

v1 v2

v3
v4

v5

v6

v9

v8v10

v12

v7

v11

Figure 2. gls(D, 2, 1, 2, 3).

It may be verified that the underlying graph of graph linked stars digraph is a particular case of cluster

networks, see [21, 2]. In [21], authors are given Kirchhoff index formulae for composite graphs known as join,

corona, and cluster of two graphs, in terms of the pieces. The Kirchhoff index formulae and the effective

resistances of generalized composite networks, such as generalized cluster or corona network, are obtained,

in terms of the pieces, in [2]. Also, in [2], an expression for the Green’s function of the generalized composite

graphs, viz., corona or cluster networks is given, in terms of the pieces.
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Let A be an n × n real matrix. For i = 1, 2, . . . , n, let xi and yi be (column) vectors of length ri ∈ N
such that every coordinate is nonzero. We shall refer to such vectors as strictly nonzero vectors. Set

B =


xT1 0 . . . 0

0 xT2
. . .

...
...

. . .
. . . 0

0 . . . 0 xTn

 and C =


y1 0 . . . 0

0 y2
. . .

...
...

. . .
. . . 0

0 . . . 0 yn

. Let

(2.1) M =

(
A B

C 0

)
.

Then D(M) is a digraph linked stars, by the digraph D(A). On the other hand, any matrix associated with

the digraph linked stars by digraph D(A) is permutationally similar to a matrix of the form described in

(2.1).

Proposition 2.3. Let A be an n × n real matrix. Let D(M) = gls(D(A), r1, r2, . . . , rn), ri ≥ 2 for

some i. Then the matrix M is singular.

Proof. Since ri ≥ 2 for some i, the matrix C in the form (2.1) has yi with at least two components.

Thus, the rows in C corresponding to these components are linearly dependent, so that M is singular.

For a real matrix A, let AΩ = I −AA† and Aπ = I −AA#, when A# exists.

Theorem 2.4 ([20, Theorem 3.1]). Let M =

(
A B

C 0

)
∈ C(n+m)×(n+m) with A ∈ Cn×n. Suppose that(

BΩABΩ 0

CBΩ 0

)#

exists. Then (BΩABΩ)# exists. Set Γ = BC + A(BΩABΩ)πBΩA. If BCBΩ = 0 and

rank(BC) = rank(B), then

(i) M# exists if and only if rank(Γ) = rank(B)

(ii) If M# exists, then M# =

(
X Y

Z W

)
, where

J = (BΩABΩ)πBΩAΓ†, H = Γ†A(BΩABΩ)πBΩ, G = (BΩABΩ)#,

X = JAGAH − JAH −GAH − JAG+G+H + J,

Y = Γ†B + JAGAΓ†B − JAΓ†B −GAΓ†B,

Z = (C − CGA)Γ†(I +AGAH −AH −AG) + CG2(I −AH)

and

W = (C − CGA)Γ†A(GAΓ†B − Γ†B)− CG2AΓ†B.

Here is our first main result.

Theorem 2.5. Let A = (aij) be an n × n real matrix. Let xi, yi be positive vectors of length ri. Set

αi := xTi yi for all i ∈ {1, 2, . . . , n}. Create the matrix M as described in Equation (2.1). Then D(M) =

gls(D(A), r1, r2, . . . , rn), is a digraph linked stars digraph. Let W = (Wij) be the n× n block matrix, where

Wij = (
aij
αiαj

)yix
T
j , an ri × rj matrix. Then
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M# =

(
0 Y

Z −W

)
,

where Y =
xT
1

α1
⊕ xT

2

α2
⊕ . . .⊕ xT

n

αn
and Z = y1

α1
⊕ y2

α2
⊕ . . .⊕ yn

αn
.

Proof. First, we observe that, M =

(
A B

C 0

)
. Then

BC =


α1 0 . . . 0

0 α2
. . .

...
...

. . .
. . . 0

0 . . . 0 αn

 so that (BC)† =


1
α1

0 . . . 0

0 1
α2

. . .
...

...
. . .

