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LINEAR SYSTEMS OF DIOPHANTINE EQUATIONS∗

FERNANDO SZECHTMAN†

Abstract. Given free modules M ⊆ L of finite rank f ≥ 1 over a principal ideal domain R, we give a procedure to

construct a basis of L from a basis of M assuming the invariant factors or elementary divisors of L/M are known. Given a

matrix A ∈ Mm,n(R) of rank r, its nullspace L in Rn is a free R-module of rank f = n − r. We construct a free submodule

M of L of rank f naturally associated with A and whose basis is easily computable, we determine the invariant factors of the

quotient module L/M and then indicate how to apply the previous procedure to build a basis of L from one of M .

Key words. Linear system, Diophantine equation, Smith normal form.

AMS subject classifications. 11D04, 15A06.

1. Introduction. Let R be a principal ideal domain. Given f ∈ N, by a lattice of rank f we understand

a free R-module L of rank f . By a sublattice of L, we mean a submodule M of L, necessarily free, also of

rank f . In this case, L/M is a finitely generated torsion R-module.

In different settings, we may face the problem of having to construct a basis of L from a known basis

{u1, . . . , uf} of M . A prime example occurs when R = Z, L = OK , the ring of integers of an algebraic

number field K of degree f over Q, M = Z[θ], and {u1, . . . , uf} = {1, θ, . . . , θf−1}, where θ ∈ OK is chosen

so that Q[θ] = K.

A general procedure to construct a basis of L from a known basis {u1, . . . , uf} of M is available to us,

provided we know the index i(M,L) of M in L, which is the determinant of the matrix whose columns are

the coordinates of any basis of M relative to any basis of L. This is determined up to multiplication by units

only. Note that if R = Z, then |i(M,L)| is the order of the finite abelian group L/M .

If i(M,L) = 1, then L = M has basis {u1, . . . , uf}. Suppose next i(M,L) ̸= 1 and let p ∈ R be a prime

factor of i(M,L). Then, L/M has a cyclic submodule isomorphic to R/Rp, so there exist a1, . . . , af ∈ Z,
such that

(1.1) v =
a1u1 + · · ·+ afuf

p
∈ L \M.

Since v /∈ M , we have p ∤ ai for some i and we assume for notational convenience that i = 1. Since

gcd(p, a1) = 1, we can find x, y ∈ R such that xa1 + yp = 1. Here ypv ∈ M , so

xa1v = (1− yp)v = v − ypv /∈ M,

whence xv /∈ M and a fortiori v′ = xv + yu1 ∈ L \M , where

v′ =
x(a1u1 + · · ·+ afuf ) + pyu1

p
=

u1 + xa2u2 + · · ·+ xafuf

p
.
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Thus, replacing v by a suitable R-linear combination of itself and u1, namely v′, we may suppose that a1 = 1

in (1.1). Then, {v, u2, . . . , uf} is a basis for a sublattice, say P , of L such that M ⊂ P and i(M,P ) = p, so

i(P,L) = i(M,L)/p. Repeating this process, we eventually arrive at a basis of L.

In this paper, we modify and improve this procedure, provided the invariant factors or elementary

divisors of L/M are known, and we illustrate the use of this method with a concrete problem.

Indeed, let F be the field of fractions of R. Given a matrix A ∈ Mm,n(R), we write T for the nullspace

of A in Fn so that S = T ∩Rn is the nullspace of A in Rn. We note that L = S is a lattice of rank f = n−r,

where r is the rank of A.

It is easy to find an F -basis of T from the reduced row echelon form, say E, of A. It is not clear at

all how to use E to produce an R-basis of S. To achieve this, we first identify a sublattice M of L as well

as a basis of M , naturally, in terms of E; we then compute the complete structure of the R-module L/M ,

namely its invariant factors, whose product is equal to i(M,L); we finally indicate how to build a basis of L

from the given basis of M by making use of the full structure of L/M .

Now if r = n, then E consists of the first n canonical vectors of Rm, and L = 0. On the other hand,

if r = 0 then E = 0 and L = Rn. None of these cases is of any interest, so we assume throughout that

0 < r < n.

