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KRONECKER PRODUCTS OF PERRON SIMILARITIES∗
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Abstract. An invertible matrix is called a Perron similarity if one of its columns and the corresponding row of its inverse

are both nonnegative or both nonpositive. Such matrices are of relevance and import in the study of the nonnegative inverse

eigenvalue problem. In this work, Kronecker products of Perron similarities are examined and used to construct ideal Perron

similarities all of whose rows are extremal.
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1. Introduction. An invertible matrix is called a Perron similarity if one of its columns and the

corresponding row of its inverse are both nonnegative or both nonpositive. Real Perron similarities were

introduced by Johnson and Paparella [4, 5], and the case for complex matrices is forthcoming [3].

These matrices were introduced to examine the celebrated nonnegative inverse eigenvalue problem vis-

á-vis the polyhedral cone:

C(S) := {x ∈ Rn | SDxS
−1 ≥ 0},

called the (Perron) spectracone of S, and the set:

P(S) :=
{
x ∈ C(S)

∣∣∣∥∥x∥∥∞ = 1
}
,

called the (Perron) spectratope of S. The latter is not necessarily a polytope, but in some cases it is finitely

generated (this is true for some complex matrices as well). Notice that the entries of of any element in P(S)

form a normalized spectrum (i.e., xk = 1 for some k and maxi{|xi|} ≤ 1) of a nonnegative matrix.

In particular, Johnson and Paparella [4] showed that if

Hn :=


[
1 1

1 −1

]
, n = 2

H2 ⊗Hn−1 =

[
Hn−1 Hn−1

Hn−1 −Hn−1

]
, n > 2

,

then C(Hn) and P(Hn) coincide with the conical hull and the convex hull of the rows of Hn, respectively.

In this work, Kronecker products of Perron similarities are examined. It is shown that the Kronecker

product of Perron similarities is a Perron similarity. An example is constructed to refute a result presented

by Johnson and Paparella [4, Corollary 3.17] (see Example 11), and the error in their proof is identified

(see Remark 12). It is also shown that C(S) ⊗ C(T ) ⊂ C(S ⊗ T ) and P(S) ⊗ P(T ) ⊂ P(S ⊗ T ). Kronecker

products of ideal Perron similarities yield Perron similarities all of whose rows are extremal (see Section 5).
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2. Notation and background. For a ∈ Z and n ∈ N, a mod n is abbreviated to a%n. For n ∈ N, the
set {1, . . . , n} is denoted by ⟨n⟩.

The set of m-by-n matrices over a field F is denoted by Mm×n(F); when m = n, the set Mm×n(F) is

abbreviated to Mn(F). If A ∈ Mm×n(F), then the (i, j)-entry of A is denoted by [A]ij , aij , or ai,j .

In this work, F stands for C or R. The set of m-by-n matrices with entries over F is denoted by

Mm×n(F) = Mm×n; when m = n, Mn×n(F) is abbreviated to Mn(F) = Mn. The set of all n-by-1 column

vectors is identified with the set of all ordered n-tuples with entries in F and thus denoted by Fn. The set

of nonsingular matrices in Mn is denoted by GLn(F) = GLn.

Given x ∈ Fn, [x]i = xi denotes the i
th entry of x and diag(x) = Dx = Dx⊤ ∈ Mn(F) denotes the diagonal

matrix whose (i, i)-entry is xi. Notice that for scalars α, β ∈ F, and vectors x, y ∈ Fn, Dαx+βy = αDx+βDy.

Denote by I, e, and ei the identity matrix, the all-ones vector, and the ith canonical basis vector,

respectively. The sizes of these objects are determined from the context in which they appear.

If A ∈ Mm×n and B ∈ Mp×q, then the the Kronecker product of A and B, denoted by A ⊗ B, is the

mp-by-nq matrix defined blockwise by A⊗B =
[
aijB

]
. More precisely, but less intuitively,

(1) [A⊗B]ij = a⌈i/p⌉,⌈j/q⌉b[(i−1)%p]+1,[(j−1)%q]+1.

