LINEAR SYSTEMS OF DIOPHANTINE EQUATIONS*

FERNANDO SZECHTMAN ${ }^{\dagger}$

Abstract

Given free modules $M \subseteq L$ of finite rank $f \geq 1$ over a principal ideal domain R, we give a procedure to construct a basis of L from a basis of M assuming the invariant factors or elementary divisors of L / M are known. Given a matrix $A \in M_{m, n}(R)$ of rank r, its nullspace L in R^{n} is a free R-module of rank $f=n-r$. We construct a free submodule M of L of rank f naturally associated with A and whose basis is easily computable, we determine the invariant factors of the quotient module L / M and then indicate how to apply the previous procedure to build a basis of L from one of M.

Key words. Linear system, Diophantine equation, Smith normal form.

AMS subject classifications. 11D04, 15A06.

1. Introduction. Let R be a principal ideal domain. Given $f \in \mathbb{N}$, by a lattice of rank f we understand a free R-module L of rank f. By a sublattice of L, we mean a submodule M of L, necessarily free, also of rank f. In this case, L / M is a finitely generated torsion R-module.

In different settings, we may face the problem of having to construct a basis of L from a known basis $\left\{u_{1}, \ldots, u_{f}\right\}$ of M. A prime example occurs when $R=\mathbb{Z}, L=\mathcal{O}_{K}$, the ring of integers of an algebraic number field K of degree f over $\mathbb{Q}, M=\mathbb{Z}[\theta]$, and $\left\{u_{1}, \ldots, u_{f}\right\}=\left\{1, \theta, \ldots, \theta^{f-1}\right\}$, where $\theta \in \mathcal{O}_{K}$ is chosen so that $\mathbb{Q}[\theta]=K$.

A general procedure to construct a basis of L from a known basis $\left\{u_{1}, \ldots, u_{f}\right\}$ of M is available to us, provided we know the index $i(M, L)$ of M in L, which is the determinant of the matrix whose columns are the coordinates of any basis of M relative to any basis of L. This is determined up to multiplication by units only. Note that if $R=\mathbb{Z}$, then $|i(M, L)|$ is the order of the finite abelian group L / M.

If $i(M, L)=1$, then $L=M$ has basis $\left\{u_{1}, \ldots, u_{f}\right\}$. Suppose next $i(M, L) \neq 1$ and let $p \in R$ be a prime factor of $i(M, L)$. Then, L / M has a cyclic submodule isomorphic to $R / R p$, so there exist $a_{1}, \ldots, a_{f} \in \mathbb{Z}$, such that

$$
\begin{equation*}
v=\frac{a_{1} u_{1}+\cdots+a_{f} u_{f}}{p} \in L \backslash M . \tag{1.1}
\end{equation*}
$$

Since $v \notin M$, we have $p \nmid a_{i}$ for some i and we assume for notational convenience that $i=1$. Since $\operatorname{gcd}\left(p, a_{1}\right)=1$, we can find $x, y \in R$ such that $x a_{1}+y p=1$. Here $y p v \in M$, so

$$
x a_{1} v=(1-y p) v=v-y p v \notin M
$$

whence $x v \notin M$ and a fortiori $v^{\prime}=x v+y u_{1} \in L \backslash M$, where

$$
v^{\prime}=\frac{x\left(a_{1} u_{1}+\cdots+a_{f} u_{f}\right)+p y u_{1}}{p}=\frac{u_{1}+x a_{2} u_{2}+\cdots+x a_{f} u_{f}}{p} .
$$

[^0]Thus, replacing v by a suitable R-linear combination of itself and u_{1}, namely v^{\prime}, we may suppose that $a_{1}=1$ in (1.1). Then, $\left\{v, u_{2}, \ldots, u_{f}\right\}$ is a basis for a sublattice, say P, of L such that $M \subset P$ and $i(M, P)=p$, so $i(P, L)=i(M, L) / p$. Repeating this process, we eventually arrive at a basis of L.

In this paper, we modify and improve this procedure, provided the invariant factors or elementary divisors of L / M are known, and we illustrate the use of this method with a concrete problem.

Indeed, let F be the field of fractions of R. Given a matrix $A \in M_{m, n}(R)$, we write T for the nullspace of A in F^{n} so that $S=T \cap R^{n}$ is the nullspace of A in R^{n}. We note that $L=S$ is a lattice of rank $f=n-r$, where r is the rank of A.

It is easy to find an F-basis of T from the reduced row echelon form, say E, of A. It is not clear at all how to use E to produce an R-basis of S. To achieve this, we first identify a sublattice M of L as well as a basis of M, naturally, in terms of E; we then compute the complete structure of the R-module L / M, namely its invariant factors, whose product is equal to $i(M, L)$; we finally indicate how to build a basis of L from the given basis of M by making use of the full structure of L / M.