. . . 0

0 . . . 0 1
αn

 .

Note that αi > 0 for all i ∈ {1, 2, . . . , n}. So, rank(BC) = rank(B) = n. Also,

B† =


x1

xT
1 x1

0 . . . 0

0 x2

xT
2 x2

. . .
...

...
. . .

. . . 0

0 . . . 0 xn

xT
nxn


and BΩ = I −BB† = 0. By Theorem 2.4,

M# =

(
0 (BC)†B

C(BC)† −C(BC)†A(BC)†B

)
.

Now, (BC)†B =
xT
1

α1
⊕ xT

2

α2
⊕ . . .⊕ xT

n

αn
, C(BC)† = y1

α1
⊕ y2

α2
⊕ . . .⊕ yn

αn
and so

C(BC)†A(BC)†B =


y1
α1

0 . . . 0

0 y2
α2

. . .
...

...
. . .

. . . 0

0 . . . 0 yn
αn



a11 a12 . . . a1n

a21 a22
. . .

...
...

. . .
. . . an−1n

an1 . . . ann−1 ann



xT
1

α1
0 . . . 0

0
xT
2

α2

. . .
...

...
. . .

. . . 0

0 . . . 0
xT
n

αn



=


a11
α1α1

y1x
T
1

a12
α1α2

y1x
T
2 . . . a1n

α1αn
y1x

T
n

a21
α2α1

y2x
T
1

a22
α2α2

y2x
T
2

. . .
...

...
. . .

. . . an−1n

αn−1αn
yn−1x

T
n

an1

αnα1
ynx

T
1 . . . ann−1

αnαn−1
ynx

T
n−1

ann

αnαn
ynx

T
n

 .

This completes the proof.

Corollary 2.6. Let A = (aij) ≤ 0 be an n × n real matrix and D(M) be a digraph linked stars graph

gls(D(A), r1, r2, . . . , rn). Let M have the form (2.1) with xi, yi > 0 for all i ∈ {1, 2, . . . , n}. Then M# ≥ 0.

Proof. By Theorem 2.5, M# =

(
0 Y

Z −W

)
, where Y, Z,W are as given above. Since xi and yi are

positive, Y and Z both are nonnegative matrices. Also, since A ≤ 0, W ≤ 0. Thus, M# is nonnegative.

Remark 2.7. Let us recall that an A is said to be an irreducible matrix if D(A) is strongly connected.

Let A be an n× n real matrix such that A# exists. Then A is irreducible if, and only if, A# is irreducible.
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Corollary 2.8. Let A = (aij) ≤ 0 be an n × n real matrix and D(M) be a digraph linked stars

gls(D(A), r1, r2, . . . , rn). Let M have the form (2.1) with xi, yi > 0 for all i ∈ {1, 2, . . . , n}. Then the

smallest positive eigenvalue λ of M is simple and there exists a positive eigenvector corresponding to it.

Proof. By Corollary 2.6, M# ≥ 0. Since A is irreducible, M is irreducible and so by Remark 2.7, M#

is irreducible, as well. By the Perron–Frobenius theorem, ρ(M#) is a simple eigenvalue. Since λ = 1
ρ(M#)

,

λ is simple. Let x > 0 be the Perron vector corresponding to ρ(M#) of M# so that M#x = ρ(M#)x. So,

x ∈ R(M#) = R(M) and so, x = MM#x = ρ(M#)Mx. This means that λx = 1
ρ(M#)

x = Mx, showing

that x is a positive eigenvector corresponding to λ.

A symmetric matrix with zero diagonal elements is called a hollow symmetric matrix. We refer the reader

to [13] for a study of Moore–Penrose inverse of hollow symmetric matrices, with certain specific applications

to the distance matrix of weighted trees. Note that, for symmetric matrices, the Moore–Penrose inverse is

equal to the group inverse.