In Sections 2, 3, 4, and 5, we use E to naturally produce a lattice U of rank f , a basis of U , and a

nonzero scalar d ∈ R such that M = dU is a sublattice of L, and L is a sublattice of U . Moreover, we

compute the full structures of L/M and U/L. Furthermore, in Section 6, we indicate how to use either the

invariant factors or the elementary divisors of L/M to construct a basis of L from one of M (this is done for

arbitrary L and M). In addition, if d = p is a prime, we indicate in Section 7 how to produce a basis of L

more or less directly from one of U . Examples can be found in Section 8.

We may summarize our study of S as follows: given the lattice S of all solutions of AX = 0 in Rn, we

approximate S from below by a naturally occurring lattice of solutions M in Rn, we determine how far M

is from S, and we describe how to bridge the gap between them. A like approach was recently utilized in

[9] in the special case of a single linear homogeneous equation, that is, when m = 1, except that in [9] the

approximation was taken from above, by means of U . The case m = 1 is necessarily simpler than the general

case addressed here, as much in the computation of the structures of U/S and S/M as in the passage from

a basis of a lattice to a basis of S, where the material from Section 6 not required.

As is well known (see the note at the end of [9, Section 4] in the special case m = 1), we may also find

a basis of S by appealing to the Smith normal form D of A. There are P ∈ GLm(R) and Q ∈ GLn(R) such

that D = PAQ. It is then trivial to find a basis, say B, of the nullspace of D, whence QB is a basis of the

nullspace of A. This approach gives no information whatsoever on how far naturally occurring lattices of

solutions of AX = 0 are from S, as provided in Theorem 5.1, or how to expand or shrink these lattices to

reach S, as expounded in Section 6 or [9, Theorem 4.5].

Most of the literature on systems of linear diophantine equations is naturally focused on the case R = Z.

One significant body of work is focused on nonnegative solutions, with applications to linear programming

and combinatorial optimization. See [1], [2], [3], [4], [7], [10], and references therein.

Regarding lattices over the integers and their bases, a large body of literature is concerned with lattice

basis reduction, which takes as input a basis of a lattice and aims at producing as output a new basis of
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the same lattice with vectors that are short and nearly orthogonal. A celebrated algorithm of this kind is

the LLL algorithm [6], which has a wide range of applications, such as in cryptanalysis, algorithmic number

theory, factorization of polynomials with rational coefficients, integer linear programming, and many more.

See the reference book [8] for comprehensive information on this subject.

2. Reduced matrices. A matrix Z ∈ Mm,n(R) of rank r is said to be reduced if there are 0 ̸= d ∈ R

and K ∈ Mr,f (R) such that

(2.2) Z =

(
dIr K

0 0

)
.

Two matrices B,C ∈ Mm,n are associated if there are L ∈ GLm(F ) and Σ ∈ GLn(F ) such that Σ is a

permutation matrix and LBΣ = C. This is clearly an equivalence relation.

Lemma 2.1. The given matrix A is associated with a reduced matrix.

Proof. Let Y ∈ Mm,n(F ) be the reduced row echelon form of A. Multiplying Y by suitable element of

R and permuting the columns of resulting matrix yields a reduced matrix associated with A.

For the remainder of the paper, we fix a reduced matrix Z associated with A, say via that LAΣ = Z,

and write J = (dIr K) ∈ Mr,n(R) for the matrix obtained from Z by eliminating its last m− r rows. We let

N stand for the nullspace of J in Rn so that S = ΣN (thus, up to permutation of the variables X1, . . . , Xn,

our linear system is JX = 0).

3. Choice of a lattice. The linear system JX = 0 reads as follows:

dX1 = −(K1,1Xr+1 + · · ·+K1,fXn),

dX2 = −(K2,1Xr+1 + · · ·+K2,fXn),

...

dXr = −(Kr,1Xr+1 + · · ·+Kr,fXn).

Consider the f vectors V (1), . . . , V (f) ∈ Fn and defined as follows:

(3.3) V (1) =



−K1,1

d
...

−Kr,1

d

1

0
...

0


, . . . , V (f) =



−K1,f

d
...

−Kr,f

d

0
...

0

1


.