Now if $r=n$, then E consists of the first n canonical vectors of R^{m}, and $L=0$. On the other hand, if $r=0$ then $E=0$ and $L=R^{n}$. None of these cases is of any interest, so we assume throughout that $0<r<n$.

In Sections 2, 3, 4, and 5, we use E to naturally produce a lattice U of rank f, a basis of U, and a nonzero scalar $d \in R$ such that $M=d U$ is a sublattice of L, and L is a sublattice of U. Moreover, we compute the full structures of L / M and U / L. Furthermore, in Section 6, we indicate how to use either the invariant factors or the elementary divisors of L / M to construct a basis of L from one of M (this is done for arbitrary L and M). In addition, if $d=p$ is a prime, we indicate in Section 7 how to produce a basis of L more or less directly from one of U. Examples can be found in Section 8.

We may summarize our study of S as follows: given the lattice S of all solutions of $A X=0$ in R^{n}, we approximate S from below by a naturally occurring lattice of solutions M in R^{n}, we determine how far M is from S, and we describe how to bridge the gap between them. A like approach was recently utilized in [9] in the special case of a single linear homogeneous equation, that is, when $m=1$, except that in [9] the approximation was taken from above, by means of U. The case $m=1$ is necessarily simpler than the general case addressed here, as much in the computation of the structures of U / S and S / M as in the passage from a basis of a lattice to a basis of S, where the material from Section 6 not required.

As is well known (see the note at the end of [9, Section 4] in the special case $m=1$), we may also find a basis of S by appealing to the Smith normal form D of A. There are $P \in \mathrm{GL}_{m}(R)$ and $Q \in \mathrm{GL}_{n}(R)$ such that $D=P A Q$. It is then trivial to find a basis, say \mathcal{B}, of the nullspace of D, whence $Q \mathcal{B}$ is a basis of the nullspace of A. This approach gives no information whatsoever on how far naturally occurring lattices of solutions of $A X=0$ are from S, as provided in Theorem 5.1, or how to expand or shrink these lattices to reach S, as expounded in Section 6 or [9, Theorem 4.5].

Most of the literature on systems of linear diophantine equations is naturally focused on the case $R=Z$. One significant body of work is focused on nonnegative solutions, with applications to linear programming and combinatorial optimization. See [1], [2], [3], [4], [7], [10], and references therein.

Regarding lattices over the integers and their bases, a large body of literature is concerned with lattice basis reduction, which takes as input a basis of a lattice and aims at producing as output a new basis of
the same lattice with vectors that are short and nearly orthogonal. A celebrated algorithm of this kind is the LLL algorithm [6], which has a wide range of applications, such as in cryptanalysis, algorithmic number theory, factorization of polynomials with rational coefficients, integer linear programming, and many more. See the reference book [8] for comprehensive information on this subject.
2. Reduced matrices. A matrix $Z \in M_{m, n}(R)$ of rank r is said to be reduced if there are $0 \neq d \in R$ and $K \in M_{r, f}(R)$ such that

$$
Z=\left(\begin{array}{cc}
d I_{r} & K \tag{2.2}\\
0 & 0
\end{array}\right)
$$

Two matrices $B, C \in M_{m, n}$ are associated if there are $L \in \mathrm{GL}_{m}(F)$ and $\Sigma \in \mathrm{GL}_{n}(F)$ such that Σ is a permutation matrix and $L B \Sigma=C$. This is clearly an equivalence relation.

Lemma 2.1. The given matrix A is associated with a reduced matrix.
Proof. Let $Y \in M_{m, n}(F)$ be the reduced row echelon form of A. Multiplying Y by suitable element of R and permuting the columns of resulting matrix yields a reduced matrix associated with A.

For the remainder of the paper, we fix a reduced matrix Z associated with A, say via that $L A \Sigma=Z$, and write $J=\left(d I_{r} K\right) \in M_{r, n}(R)$ for the matrix obtained from Z by eliminating its last $m-r$ rows. We let N stand for the nullspace of J in R^{n} so that $S=\Sigma N$ (thus, up to permutation of the variables X_{1}, \ldots, X_{n}, our linear system is $J X=0$).
3. Choice of a lattice. The linear system $J X=0$ reads as follows:

$$
\begin{gathered}
d X_{1}=-\left(K_{1,1} X_{r+1}+\cdots+K_{1, f} X_{n}\right), \\
d X_{2}=-\left(K_{2,1} X_{r+1}+\cdots+K_{2, f} X_{n}\right), \\
\vdots \\
d X_{r}=-\left(K_{r, 1} X_{r+1}+\cdots+K_{r, f} X_{n}\right) .
\end{gathered}
$$

Consider the f vectors $V(1), \ldots, V(f) \in F^{n}$ and defined as follows:

$$
V(1)=\left(\begin{array}{c}
-\frac{K_{1,1}}{d} \tag{3.3}\\
\vdots \\
-\frac{K_{r, 1}}{d} \\
1 \\
0 \\
\vdots \\
0
\end{array}\right), \ldots, V(f)=\left(\begin{array}{c}
-\frac{K_{1, f}}{d} \\
\vdots \\
-\frac{K_{r, f}}{d} \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