In general, it is not true that group inverse of a hollow symmetric matrix is again a hollow symmetric

matrix which is shown by the following example:

Example 2.9. Consider a hollow symmetric matrix A =



0 1 1 1 1

1 0 1 0 0

1 1 0 0 0

1 0 0 0 0

1 0 0 0 0


. Then its group inverse

A# =



0 0 0 1
2

1
2

0 0 1 − 1
2 − 1

2

0 1 0 − 1
2 − 1

2

1
2 − 1

2 − 1
2

1
2

1
2

1
2 − 1

2 − 1
2

1
2

1
2


,

is not a hollow symmetric matrix.

Let A be a symmetric matrix such that its associated digraph D(A) is bipartite. Then the digraph

D(A#) corresponding to its group inverse is also bipartite. This is an easy consequence of [10, Theorem

2.2]. For a given hollow symmetric matrix A, the matrix M having the form (2.1) with xi = yi > 0 for all

i ∈ {1, 2, . . . , n}, is a hollow symmetric matrix. Interestingly, as a consequence of Theorem 2.5, the group

inverse of matrix M with digraph linked stars graph D(M) = gls(D(A), r1, r2, . . . , rn) is again a hollow

symmetric matrix.

3. Group inverses of matrices with double star digraph.

Definition 3.1. The digraph denoted by Sm,n, obtained by introducing an edge from the center vertex

of star K1,m−1 to the center vertex of star K1,n−1 as well as an edge from the center vertex of star K1,n−1

to the center vertex of star K1,m−1, is called the double star digraph.
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Example 3.2. The digraph corresponding to the double star S3,4 is given by

v1

v2

v3

v4

v5

v6

v7

Figure 3. S3,4.

Let x and y be strictly nonzero vectors of length m, while z and w are strictly nonzero vectors of length n.

Let

(3.2) A =


0 xT a 0

y 0 0 0

b 0 0 zT

0 0 w 0

 ,

where a and b are nonzero real numbers. Then D(A) is a double star digraph S(m+1),(n+1) and any matrix A

with the double star digraph D(A) = S(m+1),(n+1) is permutation similar to a matrix of the form described

in (3.2).

Theorem 3.3. Let A be a real matrix with double star digraph S(m+1),(n+1). Let A have the form (3.2)

with xT y 6= 0 and zTw 6= 0. Then

A# =


0 1

xT y
xT 0 0

1
xT y

y 0 0 − a
(xT y)(zTw)

yzT

0 0 0 1
zTw

zT

0 − b
(xT y)(zTw)

wxT 1
zTw

w 0

 .

Proof. The proof is skipped, as it is just a routine verification.

Remark 3.4. Observe that the matrix A as in (3.2) is permutationally similar to the matrix

T =


0 a xT 0

b 0 0 zT

y 0 0 0

0 w 0 0

 .

Let N =

(
0 a

b 0

)
. Thus, D(T ) is a double star digraph S(n+1),(n+1) as well as a graph linked star digraph

gls(D(N),m, n). So, for x, y, z, w > 0, A# can be determined from Theorem 2.5.
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4. Inverse and group inverse of the adjacency matrix of Dutch windmill graph.

Definition 4.1. The Dutch windmill graph Dm
n is a graph constructed by joining m copies of the cycle

graph Cn with a common vertex.

Example 4.2. The Dutch windmill graph D4
3 is given by

v1

v2

v3

v4

v5v6

v7

v9

v8

Figure 4. D4
3.

Remark 4.3. Note that Dm
2n is a bipartite graph while Dm

2n+1 is non-bipartite. Now, by [3, Theorem

3.6, Chapter 3], we can conclude that Dm
2n is always a singular graph while Dm

2n+1 is always non-singular.

Theorem 4.4 ([3, Theorem 3.33., Chapter 3]). Let T be a non-singular tree with V (T ) = {v1, . . . , vn},
A be the adjacency matrix of T , and M be the perfect matching in T . Let B = (bij) be the n × n matrix

defined as follows: bij = 0 if i = j, or if the path between vi and vj is not alternating; bij = (−1)
d(vi,vj)−1

2 ,

if the path between vi and vj is alternating. Then, B = A−1.