It is clear that {V (1), . . . , V (f)} is an F -basis of the nullspace of J in Fn. We set

W = spanR{V (1), . . . , V (f)},

so that {V (1), . . . , V (f)} is an R-basis of W . We thus have

(3.4) dW ⊆ N ⊆ W,
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and we aim to determine the structure of the factors:

N/dW and W/N,

where

W/dW ∼= (R/Rd)f .

Given α1, . . . , αf ∈ F , we have

(3.5) α1V (1) + · · ·+ αfV (f) ∈ N ⇔ α1, . . . , αf ∈ R and α1Ki,1 + · · ·+ αfKi,f ≡ 0 mod d, 1 ≤ i ≤ r.

Thus, we have an isomorphism Rf → W given by:

(α1, . . . , αf ) 7→ α1V (1) + · · ·+ αfV (f),

and N corresponds to the submodule, say Y , of Rf of all (α1, . . . , αf ) such that the right-hand side of (3.5)

holds. In particular, W/N ∼= Rf/Y .

4. Each of N/dW and W/N determines the other. By the theory of finitely generated modules

over a principal ideal domain, there is a basis {u1, . . . , uf} of W and nonzero elements a1, . . . , af ∈ R such

that

a1| · · · |af |d,

and {a1u1, . . . , afuf} is a basis of N . Since {du1, . . . , duf} is a basis of dW , we see that

W/N ∼= (R/Ra1)⊕ · · · ⊕ (R/Raf ) and N/dW ∼= (R/Rbf )⊕ · · · ⊕ (R/Rb1),

where

bi = d/ai, 1 ≤ i ≤ f,

and

bf | · · · |b1.

As d is fixed, we see that N/dW and W/N determine each other.

5. Structures of W/N and N/dW . Set R = R/Rd and consider the homomorphism of R-modules:

∆ : Rf → Rr → R
r
,

given by:

α 7→ Kα,

where α = (α1, . . . , αf ), and K and α are the reductions of K and α modulo Rd. Then, (3.5) shows that

the kernel of ∆ is Y . Thus,

W/N ∼= Rf/Y ∼= ∆(Rf ) ∼= C(K),

where C(K) is the column space of K, namely the R-span of the columns of K.

Consider the natural epimorphism of R-modules Λ : Rr → R
r
with kernel (Rd)r. Then, Λ restricts to

an epimorphism of R-modules Ω : C(K) → C(K) with kernel C(K) ∩ (Rd)r.

Let Q = diag(q1, . . . , qs) be the Smith normal form of K, where q1| · · · |qs and s = min{r, n− r}, and let

t be the rank of K, so that t = 0 if and only if K = 0.
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If K = 0, then (3.5) implies that W = N and a fortiori:

N/dW ∼= W/dW ∼= R
f
.

Suppose next K ̸= 0. Then, t is the last index such that qt ̸= 0 and from the theory of finitely generated

modules over a principal ideal domain, there is a basis {u1, . . . , ur} of Rr such that {q1u1, . . . , qtut} is a

basis for C(K). Notice that

C(K) ∩ (Rd)r = (Rq1u1 ⊕ · · · ⊕Rqtut) ∩ (Rdu1 ⊕ · · · ⊕Rdur) = R lcm(d, q1)u1 ⊕ · · · ⊕R lcm(d, qt)ut,

so that

W/N ∼= C(K) ∼= C(K)/(C(K) ∩ (Rd)r) ∼= (Rq1u1 ⊕ · · · ⊕Rqtut)/(R lcm(d, q1)u1 ⊕ · · · ⊕R lcm(d, qt)ut).

Since

lcm(d, qi)/qi = d/ gcd(d, qi), 1 ≤ i ≤ t,

setting

mi = lcm(d, qi)/qi, di = d/ gcd(d, qi), 1 ≤ i ≤ t,

we infer

(5.6) W/N ∼= R/Rmt ⊕ · · · ⊕R/Rm1
∼= R/Rdt ⊕ · · · ⊕R/Rd1.

Adding f − t zero summands to the right-hand side of (5.6), we may write

W/N ∼= (R/R · 1)f−t ⊕R/Rdt ⊕ · · · ⊕R/Rd1.

We finally deduce from Section 4 the sought formula:

(5.7) N/Wd ∼= R/R gcd(d, q1)⊕ · · · ⊕R/R gcd(d, qt)⊕ (R/Rd)f−t.