It is clear that $\{V(1), \ldots, V(f)\}$ is an F-basis of the nullspace of J in F^{n}. We set

$$
W=\operatorname{span}_{R}\{V(1), \ldots, V(f)\}
$$

so that $\{V(1), \ldots, V(f)\}$ is an R-basis of W. We thus have

$$
\begin{equation*}
d W \subseteq N \subseteq W \tag{3.4}
\end{equation*}
$$

and we aim to determine the structure of the factors:

$$
N / d W \text { and } W / N
$$

where

$$
W / d W \cong(R / R d)^{f}
$$

Given $\alpha_{1}, \ldots, \alpha_{f} \in F$, we have

$$
\begin{equation*}
\alpha_{1} V(1)+\cdots+\alpha_{f} V(f) \in N \Leftrightarrow \alpha_{1}, \ldots, \alpha_{f} \in R \text { and } \alpha_{1} K_{i, 1}+\cdots+\alpha_{f} K_{i, f} \equiv 0 \quad \bmod d, 1 \leq i \leq r \tag{3.5}
\end{equation*}
$$

Thus, we have an isomorphism $R^{f} \rightarrow W$ given by:

$$
\left(\alpha_{1}, \ldots, \alpha_{f}\right) \mapsto \alpha_{1} V(1)+\cdots+\alpha_{f} V(f),
$$

and N corresponds to the submodule, say Y, of R^{f} of all $\left(\alpha_{1}, \ldots, \alpha_{f}\right)$ such that the right-hand side of (3.5) holds. In particular, $W / N \cong R^{f} / Y$.
4. Each of $N / d W$ and W / N determines the other. By the theory of finitely generated modules over a principal ideal domain, there is a basis $\left\{u_{1}, \ldots, u_{f}\right\}$ of W and nonzero elements $a_{1}, \ldots, a_{f} \in R$ such that

$$
a_{1}|\cdots| a_{f} \mid d
$$

and $\left\{a_{1} u_{1}, \ldots, a_{f} u_{f}\right\}$ is a basis of N. Since $\left\{d u_{1}, \ldots, d u_{f}\right\}$ is a basis of $d W$, we see that

$$
W / N \cong\left(R / R a_{1}\right) \oplus \cdots \oplus\left(R / R a_{f}\right) \text { and } N / d W \cong\left(R / R b_{f}\right) \oplus \cdots \oplus\left(R / R b_{1}\right)
$$

where

$$
b_{i}=d / a_{i}, \quad 1 \leq i \leq f
$$

and

$$
b_{f}|\cdots| b_{1}
$$

As d is fixed, we see that $N / d W$ and W / N determine each other.
5. Structures of W / N and $N / d W$. Set $\bar{R}=R / R d$ and consider the homomorphism of R-modules:

$$
\Delta: R^{f} \rightarrow R^{r} \rightarrow \bar{R}^{r}
$$

given by:

$$
\alpha \mapsto \bar{K} \bar{\alpha},
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{f}\right)$, and \bar{K} and $\bar{\alpha}$ are the reductions of K and α modulo $R d$. Then, (3.5) shows that the kernel of Δ is Y. Thus,

$$
W / N \cong R^{f} / Y \cong \Delta\left(R^{f}\right) \cong C(\bar{K})
$$

where $C(\bar{K})$ is the column space of \bar{K}, namely the \bar{R}-span of the columns of \bar{K}.
Consider the natural epimorphism of R-modules $\Lambda: R^{r} \rightarrow \bar{R}^{r}$ with kernel $(R d)^{r}$. Then, Λ restricts to an epimorphism of R-modules $\Omega: C(K) \rightarrow C(\bar{K})$ with kernel $C(K) \cap(R d)^{r}$.

Let $Q=\operatorname{diag}\left(q_{1}, \ldots, q_{s}\right)$ be the Smith normal form of K, where $q_{1}|\cdots| q_{s}$ and $s=\min \{r, n-r\}$, and let t be the rank of K, so that $t=0$ if and only if $K=0$.