Remark 4.5. Let P2n be the path on 2n vertices and let its edge set be {vivi+1 | i ∈ {1, 2, . . . , 2n−1}}.
Let A2n be the adjacency matrix of P2n. Then, by Theorem 4.4,

A−1
2n =



B −CT CT · · · (−1)n−1CT

−C B −CT · · · (−1)n−2CT

C −C B
. . .

...
...

...
. . .

. . . −CT
(−1)n−1C (−1)n−2C · · · −C B


,

where

B =

(
0 1

1 0

)
and C =

(
0 0

1 0

)
.

Lemma 4.6. Let A2n be the adjacency matrix of the path P2n and x = e1 + e2n be of length 2n. Let

y = A−1
2n x = (y1, y2, . . . , y2n)T . Then, for k = 1, 2, . . . , n,

y2k−1 = (−1)n−k while y2k = (−1)k−1.

Also, xT y = 2(−1)n−1.
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Proof. Let A−1
2n = (βij). Since A−1

2n is a symmetric matrix, the coordinates of the vector y = A−1
2n x =

(y1, y2, . . . , y2n)T , are given by yi = β1i + βi2n, 1 ≤ i ≤ 2n. By Theorem 4.4, for k = 1, 2, . . . , n,

y2k−1 = 0 + β(2k−1)(2n) = (−1)
2n−(2k−1)−1

2 = (−1)n−k,

and

y2k = β1(2k) + 0 = (−1)
(2k−1)−1

2 = (−1)k−1.

Clearly, xT y = y1 + y2n = 2(−1)n−1.

Theorem 4.7. Let A and A2n be the adjacency matrices of Dm
2n+1 and P2n, respectively. Let y be the

vector of length 2n defined by

y2k−1 = (−1)n−k while y2k = (−1)k−1, k = 1, 2, . . . , n,

and C = (−1)nyyT . Then A−1 is the (m+ 1)× (m+ 1) block matrix given by

1

2m



(−1)n (−1)n+1yT (−1)n+1yT · · · (−1)n+1yT

(−1)n+1y 2mA−1
2n + C C · · · C

(−1)n+1y C 2mA−1
2n + C

. . .
...

...
...

. . .
. . . C

(−1)n+1y C · · · C 2mA−1
2n + C


.

Proof. If we let x = e1 + e2n, then y = A−1
2n x. The vertices of Dm

2n+1 may be relabeled (if necessary), so

that A can be written as the (m+ 1)× (m+ 1) block matrix

0 xT xT · · · xT

x A2n 0 · · · 0

x 0 A2n
. . .

...
...

...
. . .

. . . 0

x 0 · · · 0 A2n


.

Let

X =
1

2m



(−1)n (−1)n+1yT (−1)n+1yT · · · (−1)n+1yT

(−1)n+1y 2mA−1
2n + C C · · · C

(−1)n+1y C 2mA−1
2n + C

. . .
...

...
...

. . .
. . . C

(−1)n+1y C · · · C 2mA−1
2n + C


.

Then

AX =
1

2m



m(−1)n+1xT y u u · · · u

v 2mI +W W · · · W

v W 2mI +W
. . .

...
...

...
. . .

. . . W

v W · · · W 2mI +W


,

where

u = 2mxTA−1
2n +mxTC,
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v = (−1)nx+ (−1)n+1A2ny,

and

W = (−1)n+1xyT +A2nC.

Now, by Lemma 4.6, m(−1)n+1xT y = 2m. Also,

u = 2mxTA−1
2n +mxTC = 2myT + 2m(−1)2n−1yT = 0.

Further, since y = A−1
2n x, v = 0 as well as W = 0. So, AX = I, proving that X = A−1.

In what follows, we obtain a blockwise representation for the group inverse of the adjacency matrix of

Dm
2n. We need two intermediate results, which we prove first.

Lemma 4.8. Let E ∈ Rn×(n−1) be a real matrix such that ET =
(
G, en−1

)
, where G ∈ R(n−1)×(n−1) is

the upper triangular matrix which has 1 along its main diagonal and super diagonal, and all of whose other

entries are zero. Then E† =
(
(G−1)T − qpT , q

)
, where p = (pi) = ((−1)n−1−i) ∈ Rn−1 and q = (qi) =

( 1
n (−1)n−1−i · i) ∈ Rn−1.