If x ∈ Cm and y ∈ Cn, then (1) simplifies to

(2) [x⊗ y]i = x⌈i/n⌉y(i−1)%n+1.

If U, V ⊆ Fn, then U ⊗ V := {u⊗ v | u ∈ U, v ∈ V }.

If S ∈ GLn, then the (Perron) spectracone of S, denoted by C(S), is defined by C(S) = {x ∈ Fn |
SDxS

−1 ≥ 0}, and the (Perron) spectratope of S, denoted by P(S), is defined by:

P(S) =
{
x ∈ C(S)

∣∣∣∥∥x∥∥∞ = 1
}
.

If V is a vector space over R and U is a nonempty subset of V , then the conical hull of U , denoted by

coniU , is the set of all possible conical combinations of vectors in U , that is,

coniU =

{
k∑

i=1

αiui ∈ V | k ∈ N, ui ∈ U, αi ≥ 0

}
,

and the convex hull of U , denoted by convU , is the set of all possible convex combinations of vectors in U ,

that is,

convU =

{
k∑

i=1

αiui ∈ V | k ∈ N, ui ∈ U, αi ≥ 0,

k∑
i=1

αi = 1

}
.

The conical hull and convex hull of the rows of S are denoted by Cr(S) and Pr(S), respectively. If S ∈ GLn,

then SDeS
−1 = SIS−1 = I ≥ 0, that is, e ∈ C(S).

If there is an i ∈ ⟨n⟩ such that Sei and e⊤i S
−1 are both nonnegative or both nonpositive for S ∈ GLn,

then S is called a Perron similarity.
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3. Preliminary results.

Lemma 1. If i ∈ Z and n ∈ N, then

i = (⌈i/n⌉ − 1)n+ (i− 1)%n+ 1.

Proof. By the division algorithm,

i− 1 =

⌊
i− 1

n

⌋
n+ (i− 1)%n,

and because ⌊
i− 1

n

⌋
=

⌈
i

n

⌉
− 1,

it follows that

i− 1 = (⌈i/n⌉ − 1)n+ (i− 1)%n,

that is,
i = (⌈i/n⌉ − 1)n+ (i− 1)%n+ 1.

Lemma 2. If ek ∈ Fm and eℓ ∈ Fn, then ek ⊗ eℓ = e(k−1)n+ℓ ∈ Fmn.

Proof. It suffices to show that [ek⊗eℓ]i = 1 if and only if i = (k−1)n+ ℓ; to this end, if i = (k−1)n+ ℓ,

then ⌈
i

n

⌉
=

⌈
(k − 1)n+ ℓ

n

⌉
=

⌈
k − 1 +

ℓ

n

⌉
= k,

and

(i− 1)%n+ 1 = ((k − 1)n+ ℓ− 1)%n+ 1

= (ℓ− 1)%n+ 1

= ℓ− 1 + 1 = ℓ.

Thus, according to (2),

[ek ⊗ eℓ]i = [ek]⌈ i
n ⌉[eℓ](i−1)%n+1 = [ek]k[eℓ]ℓ = 1.

Conversely, if

1 = [ek ⊗ eℓ]i = [ek]⌈ i
n ⌉[eℓ](i−1)%n+1,

then k = ⌈i/n⌉ and ℓ = (i − 1)%n + 1. Hence, by the division algorithm, there is a positive integer q such

that (i− 1) = qn+ ℓ− 1, that is, i = qn+ ℓ. Thus,

k =

⌈
qn+ ℓ

n

⌉
=

⌈
q +

ℓ

n

⌉
= q + 1,

that is, q = k − 1. Therefore, i = qn+ ℓ = (k − 1)n+ ℓ.

Lemma 3. If ei ∈ Fmn, then ei = e⌈i/n⌉ ⊗ e(i−1)%n+1, where e⌈i/n⌉ ∈ Fm and e(i−1)%n+1 ∈ Fn.