If $K=0$, then (3.5) implies that $W=N$ and a fortiori:

$$
N / d W \cong W / d W \cong \bar{R}^{f}
$$

Suppose next $K \neq 0$. Then, t is the last index such that $q_{t} \neq 0$ and from the theory of finitely generated modules over a principal ideal domain, there is a basis $\left\{u_{1}, \ldots, u_{r}\right\}$ of R^{r} such that $\left\{q_{1} u_{1}, \ldots, q_{t} u_{t}\right\}$ is a basis for $C(K)$. Notice that

$$
C(K) \cap(R d)^{r}=\left(R q_{1} u_{1} \oplus \cdots \oplus R q_{t} u_{t}\right) \cap\left(R d u_{1} \oplus \cdots \oplus R d u_{r}\right)=R \operatorname{lcm}\left(d, q_{1}\right) u_{1} \oplus \cdots \oplus R \operatorname{lcm}\left(d, q_{t}\right) u_{t}
$$

so that

$$
W / N \cong C(\bar{K}) \cong C(K) /\left(C(K) \cap(R d)^{r}\right) \cong\left(R q_{1} u_{1} \oplus \cdots \oplus R q_{t} u_{t}\right) /\left(R \operatorname{lcm}\left(d, q_{1}\right) u_{1} \oplus \cdots \oplus R \operatorname{lcm}\left(d, q_{t}\right) u_{t}\right)
$$

Since

$$
\operatorname{lcm}\left(d, q_{i}\right) / q_{i}=d / \operatorname{gcd}\left(d, q_{i}\right), \quad 1 \leq i \leq t
$$

setting

$$
m_{i}=\operatorname{lcm}\left(d, q_{i}\right) / q_{i}, d_{i}=d / \operatorname{gcd}\left(d, q_{i}\right), \quad 1 \leq i \leq t
$$

we infer

$$
\begin{equation*}
W / N \cong R / R m_{t} \oplus \cdots \oplus R / R m_{1} \cong R / R d_{t} \oplus \cdots \oplus R / R d_{1} \tag{5.6}
\end{equation*}
$$

Adding $f-t$ zero summands to the right-hand side of (5.6), we may write

$$
W / N \cong(R / R \cdot 1)^{f-t} \oplus R / R d_{t} \oplus \cdots \oplus R / R d_{1}
$$

We finally deduce from Section 4 the sought formula:

$$
\begin{equation*}
N / W d \cong R / R \operatorname{gcd}\left(d, q_{1}\right) \oplus \cdots \oplus R / R \operatorname{gcd}\left(d, q_{t}\right) \oplus(R / R d)^{f-t} \tag{5.7}
\end{equation*}
$$

Dividing every entry of Z by $g=\operatorname{gcd}\left\{d, K_{i j} \mid 1 \leq i \leq r, 1 \leq j \leq f\right\}$, we may assume that $g=1$, which translates into $\operatorname{gcd}\left(d, q_{1}\right)=1$. In this case, if $r=1$ then (5.6) and (5.7) reduce to the corresponding formulas from [9, Theorems 4.1 and 3.2], respectively.

Notice that (5.6) and (5.7) remain valid when $K=0$.
Set $U=\Sigma W$, with Σ as in Section 2, and let $M=d U$. We have an isomorphism $W \rightarrow U$, given by $X \mapsto \Sigma X$, yielding isomorphisms $W / N \rightarrow U / S$ and $N / d W \rightarrow S / M$. We have thus proved the following result.

Theorem 5.1. Let $A \in M_{m, n}(R)$, with rank $0<r<n$ and nullspace S in R^{n}. Let Z be a reduced matrix associated with A, as in (2.2), say via $L A \Sigma=Z$. Let W be the free R-module of rank $n-r$ corresponding to Z as defined in Section 3 and set $U=\Sigma W$ and $M=d U$. Then, $M \subseteq S \subseteq U$, where $U / S \cong W / N$ and $S / M \cong N / d W$ are as described in (5.6) and (5.7), respectively.

Corollary 5.2. We have $U=S$ if and only if d divides every entry of K, and $S=M$ if and only if $\operatorname{gcd}\left(d, q_{i}\right)=1,1 \leq i \leq t$, and either d is a unit or K has rank f.

Proof. This follows immediately from (5.6) and (5.7).
6. An improved procedure to construct a basis of L. Here, we go back to the general case and suppose that L is an arbitrary lattice of rank f with a proper sublattice M. We assume that the list of invariant factors or elementary divisors of L / M is known, and we wish to use one list or the other to improve the process indicated in the Introduction to obtain a basis of L from a given basis $\left\{u_{1}, \ldots, u_{f}\right\}$ of M.

Let $g_{1}, \ldots, g_{s} \in R$ be the unique elements, up to multiplication by units, such that g_{1} is not a unit, g_{s} is not zero, $g_{1}|\cdots| g_{s}$, and

$$
\begin{equation*}
L / M \cong R / R g_{1} \oplus \cdots \oplus R / R g_{s} \tag{6.8}
\end{equation*}
$$

Here, $i(M, L)=g_{1} \cdots g_{s}$, and we will use all of g_{1}, \ldots, g_{s} instead of $i(M, L)$ to obtain a basis of L. The idea is to advance one invariant factor of L / M at a time, rather than one prime factor of $i(M, L)$ at a time.