Proof. Since G is a non-singular tree diagonal matrix, by [14, Theorem 1],

G−1 =



1 −1 1 · · · (−1)n−2

0 1 −1 · · · (−1)n−3

0 0 1
. . .

...
...

...
. . .

. . . −1

0 0 · · · 0 1


.

Let p be the last column of G−1 so that

p = G−1en−1 =
(
(−1)n−2, (−1)n−3, . . . , −1, 1

)T
.

Since en−1 −GG−1en−1 = 0, by [6, Theorem 7, Chapter 5], (ET )† =

(
G−1 − pqT

qT

)
, where

qT = (1 + pT p)−1pTG−1 =
1

n

(
(−1)n−2, (−1)n−32, . . . , −1(n− 2), (n− 1)

)
.

Now, since (ET )† = (E†)T , we have E† =
(
(G−1)T − qpT , q

)
.

We shall use the following notation for the next result. Let p, q be defined as in Lemma 4.8. Define

s = (zT , zT , . . . , zT )T ∈ Rmn,

where

z = (zi) = (
2

n
(−1)i+1) ∈ Rn,

r = ((2q − p)T , (2q − p)T , . . . , (2q − p)T )T ∈ Rm(n−1),

w = ((vT ,
n− 1

2
), (vT ,

n− 1

2
), . . . , (vT ,

n− 1

2
))T ∈ Rmn,

with

v = (vi) = ((−1)n−1−i n− 2i+ 1

2
) ∈ Rn−1,

and

u = (pT , pT , . . . , pT )T ∈ Rm(n−1).
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Lemma 4.9. Let BT ∈ Rmn×(m(n−1)+1) be the matrix given by

BT =



E 0 0 · · · 0 y

0 E 0 · · · 0 y

0 0 E
. . .

...
...

...
...

. . .
. . . 0 y

0 0 · · · 0 E y


,

with

E =



1 0 0 · · · 0

1 1 0 · · · 0

0 1 1
. . .

...
...

...
. . .

. . . 0

0 0 · · · 1 1

0 0 · · · 0 1


∈ Rn×(n−1),

and y = e1 + en ∈ Rn. Set R = E† ⊕ E† ⊕ · · · ⊕ E† (m-times). Then, for odd n,

B† =
(
RT − n

4msr
T , n

4ms
)
,

while, for even n,

B† =
(
RT − wuT , w

)
,

where the vectors r, s, u, w are defined as earlier.

Proof. Let D = E ⊕ E ⊕ · · · ⊕ E (m-times) so that D† = E† ⊕ E† ⊕ · · · ⊕ E† (m-times) = R. If

x :=
(
yT , yT , . . . , yT

)T
, then we have BT =

(
D, x

)
. Also, by Lemma 4.8,

E†y =
(
(G−1)T − qpT , q

)(e1

1

)
= (G−1)T e1 − qpT e1 + q

= (−1)n−2p− (−1)n−2q + q.

Now,

D†x =


E†y

E†y
...

E†y

 =


(−1)np− (−1)nq + q

(−1)np− (−1)nq + q
...

(−1)np− (−1)nq + q

 .

Case (i): n is odd. Here, D†x =
(
(2q − p)T , (2q − p)T , . . . , (2q − p)T

)T
= r (say) and

y − EE†y = y − E(2q − p) =
2

n



1

−1

1
...

−1

1


.
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Now, let s = x − DD†x =
(
zT , zT , . . . , zT

)T
, where z = y − EE†y. Since s 6= 0, once again by [6,

Theorem 7, Chapter 5], (BT )† =

(
D† − rs†

s†

)
. Note that, sT s = mzT z = 4m

n and s† = 1
sT s

sT . Thus,

(BT )† =

(
D† − n

4mrs
T

n
4ms

T

)
and so B† =

(
(D†)T − n

4msr
T , n

4ms
)
.