Proof. If e⌈i/n⌉ ∈ Fm and e(i−1)%n+1 ∈ Fn, then

e⌈i/n⌉ ⊗ e(i−1)%n+1 = e(⌈i/n⌉−1)n+(i−1)%n+1 = ei,

by Lemmas 1 and 2.
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Lemma 4. If x ∈ Fm and y ∈ Fn, then Dx ⊗Dy = Dx⊗y.

Proof. If i, j ∈ ⟨mn⟩, then

[Dx ⊗Dy]ij = [Dx]⌈ i
n

⌉
,
⌈

j
n

⌉[Dy](i−1)%n+1,(j−1)%n+1,

in view of (1). Since

[Dx]ij =

{
xi, i = j

0, i ̸= j,

it follows that [Dx ⊗ Dy]ij ̸= 0 if and only if ⌈i/n⌉ = ⌈j/n⌉ and (i − 1)%n + 1 = (j − 1)%n + 1. These

equations hold, in light of Lemma 1, if and only if i = j. Thus, Dx ⊗ Dy is a diagonal matrix and, when

i = j, notice that

[Dx]⌈ i
n

⌉
,
⌈

i
n

⌉[Dy](i−1)%n+1,(i−1)%n+1 = x⌈ i
n ⌉y(i−1)%n+1

= [x⊗ y]i

= [Dx⊗y]ii,

as required.

Lemma 5. If x ∈ Fm and y ∈ Fn, then
∥∥x⊗ y

∥∥
p
=
∥∥x∥∥

p

∥∥y∥∥
p
, ∀p ∈ [1,∞].

Proof. Notice that

∥∥x⊗ y
∥∥
p
= p

√√√√mn∑
k=1

|[x⊗ y]k|p

= p

√√√√mn∑
k=1

|x⌈ k
n ⌉y(k−1)%n+1|p

= p

√√√√mn∑
k=1

|x⌈ k
n ⌉|p|y(k−1)%n+1|p.

Since ⌈k/n⌉ ∈ ⟨m⟩ and (k − 1)%n+ 1 ∈ ⟨n⟩, it follows that

∥∥x⊗ y
∥∥
p
= p

√√√√ m∑
i=1

n∑
j=1

|xi|p|yj |p

= p

√√√√√ m∑
i=1

|xi|p

 n∑
j=1

|yj |p



= p

√√√√√( m∑
i=1

|xi|p
) n∑

j=1

|yj |p


= p

√√√√ m∑
i=1

|xi|p · p

√√√√ n∑
j=1

|yj |p =
∥∥x∥∥

p

∥∥y∥∥
p
.

The case when p = ∞ follows from the fact that
∥∥x∥∥∞ = limp→∞

∥∥x∥∥
p
.
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4. Main results. In this section, it is shown that the Kronecker product of spectracones (spectratopes)

is contained in the spectracone (spectratope) of the Kronecker product (Theorem 6). Furthermore, this

containment is shown to be strict (Theorem 10).

Theorem 6. If S ∈ GLm and T ∈ GLn, then C(S)⊗ C(T ) ⊆ C(S ⊗ T ) and P(S)⊗ P(T ) ⊆ P(S ⊗ T ).

Proof. If z ∈ C(S) ⊗ C(T ), then z = x ⊗ y, where x ∈ C(S) and y ∈ C(T ). Thus, SDxS
−1 ≥ 0 and

TDyT
−1 ≥ 0. By Lemma 4 and properties of the Kronecker product,

(SDxS
−1)⊗ (TDyT

−1) = (S ⊗ T )(Dx ⊗Dy)(S
−1 ⊗ T−1)

= (S ⊗ T )(Dx⊗y)(S ⊗ T )−1 ≥ 0,

since the Kronecker product of nonnegative matrices is nonnegative. Therefore, z ∈ C(S ⊗ T ) and C(S) ⊗
C(T ) ⊆ C(S ⊗ T ).