Dividing every entry of Z by g = gcd{d,Kij | 1 ≤ i ≤ r, 1 ≤ j ≤ f}, we may assume that g = 1, which

translates into gcd(d, q1) = 1. In this case, if r = 1 then (5.6) and (5.7) reduce to the corresponding formulas

from [9, Theorems 4.1 and 3.2], respectively.

Notice that (5.6) and (5.7) remain valid when K = 0.

Set U = ΣW , with Σ as in Section 2, and let M = dU . We have an isomorphism W → U , given by

X 7→ ΣX, yielding isomorphisms W/N → U/S and N/dW → S/M . We have thus proved the following

result.

Theorem 5.1. Let A ∈ Mm,n(R), with rank 0 < r < n and nullspace S in Rn. Let Z be a reduced matrix

associated with A, as in (2.2), say via LAΣ = Z. Let W be the free R-module of rank n − r corresponding

to Z as defined in Section 3 and set U = ΣW and M = dU . Then, M ⊆ S ⊆ U , where U/S ∼= W/N and

S/M ∼= N/dW are as described in (5.6) and (5.7), respectively.

Corollary 5.2. We have U = S if and only if d divides every entry of K, and S = M if and only if

gcd(d, qi) = 1, 1 ≤ i ≤ t, and either d is a unit or K has rank f .

Proof. This follows immediately from (5.6) and (5.7).
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6. An improved procedure to construct a basis of L. Here, we go back to the general case and

suppose that L is an arbitrary lattice of rank f with a proper sublattice M . We assume that the list of

invariant factors or elementary divisors of L/M is known, and we wish to use one list or the other to improve

the process indicated in the Introduction to obtain a basis of L from a given basis {u1, . . . , uf} of M .

Let g1, . . . , gs ∈ R be the unique elements, up to multiplication by units, such that g1 is not a unit, gs
is not zero, g1| · · · |gs, and

(6.8) L/M ∼= R/Rg1 ⊕ · · · ⊕R/Rgs.

Here, i(M,L) = g1 · · · gs, and we will use all of g1, . . . , gs instead of i(M,L) to obtain a basis of L. The idea

is to advance one invariant factor of L/M at a time, rather than one prime factor of i(M,L) at a time.

According to (6.8), S/M has a vector with annihilating ideal Rgs. This means that there are a1, . . . , af
in R such that the following extension of (1.1) holds

(6.9) v =
a1u1 + · · ·+ afuf

gs
∈ L but hv /∈ M for any proper factor h of gs.

In particular, Rv ∩M = Rgsv, and we set P = Rv +M . Thus,

P/M ∼= Rv/(Rv ∩M) ∼= R/Rgs,

is a submodule of L/M . On the other hand, it is well known [5, Lemma 6.8 and Theorem 6.7] that any cyclic

submodule of L/M with annihilating ideal Rgs is complemented in L/M . The uniqueness of the invariant

factors of L/M implies that

S/P ∼= R/Rg1 ⊕ · · · ⊕R/Rgs−1.

Thus, if we can provide a way to produce a basis of P from a basis of M , then successively applying the

above procedure with gs, gs−1, . . . , g1 will yield a basis of L. We next indicate two ways to construct a basis

of P from {u1, . . . , uf} and v. Set v = uf+1 and af+1 = −gs. Then from the first condition in (6.9), we have

(6.10) a1u1 + · · ·+ afuf + af+1uf+1 = 0,

while the second condition in (6.9) implies

(6.11) gcd(a1, . . . , af , af+1) = 1.

In the first way, set a = (a1, . . . , af+1) and let u be the column vector with vector entries (u1, . . . , uf+1).

Using an obvious notation, (6.10) means au = 0. Moreover, from (6.11), we infer the existence of Q in

GLf+1(R) such that aQ = (1, 0, . . . , 0). Setting v = Q−1u, we have

0 = au = aQQ−1u = (1, 0, . . . , 0)v.

Now v is a column vector, say with vector entries (v1, . . . , vf+1), where v1 = 0. But v = Q−1u ensures that

the entries of u and v have the same span. Since P is a lattice of rank f , it follows that the f spanning

vectors v2, . . . , vf+1 must form a basis of P .