According to (6.8), S / M has a vector with annihilating ideal $R g_{s}$. This means that there are a_{1}, \ldots, a_{f} in R such that the following extension of (1.1) holds

$$
\begin{equation*}
v=\frac{a_{1} u_{1}+\cdots+a_{f} u_{f}}{g_{s}} \in L \text { but } h v \notin M \text { for any proper factor } h \text { of } g_{s} \tag{6.9}
\end{equation*}
$$

In particular, $R v \cap M=R g_{s} v$, and we set $P=R v+M$. Thus,

$$
P / M \cong R v /(R v \cap M) \cong R / R g_{s}
$$

is a submodule of L / M. On the other hand, it is well known [5, Lemma 6.8 and Theorem 6.7] that any cyclic submodule of L / M with annihilating ideal $R g_{s}$ is complemented in L / M. The uniqueness of the invariant factors of L / M implies that

$$
S / P \cong R / R g_{1} \oplus \cdots \oplus R / R g_{s-1}
$$

Thus, if we can provide a way to produce a basis of P from a basis of M, then successively applying the above procedure with $g_{s}, g_{s-1}, \ldots, g_{1}$ will yield a basis of L. We next indicate two ways to construct a basis of P from $\left\{u_{1}, \ldots, u_{f}\right\}$ and v. Set $v=u_{f+1}$ and $a_{f+1}=-g_{s}$. Then from the first condition in (6.9), we have

$$
\begin{equation*}
a_{1} u_{1}+\cdots+a_{f} u_{f}+a_{f+1} u_{f+1}=0 \tag{6.10}
\end{equation*}
$$

while the second condition in (6.9) implies

$$
\begin{equation*}
\operatorname{gcd}\left(a_{1}, \ldots, a_{f}, a_{f+1}\right)=1 \tag{6.11}
\end{equation*}
$$

In the first way, set $a=\left(a_{1}, \ldots, a_{f+1}\right)$ and let u be the column vector with vector entries $\left(u_{1}, \ldots, u_{f+1}\right)$. Using an obvious notation, (6.10) means $a u=0$. Moreover, from (6.11), we infer the existence of Q in $\operatorname{GL}_{f+1}(R)$ such that $a Q=(1,0, \ldots, 0)$. Setting $v=Q^{-1} u$, we have

$$
0=a u=a Q Q^{-1} u=(1,0, \ldots, 0) v
$$

Now v is a column vector, say with vector entries $\left(v_{1}, \ldots, v_{f+1}\right)$, where $v_{1}=0$. But $v=Q^{-1} u$ ensures that the entries of u and v have the same span. Since P is a lattice of rank f, it follows that the f spanning vectors v_{2}, \ldots, v_{f+1} must form a basis of P.

For the second way, we assume that R is an Euclidean domain. Thus, R is an integral domain endowed with a function $\delta: R \rightarrow \mathbb{Z}_{\geq 0}$ such that given any $a, b \in R$ with $b \neq 0$, there are $q, r \in R$ such that $a=b q+r$, with $r=0$ or $\delta(r)<\delta(b)$. We may then use (6.11) and the Euclidean algorithm to transform (6.10) into

$$
\begin{equation*}
b_{1} v_{1}+\cdots+b_{f} v_{f}+v_{f+1}=0 \tag{6.12}
\end{equation*}
$$

where u_{1}, \ldots, u_{f+1} and v_{1}, \ldots, v_{f} span the same module. As above, this implies that $\left\{v_{1}, \ldots, v_{f}\right\}$ is a basis of P. We briefly describe the foregoing transformation. Choose $1 \leq i \leq f+1$ such that $a_{i} \neq 0$ with $\delta\left(a_{i}\right)$ is as small as possible. For notational convenience, let us assume that $i=f+1$. Dividing every other a_{j} by a_{f+1}, we obtain $a_{j}=q_{j} a_{f+1}+r_{j}$, where $r_{j}=0$ or $\delta\left(r_{j}\right)<\delta\left(a_{j}\right), 1 \leq j \leq f$. If every $r_{j}=0$, then (6.11) forces a_{f+1} to be a unit, so dividing (6.10) by a_{f+1} we obtain (6.12). Suppose at least one $r_{j} \neq 0$. We can rewrite (6.10) in the form:

$$
r_{1} u_{1}+\cdots+r_{f} u_{f}+a_{f+1}\left(q_{1} u_{1}+\cdots+q_{f} u_{f}+u_{f+1}\right)=0,
$$

where $u_{1}, \ldots, u_{f}, u_{f+1}$ and $u_{1}, \ldots, u_{f}, q_{1} u_{1}+\cdots+q_{f} u_{f}+u_{f+1}$ span the same module, $r_{j} \neq 0, \delta\left(r_{j}\right)<$ $\delta\left(a_{f+1}\right)$, and $\operatorname{gcd}\left(r_{1}, \ldots, r_{f}, a_{f+1}\right)=1$. Since δ takes only nonnegative values, repeating this process we must eventually arrive to a unit remainder, as required for (6.12).