If, in addition, z ∈ P(S)⊗ P(T ), then x ∈ P(S) and y ∈ P(T ), that is,
∥∥x∥∥∞ =

∥∥y∥∥∞ = 1. By Lemma

5, ∥∥z∥∥∞ =
∥∥x⊗ y

∥∥
∞ =

∥∥x∥∥∞ ∥∥y∥∥∞ = 1,

that is, z ∈ P (S ⊗ T ) and P (S)⊗ P (T ) ⊆ P (S ⊗ T ).

Theorem 7. If S ∈ GLm and T ∈ GLn are Perron similarities, then S ⊗ T is a Perron similarity.

Proof. By definition, ∃k ∈ ⟨m⟩ and ∃ℓ ∈ ⟨n⟩ such that the vectors Sek and e⊤k S
−1 are both nonnegative

or both nonpositive, and the same holds for Teℓ and e⊤ℓ T
−1. By Lemma 2,

(S ⊗ T )e(k−1)n+ℓ = (S ⊗ T )(ek ⊗ eℓ) = Sek ⊗ Teℓ,

and, since

e⊤(k−1)n+ℓ(S ⊗ T )−1 = (ek ⊗ eℓ)
⊤(S ⊗ T )−1

= (e⊤k ⊗ e⊤ℓ )(S
−1 ⊗ T−1)

= e⊤k S
−1 ⊗ e⊤ℓ T

−1,

it follows that the vectors (S⊗T )e(k−1)n+ℓ and e⊤(k−1)n+ℓ(S⊗T )−1 are both nonnegative or both nonpositive.

Thus, S ⊗ T is a Perron similarity.

Remark 8. If x, y ∈ C(S) and α, β ≥ 0, then αx+ βy ∈ C(S), that is, C(S) is a convex cone.

Remark 9. If S ∈ GLn is a Perron similarity, then

SDeiS
−1 = (Sei)(e

⊤
i S

−1) ≥ 0,

that is, ∃x ∈ C(S) such that x ̸= αe for every nonnegative α.

Theorem 10. If S ∈ GLm and T ∈ GLn are Perron similarities such that m > 1 and n > 1, then

C(S)⊗ C(T ) ⊂ C(S ⊗ T ) and P(S)⊗ P(T ) ⊂ P(S ⊗ T ).

Proof. By Theorem 7, S⊗T is a Perron similarity. Thus, by Remark 9, ∃i ∈ ⟨mn⟩ such that ei ∈ C(S⊗T ).

If z := 1
2ei +

1
2e, then z ∈ C(S ⊗ T ) (Remark 8),

∥∥z∥∥∞ = 1, and z is totally nonzero. In particular, notice

that

zk =

{
1
2 , k ̸= i

1, k = i.
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For contradiction, assume that z = x⊗ y, where x ∈ C(S) and y ∈ C(T ). Notice that the vectors x and

y must be totally nonzero (otherwise, z would not be totally nonzero).

By definition of the Kronecker product, ∃α ∈ ⟨m⟩ and ∃β ∈ ⟨n⟩ such that zi = xαyβ . Select β̂ ∈ ⟨n⟩
such that β̂ ̸= β. Then, z contains the entry zj = xαyβ̂ and

zi
zj

=
yβ
yβ̂

.

Select α̂ ∈ ⟨m⟩ such that α̂ ̸= α. Then, z contains the entries zk = xα̂yβ and zℓ = xα̂yβ̂ . Furthermore,

zk
zℓ

=
yβ
yβ̂

=
zi
zj

,

however, zi
zj

= 2 and zk
zℓ

= 1, a contradiction.

Example 11. Johnson and Paparella [4, Corollary 3.17] stated that S is a Perron similarity if and only

if coni(e) is properly contained in C(S). A contribution of this work is the refutation of this result with a

counterexample constructed via the Kronecker product.

Indeed, the matrix:

S :=


1 2 1 2

1 1 1 1

1 2 −1 −2

1 1 −1 −1

 ,

is the Kronecker product of

H2 =

[
1 1

1 −1

]
,

and

T :=

[
1 2

1 1

]
.