Case (ii): n is even. Then p = (1,−1, 1,−1, . . . , 1)T . In this case D†x = (pT , pT , · · · , pT )T = u (say). Then

Ep =


p11

p11 + p21

...

p(n−2)1 + p(n−1)1

p(n−1)1

 =


1

0
...

0

1

 = y.

Observe that qT p = n−1
2 . Now, by Lemma 4.8,

(E†)T p =

(
G−1 − pqT

qT

)
p

=

(
G−1p− pqT p

qT p

)
=

(
G−1p− (n−1

2 )p
n−1

2

)
=

(
v
n−1

2

)
,

where v is defined as earlier. So, pTE† =
(
vT , n−1

2

)
.

Since x−DD†x = 0, again by [6, Theorem 7, Chapter 5], (BT )† =

(
D† − uwT

wT

)
, where

wT = (1 + uTu)−1uTD†

= (1 +mpT p)−1
(
pTE†, pTE†, · · · , pTE†

)
= {1 +m(n− 1)}−1

(
pTE†, pTE†, · · · , pTE†

)
.

Thus, B† =
(
(D†)T − wuT , w

)
.

We are now in a position to prove our result for Dm
2n. From the 2× 2 block representation of the group

inverse of the adjacency matrix given in [10, Theorem 2.2], we provide an explicit calculation of the group

inverse, using Lemma 4.9.

Theorem 4.10. Let A be the adjacency matrix of Dm
2n and B† be as given in Lemma 4.9. Then

A# =

(
0 (B†)T

B† 0

)
.
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Proof. Since Dm
2n is a connected bipartite graph, there is a unique partition in Dm

2n containing m(n−1)+1

vertices in one partition and mn vertices in the other partition. Thus, A can be written as

(
0 B

BT 0

)
, where

BT is as given in Lemma 4.9. Now, by [10, Theorem 2.2], the proof follows by observing that

(BBT )#B = (BBT )†B

= (BT )†B†B

= (B†)TB†B

= (B†)T (B†B)T

= (B†BB†)T

= (B†)T ,

as well as the identity BT (BBT )# = ((BBT )#B)T = B†.

5. Group inverse of the adjacency matrix of multi-star graph.

Definition 5.1 ([16]). Consider the star graph K1,m. Introduce an edge to each of the pendant vertices

and denote the resulting graph by S2(K1,m). Starting from S2(K1,m), introduce an edge to each of the pendant

vertices to obtain the graph S3(K1,m). Repeating this process (n−1) times, we get a graph containing (mn+1)

vertices, which we denote by Sn(K1,m). This graph is called a multi-star graph. Here, S1(K1,m) = K1,m

Note that the multi-star graph is the graph obtained by iteratively subdividing the edges starting from

the star graph K1,m. For more details on the subdivision operation of a graph, we refer the reader to [7,

Section 8.3] and [15, Section 1.2].

Example 5.2. The multi-star graph S4(K1,3) is given as

v1

v5

v9

v10v11v12v13

v2

v3

v4

v6

v7

v8

Figure 5. S4(K1,3).

Lemma 5.3. Let A2n be the adjacency matrix of P2n. Let y be the vector of length 2n such that for

k = 1, 2, . . . , n,

y2k−1 = 0 while y2k = (−1)k−1.

Then

(A−1
2n y)2k−1 = (−1)k−1(n− k + 1) while (A−1

2n y)2k = 0.
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Proof. Note that y can be written as an n× 1 block matrix
e2

−e2

e2

...

(−1)n−1e2

 .

By Remark 4.5, for any k = 1, 2, . . . , n, the k-th block of A−1
2n y is

(−1)k−1{(k − 1)Ce2 +Be2 + (n− k)CT e2} = (−1)k−1{Be2 + (n− k)CT e2}
= (−1)k−1(n− k + 1)e1.

It now follows that the (2k − 1)-th entry of A−1
2n y is (−1)k−1(n − k + 1) and the 2k-th entry of A−1

2n y

is 0.