We next indicate how to use the elementary divisors of L / M instead of its invariant factors to construct a basis of L. There are more of the former than of the latter, but this is be balanced by the fact that each intermediate basis is more easily found. Let $p \in R$ be a prime, $1 \leq e_{1} \leq \cdots \leq e_{k}$, and suppose that $p^{e_{1}}, \ldots, p^{e_{k}}$ are the p-elementary divisors of L / M. Set $e=e_{k}$. Then, L / M has a vector with annihilating ideal $R p^{e}$, which translates as follows. There are $a_{1}, \ldots, a_{f} \in R$ such that the following extension of (1.1) holds

$$
\begin{equation*}
v=\frac{a_{1} u_{1}+\cdots+a_{f} u_{f}}{p^{e}} \in L \text { but } p^{e-1} v \notin M . \tag{6.13}
\end{equation*}
$$

By [5, Lemma 6.8], any vector of L / M with annihilating ideal $R p^{e}$ has a complement in L / M. Thus, the preceding procedure applies, except that now we advance one p-elementary divisor of L / M at a time. In this case, however, it is easier to pass from a basis to the next one. Indeed, since $p^{e-1} v \notin M$, we must have $p \nmid a_{i}$ for some i, and the same argument given in the Introduction produces a basis of the span of v, u_{1}, \ldots, u_{f} from the basis $\left\{u_{1}, \ldots, u_{f}\right\}$ of M.

We finally indicate how to apply the above procedure when $L=S, M=d U$, and we take $\left\{u_{1}, \ldots, u_{f}\right\}=$ $\Sigma\{d V(1), \ldots, d V(f)\}$. The invariant factors of $S / M \cong N / d W$ are given in Theorem 5.1, and we can obtain from these corresponding the elementary divisors. Furthermore, Corollary 5.2 makes it clear when $S=M$. Observe that we can replace L in (6.9) and (6.13) by R^{n}, for in that case $v \in F^{n} \cap T=S$.
7. The case when d is a prime. We assume throughout this section that $d=p$ is a prime and set $\bar{R}=R / R p$. In this case, a sharpening of (5.6) and (5.7) is available, and we can obtain a basis of N, and hence of $S=\Sigma N$, directly, without having to resort to the procedure outlined in Section 6. It follows from (3.4) that all of $W / p W, W / N$, and $N / p W$ are \bar{R}-vector spaces, and hence completely determined by their dimensions. Let \bar{K} be the reduction of K modulo p. Then, $W / p W \cong \bar{R}^{f} ; N / p W$ is isomorphic to the nullspace of \bar{K} by Section 3; and W / N is isomorphic to the column space of \bar{K} by Section 5. Thus,

$$
\begin{equation*}
\operatorname{dim} W / N=\operatorname{rank} \bar{K}, \operatorname{dim} N / p W=f-\operatorname{rank} \bar{K} . \tag{7.14}
\end{equation*}
$$

This formula is compatible with the isomorphism:

$$
W / N \cong(W / p W) /(N / p W) .
$$

Moreover, a careful examination of (7.14) reveals that, as expected, it is in agreement with (5.6) and (5.7).
Next, we show how to obtain a basis of N directly from the basis $\{V(1), \ldots, V(f)\}$ of W. Let $H \in$ $M_{r, f}(R)$ be such that \bar{H} is the reduced row echelon form of \bar{K}. For simplicity of notation, let us assume that the leading columns of \bar{H} are columns $1, \ldots, s$.

Theorem 7.1. Consider the vectors:

$$
z_{1}=p V(1), \ldots, z_{s}=p V(s)
$$

and if $s<f$ also the vectors:

$$
z_{s+i}=-\left(H_{1, s+i} V(1)+\cdots+H_{s, s+i} V(s)\right)+V(s+i), \quad 1 \leq i \leq f-s
$$

Then, $\left\{z_{1}, \ldots, z_{f}\right\}$ is a basis of N (if $s=0\left\{z_{1}, \ldots, z_{f}\right\}$ is simply $\{V(1), \ldots, V(f)\}$).
Proof. Given $\alpha=\left(\alpha_{1}, \ldots, \alpha_{f}\right) \in R^{f}$, we have

$$
\bar{K} \bar{\alpha}=0 \Leftrightarrow \bar{H} \bar{\alpha}=0,
$$

and therefore (3.5) gives

$$
\alpha_{1} V(1)+\cdots+\alpha_{f} V(f) \in N \Leftrightarrow \bar{H} \bar{\alpha}=0 .
$$

Our choice of H ensures that $z_{1}, \ldots, z_{f} \in N$. Let $G \in M_{f}(R)$ be the matrix whose columns are the coefficients of z_{1}, \ldots, z_{f} relative to the basis $V(1), \ldots, V(f)$ of W. Then, $|G|=p^{s}$. On the other hand, $W / N \cong C(\bar{K})$ is a vector space over \bar{R} of dimension s, so there is a basis $\left\{u_{1}, \ldots, u_{f}\right\}$ of W such that $\left\{p u_{1}, \ldots, p u_{s}, u_{s+1}, \ldots, u_{f}\right\}$ is a basis of N. It follows from [9, Lemma 4.3] that $\left\{z_{1}, \ldots, z_{f}\right\}$ is a basis of N.]