The inverse of S is 
−0.5 1 −0.5 1

0.5 −0.5 0.5 −0.5

−0.5 1 0.5 −1

0.5 −0.5 −0.5 0.5

 .

Notice that neither the first or second row of S−1 are nonnegative. Furthermore, if

D = diag(
[
2 2 −1 −1

]
),

then the matrix:

A := SDS−1 =


0.5 0 1.5 0

0 0.5 0 1.5

1.5 0 0.5 0

0 1.5 0 0.5

 ,

is nonnegative and nonscalar. Thus, coni(e) is properly contained in C(S), but S is not a Perron similarity.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 114-122, January 2022.

Dockter et al. 120

Remark 12. If S is a Perron similarity, then coni(e) is properly contained in C(S) (Remark 9). However,

as demonstrated in Example 11, the converse fails.

The argument for the converse in the proof of Corollary 3.17 [4] is as follows: if C(S)\ coni(e) ̸= ∅,
then there is a vector x ̸= αe such that A := SDxS

−1 ≥ 0. By the Perron–Frobenius theorem, there are

nonnegative vectors x and y such that Ax = ρx and y⊤A = ρy⊤ (here, ρ denotes the spectral radius of

A). However, these vectors are not unique and the situation is further complicated if the matrix is reducible

(as illustrated by Example 11). The Perron–Frobenius theorem does not guarantee that a nonnegative

left eigenvector appears in S−1 even when a nonnegative right eigenvector is selected from the eigenspace

corresponding to the spectral radius.

5. Ideal Perron similarities. If S ∈ GLn is a Perron similarity, then S is called ideal if C(S) = Cr(S).
For real matrices, it is known that S is ideal if and only if ∃k ∈ ⟨n⟩ such that e⊤k S = e⊤ and e⊤i S ∈ C(S) for
all i ∈ ⟨n⟩ [5, Theorem 3.8]. A careful examination of the arguments also applies to complex matrices.

Theorem 13. If S ∈ GLm and T ∈ GLn are ideal, then S ⊗ T is ideal.

Proof. By hypothesis, there are integers k ∈ ⟨m⟩ and ℓ ∈ ⟨n⟩ such that e⊤k S = e⊤ and e⊤ℓ T = e⊤. Notice

that (k − 1)n+ ℓ ∈ ⟨mn⟩ and by Lemma 2,

e⊤(k−1)n+ℓ(S ⊗ T ) = (ek ⊗ eℓ)
⊤(S ⊗ T )

= (e⊤k ⊗ e⊤ℓ )(S ⊗ T )

= (e⊤k S)⊗ (e⊤ℓ T ) = e⊤ ⊗ e⊤ = e⊤.

If i ∈ ⟨mn⟩, then, following Lemma 3,

e⊤i (S ⊗ T ) = (e⌈i/n⌉ ⊗ e(i−1)%n+1)
⊤(S ⊗ T )

= (e⊤⌈i/n⌉ ⊗ e⊤(i−1)%n+1)(S ⊗ T )

= (e⊤⌈i/n⌉S)⊗ (e⊤(i−1)%n+1T ) ∈ C(S ⊗ T ),

since e⊤⌈i/n⌉S ∈ C(S), e⊤(i−1)%n+1T ∈ C(T ), and C(S)⊗ C(T ) ⊆ C(S ⊗ T ) (Theorem 6).

Theorem 14. If U = {u1, . . . , up} ⊆ Fm and V = {v1, . . . , vq} ⊆ Fn, then coni(U) ⊗ coni(V ) ⊆
coni(U ⊗ V ) and conv(U)⊗ conv(V ) ⊆ conv(U ⊗ V ).