Let A be the adjacency matrix of Sn(K1,m). Then the entries of A# can be obtained from [19, Theorem

1] in terms of maximum matchings and alternating paths. Also, a 2×2 block representation of A# is given in

[10, Theorem 2.2]. In what follows, we give a new block representation of the group inverse of the adjacency

matrix of S2n(K1,m) adopting a purely linear algebraic approach.

Theorem 5.4. Let A and A2n be the adjacency matrices of S2n(K1,m) and P2n, respectively. Let y and

z be vectors of length 2n such that for k = 1, 2, . . . , n,

y2k−1 = 0, with y2k = (−1)k−1,

and

z2k−1 = (−1)k−1(n− k + 1), while z2k = 0.

Then A# is the (m+ 1)× (m+ 1) block matrix given by

1

mn+ 1



0 zT zT . . . zT

z (mn+ 1)A−1
2n + C C . . . C

z C (mn+ 1)A−1
2n + C

. . .
...

...
...

. . .
. . . C

z C . . . C (mn+ 1)A−1
2n + C


,

where C = −yzT − zyT .

Proof. By Lemmas 4.6 and 5.3, it is clear that y = A−1
2n e1 and z = A−1

2n y. Also, note that C is a

symmetric matrix. The vertices of S2n(K1,m) can be relabeled (if necessary,) so that A has the following

(m+ 1)× (m+ 1) block matrix representation:

0 eT1 eT1 · · · eT1
e1 A2n 0 · · · 0

e1 0 A2n
. . .

...
...

...
. . .

. . . 0

e1 0 · · · 0 A2n


.
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Let

X =
1

mn+ 1



0 zT zT . . . zT

z (mn+ 1)A−1
2n + C C . . . C

z C (mn+ 1)A−1
2n + C

. . .
...

...
...

. . .
. . . C

z C . . . C (mn+ 1)A−1
2n + C


.

Then

AX =
1

mn+ 1



meT1 z w w · · · w

y (mn+ 1)I +W W · · · W

y W (mn+ 1)I +W
. . .

...
...

...
. . .

. . . W

y W · · · W (mn+ 1)I +W


,

where

w = (mn+ 1)yT +m(Ce1)T ,

and

W = e1z
T +A2nC.

Note that yT e1 = 0 and yT y = n. So,

(Ce1)T = −(yzT e1 + zyT e1)T

= −(y(A−1
2n y)T e1)T

= −(yyT y)T

= −nyT .

Thus,

w = (mn+ 1)yT +m(Ce1)T = (mn+ 1)yT −mnyT = yT .

Also,

A2nC = A2n(−yzT − zyT ) = −e1z
T − yyT ,

and so,

W = e1z
T +A2nC = −yyT .

So, A,X are symmetric matrices such that AX is symmetric. To show that X = A#, it suffices to prove

that AXA = A. Now,

AXA =
1

mn+ 1



0 u u · · · u

v (mn+ 1)A2n +Q Q · · · Q

v Q (mn+ 1)A2n +Q
. . .

...
...

...
. . .

. . . Q

v Q · · · Q (mn+ 1)A2n +Q


,

where

u = meT1 ze
T
1 + yTA2n,

v = (mn+ 1)e1 +mWe1,
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Q = yeT1 +WA2n,

and have made use of yT e1 = 0. Now,

u = meT1 (A−1
2n y)eT1 + (A−1

2n e1)TA2n

= myT yeT1 + eT1 A
−1
2nA2n

= mneT1 + eT1

= (mn+ 1)eT1 .

Further, as We1 = −yyT e1 = 0, we have v = (mn+ 1)e1. Finally,

Q = yeT1 +WA2n

= yeT1 − yyTA2n

= yeT1 − y(A−1
2n e1)TA2n

= yeT1 − yeT1
= 0.

Thus, AXA = A, completing the proof that X = A#.

Remark 5.5. A 2× 2 block representation of the group inverse of the adjacency matrix of S2n+1(K1,m)

may be obtained in a manner similar to Theorem 4.10.
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