8. Examples.

(1) Consider the case $R=\mathbb{Z}, n=4$, and

$$
A=\left(\begin{array}{cccc}
2 & 3 & 5 & 4 \\
3 & -5 & 2 & -7
\end{array}\right)
$$

Let B (resp. C) be the 2×2 submatrix formed by the first (resp. last) two columns of A and let D be the adjoint of B. Then $|B|=-19$, which implies $|D|=-19$ and $|D C| \equiv|D||C| \equiv 0 \bmod 19$. Multiplying A on the left by C, we obtain the the following reduced matrix Z associated with A :

$$
Z=\left(\begin{array}{cc}
d I_{2} & K
\end{array}\right)=\left(\begin{array}{cccc}
-19 & 0 & -31 & 1 \\
0 & -19 & -11 & -26
\end{array}\right) .
$$

The reduction of K modulo 19 has rank $s=1$, since $|K| \equiv 0 \bmod 19$ and not all entries of K are divisible by 19. In this case, the formulas from Section 7 give $S / 19 W \cong \mathbb{Z} / 19 \mathbb{Z}$ and $W / S \cong \mathbb{Z} / 19 \mathbb{Z}$. We can use this information to obtain a \mathbb{Z}-basis of S. Indeed, by Section 3 the vectors:

$$
V(1)=(-31 / 19,-11 / 19,1,0), V(2)=(1 / 19,-26 / 19,0,1)
$$

form a \mathbb{Q}-basis of T. Moreover, it is clear that if $\alpha_{1}, \alpha_{2} \in \mathbb{Q}$, then $\alpha_{1} V(2)+\alpha_{2} V(2) \in S$ if and only if $\alpha_{1}, \alpha_{2} \in \mathbb{Z}$ and

$$
-31 \alpha_{1}+\alpha_{2} \equiv 0 \quad \bmod 19,11 \alpha_{1}+26 \alpha_{2} \equiv 0 \quad \bmod 19
$$

The second equation is redundant since $|K| \equiv 0 \bmod 19$, and the first equation is equivalent to

$$
\alpha_{2} \equiv 12 \alpha_{1} \quad \bmod 19
$$

This yields the following vectors from S :

$$
z_{1}=19 V(2)=(1,-26,0,19), z_{2}=V(1)+12 V(2)=(-1,-17,1,12)
$$

The 2×2 matrix formed by coordinates of z_{1}, z_{2} relative to $V(1), V(2)$ is

$$
\left(\begin{array}{cc}
0 & 1 \\
19 & 12
\end{array}\right)
$$

This implies $W /\left(R z_{1} \oplus R z_{2}\right) \cong \mathbb{Z} / 19 \mathbb{Z}$, whence $\left\{z_{1}, z_{2}\right\}$ is a basis of S.
(2) Consider the case $R=\mathbb{Z}, r=3, n=6$, and

$$
A=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 2 & 3 \\
1 & 3 & 7 & 4 & 5 & 6 \\
1 & 9 & 49 & 7 & 8 & 9
\end{array}\right)
$$

Let B be the 3×3 submatrix formed by the first three columns of A. Then B is a Vandermonde matrix with determinant 48 . Let C be the adjoint of B. Then,

$$
C=\left(\begin{array}{ccc}
84 & -40 & 4 \\
-42 & 48 & -6 \\
6 & -8 & 2
\end{array}\right)
$$

Multiplying A on the left by C, we obtain the matrix:

$$
\left(\begin{array}{cccccc}
48 & 0 & 0 & -48 & 0 & 48 \\
0 & 48 & 0 & 108 & 108 & 108 \\
0 & 0 & 48 & -12 & -12 & -12
\end{array}\right)
$$

Dividing every entry by 12 , we obtain the following reduced matrix Z associated with A :

$$
Z=\left(\begin{array}{cc}
d I_{3} & K
\end{array}\right)=\left(\begin{array}{cccccc}
4 & 0 & 0 & -4 & 0 & 4 \\
0 & 4 & 0 & 9 & 9 & 9 \\
0 & 0 & 4 & -1 & -1 & -1
\end{array}\right)
$$

Thus, (3.3) produces a free submodule M of S of rank 3 with basis:

$$
u_{1}=(4,-9,1,4,0,0), u_{2}=(0,-9,1,0,4,0), u_{3}=(-4,-9,1,0,0,4)
$$

The Smith normal form of K is $\operatorname{diag}(1,4,0)$. Here, $d=4, f=3$, and $t=2$, so according to (5.7), we have

$$
S / M \cong \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}
$$

We look for $a, b, c \in \mathbb{Z}$ such that

$$
v=\frac{a u_{1}+b u_{2}+c u_{3}}{4} \in \mathbb{Z}^{3} \text { but } 2 v \notin M
$$