Proof. If x ∈ coni(U)⊗ coni(V ), then x = u⊗ v, where u ∈ coni(U) and v ∈ coni(V ). By definition,

u =

p∑
i=1

λiui, λi ≥ 0, ∀i ∈ ⟨p⟩,

and

v =

q∑
j=1

µjvj , µj ≥ 0, ∀j ∈ ⟨q⟩.
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By properties of the Kronecker product,

x = u⊗ v =

(
p∑

i=1

λiui

)
⊗

 q∑
j=1

µjvj


=

p∑
i=1

λiui ⊗
q∑

j=1

(µjvj)


=

p∑
i=1

q∑
j=1

λiµj(ui ⊗ vj) ∈ coni(U)⊗ coni(V ),

since λiµj ≥ 0, ∀(i, j) ∈ ⟨p⟩ × ⟨q⟩.

If, in addition,

p∑
i=1

λi =

q∑
j=1

µj = 1,

then

p∑
i=1

q∑
j=1

λiµj =

p∑
i=1

λi

q∑
j=1

µj

 =

p∑
i=1

λi = 1,

that is, conv(U)⊗ conv(V ) ⊆ conv(U ⊗ V ).

Recall that a matrix is irreducible if and only if its digraph is strongly connected (see, e.g., Brualdi

and Ryser [1, Theorem 3.2.1]). The index of imprimitivity of an irreducible matrix is the greatest common

divisor of the lengths of the closed directed walks in its digraph [1, p. 68].

An invertible matrix S is called strong if there is an irreducible nonnegative matrix A such that A =

SDS−1 (in such a case, S must be a Perron similarity since the eigenspace corresponding to the Perron root

is one-dimensional). If S is strong, then S is ideal if and only if P(S) = Pr(S) [3].

The following result is a consequence of a result stated by Harary and Trauth [2, p. 251] and follows

from a result due to McAndrew [6, Theorem 2].

Theorem 15. If A and B are irreducible and k and ℓ are the indices of imprimitivity of A and B,

respectively, then A⊗B is irreducible if and only if gcd(k, ℓ) = 1.

Corollary 16. Suppose that S and T are ideal and strong. Let A and B be irreducible nonnegative

matrices with relatively prime indices of imprimitivity k and ℓ, respectively, and such that A = SDS−1 and

B = TD̂T−1. Then, S ⊗ T is ideal and strong.

Proof. The matrix S ⊗ T is ideal by Theorem 13 and strong by Theorem 15. Thus, Pr(S) = P(S),

Pr(T ) = P(T ), and Pr(S ⊗ T ) = P(S ⊗ T ). The weak containment P(S)⊗ P(T ) ⊆ P(S ⊗ T ) follows from

Theorem 14.
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Example 17. For n ∈ N, let F = Fn be the discrete Fourier transform matrix of order n, that is, F is

the n-by-n matrix with (i, j)-entry equal to ω(i−1)(j−1), where ω := exp(2πi/n). Notice that

F =



1 1 · · · 1 · · · 1

1 ω · · · ωk · · · ωn−1

...
...

. . .
...

...
...

1 ωk · · · ωk2 · · · ωk(n−1)

...
...

...
...

. . .
...

1 ωn−1 · · · ωk(n−1) · · · ω(n−1)2


,

and F is ideal as it is a Vandermonde matrix corresponding to the polynomial p(t) := tn−1. The companion

matrix C corresponding to p is nonnegative and the spectrum of the nonnegative matrix Ck−1 corresponds

to the kth-row of F , k ∈ ⟨n⟩. Furthermore, F is strong given that C is the adjacency matrix of the directed

cycle of length n and, hence, is irreducible (it also admits positive circulant matrices).

A normalized, realizable spectrum x is called extremal if αx is not realizable whenever α > 1. Notice

that every row of F is extremal and every point in every row is extremal in the Karpelevič region.

At the 2019 Meeting of the International Linear Algebra Society in Rio de Janeiro, the second author

asked whether other such matrices exist. Notice that Fn ⊗ Fm, Fm ⊗Hn, and Hn ⊗ Fm are matrices all of

whose rows and entries are extremal.
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