This translates into

$$
a+b+c \equiv 0 \quad \bmod 4 \text { and }(a, b, c) \notin(2 \mathbb{Z})^{3} .
$$

Taking $(a, b, c)=(1,-1,1)$, we find the following vectors from S :

$$
z_{1}=\left(u_{1}-u_{2}\right) / 4, z_{2}=\left(u_{2}-u_{3}\right) / 4, u_{3}
$$

We clearly have

$$
\left(\mathbb{Z} z_{1} \oplus \mathbb{Z} z_{2} \oplus \mathbb{Z} z_{3}\right) / M \cong \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}
$$

which implies that $\left\{z_{1}, z_{2}, z_{3}\right\}$ is a basis of S.
(3) Consider the case $R=\mathbb{Z}, r=3, n=6$, and

$$
A=\left(\begin{array}{cccccc}
12 & 24 & 36 & -4 & 12 & 44 \\
24 & 36 & 12 & -2 & 10 & 20 \\
36 & 12 & 24 & 0 & 20 & 44
\end{array}\right)
$$

Multiplying A on the left by a suitable matrix from $\mathrm{GL}_{3}(\mathbb{Q})$ yields the the following reduced matrix associated with A :

$$
Z=\left(\begin{array}{ll}
d I_{3} & K
\end{array}\right)=\left(\begin{array}{cccccc}
12 & 0 & 0 & 1 & 5 & 6 \\
0 & 12 & 0 & -1 & -1 & -2 \\
0 & 0 & 12 & -1 & 3 & 14
\end{array}\right)
$$

Following (3.3), we obtain a free submodule M of S of rank 3 having basis:

$$
u_{1}=(-1,1,1,12,0,0), u_{2}=(-5,1,-3,0,12,0), u_{3}=(-6,2,-14,0,0,12)
$$

The Smith normal form of K is $\operatorname{diag}(1,4,12)$. We have $d=12, f=3$ and $t=3$, so (5.7) yields

$$
S / M \cong \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 12 \mathbb{Z}
$$

We use (6.9) to obtain the vector:

$$
v=\frac{-u_{1}-u_{2}+u_{3}}{12}=(0,0,-1,-1,-1,1) \in S
$$

Then, $\left\{v, u_{2}, u_{3}\right\}$ is a basis of a module P containing M such that $S / P \cong \mathbb{Z} / 4 \mathbb{Z}$. Applying (6.9) once again yields the vector:

$$
w=\frac{4 v+2 u_{2}+u_{3}}{4}=(-4,1,-6,-1,5,4) \in S
$$

and the basis $\left\{w, v, u_{2}\right\}$ of S.

REFERENCES

[1] E. Contejean and H. Devie. An efficient incremental algorithm for solving systems of linear Diophantine equations. Inform. and Comput., 113:143-173, 1994.
[2] M. Clausen and A. Fortenbacher. Efficient solution of linear Diophantine equations. J. Symbolic Comput., 8:201-216, 1989.
[3] S. Chapman, U. Krause, and E. Oeljeklaus. Monoids determined by a homogeneous linear Diophantine equation and the half-factorial property. J. Pure Appl. Algebra, 151:107-133, 2000.
[4] R.N. Greenwell and S. Kertzner. Solving linear Diophantine matrix equations using the Smith normal form (more or less). Int. J. Pure Appl. Math., 55:49-60, 2009.
[5] T.W. Hungerford. Algebra. Graduate Texts in Mathematics, Vol. 73, Springer-Verlag, New York, 1980.
[6] A.K. Lenstra, H.W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coefficients. Math. Ann., 261:515-534, 1982.
[7] P. Pisón-Casares and A. Vigneron-Tenorio. \mathbb{N}-solutions to linear systems over \mathbb{Z}. Linear Algebra Appl., 384:135-154, 2004.
[8] Q.N. Phong and B. Vallée (Editors). The LLL Algorithm: Survey and Applications. Springer, 2009.
[9] R. Quinlan, M. Shau and F. Szechtman. Linear diophantine equations in several variables. Linear Algebra Appl., 640:67-90, 2022.
[10] R.P. Stanley. Combinatorics and Commutative Algebra. Progress in Mathematics, Vol. 41, 2nd edition, Birkhäuser, Boston, MA, 1996.

[^0]: *Received by the editors on October 23, 2021. Accepted for publication on January 21, 2022. Handling Editor: João Filipe Queiró.
 ${ }^{\dagger}$ Department of Mathematics and Statistics, University of Regina, Canada (fernando.szechtman@gmail.com). Supported in part by an NSERC discovery grant.