For the second way, we assume that R is an Euclidean domain. Thus, R is an integral domain endowed

with a function δ : R → Z≥0 such that given any a, b ∈ R with b ̸= 0, there are q, r ∈ R such that a = bq+ r,

with r = 0 or δ(r) < δ(b). We may then use (6.11) and the Euclidean algorithm to transform (6.10) into

(6.12) b1v1 + · · ·+ bfvf + vf+1 = 0,
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where u1, . . . , uf+1 and v1, . . . , vf span the same module. As above, this implies that {v1, . . . , vf} is a basis

of P . We briefly describe the foregoing transformation. Choose 1 ≤ i ≤ f + 1 such that ai ̸= 0 with δ(ai) is

as small as possible. For notational convenience, let us assume that i = f + 1. Dividing every other aj by

af+1, we obtain aj = qjaf+1 + rj , where rj = 0 or δ(rj) < δ(aj), 1 ≤ j ≤ f . If every rj = 0, then (6.11)

forces af+1 to be a unit, so dividing (6.10) by af+1 we obtain (6.12). Suppose at least one rj ̸= 0. We can

rewrite (6.10) in the form:

r1u1 + · · ·+ rfuf + af+1(q1u1 + · · ·+ qfuf + uf+1) = 0,

where u1, . . . , uf , uf+1 and u1, . . . , uf , q1u1 + · · · + qfuf + uf+1 span the same module, rj ̸= 0, δ(rj) <

δ(af+1), and gcd(r1, . . . , rf , af+1) = 1. Since δ takes only nonnegative values, repeating this process we

must eventually arrive to a unit remainder, as required for (6.12).

We next indicate how to use the elementary divisors of L/M instead of its invariant factors to construct

a basis of L. There are more of the former than of the latter, but this is be balanced by the fact that

each intermediate basis is more easily found. Let p ∈ R be a prime, 1 ≤ e1 ≤ · · · ≤ ek, and suppose that

pe1 , . . . , pek are the p-elementary divisors of L/M . Set e = ek. Then, L/M has a vector with annihilating

ideal Rpe, which translates as follows. There are a1, . . . , af ∈ R such that the following extension of (1.1)

holds

(6.13) v =
a1u1 + · · ·+ afuf

pe
∈ L but pe−1v /∈ M.

By [5, Lemma 6.8], any vector of L/M with annihilating ideal Rpe has a complement in L/M . Thus, the

preceding procedure applies, except that now we advance one p-elementary divisor of L/M at a time. In this

case, however, it is easier to pass from a basis to the next one. Indeed, since pe−1v /∈ M , we must have p ∤ ai
for some i, and the same argument given in the Introduction produces a basis of the span of v, u1, . . . , uf

from the basis {u1, . . . , uf} of M .

We finally indicate how to apply the above procedure when L = S, M = dU , and we take {u1, . . . , uf} =

Σ{dV (1), . . . , dV (f)}. The invariant factors of S/M ∼= N/dW are given in Theorem 5.1, and we can obtain

from these corresponding the elementary divisors. Furthermore, Corollary 5.2 makes it clear when S = M .

Observe that we can replace L in (6.9) and (6.13) by Rn, for in that case v ∈ Fn ∩ T = S.

7. The case when d is a prime. We assume throughout this section that d = p is a prime and set

R = R/Rp. In this case, a sharpening of (5.6) and (5.7) is available, and we can obtain a basis of N , and

hence of S = ΣN , directly, without having to resort to the procedure outlined in Section 6. It follows from

(3.4) that all of W/pW , W/N , and N/pW are R-vector spaces, and hence completely determined by their

dimensions. Let K be the reduction of K modulo p. Then, W/pW ∼= R
f
; N/pW is isomorphic to the

nullspace of K by Section 3; and W/N is isomorphic to the column space of K by Section 5. Thus,

(7.14) dimW/N = rankK, dimN/pW = f − rankK.

This formula is compatible with the isomorphism:

W/N ∼= (W/pW )/(N/pW ).

Moreover, a careful examination of (7.14) reveals that, as expected, it is in agreement with (5.6) and (5.7).

Next, we show how to obtain a basis of N directly from the basis {V (1), . . . , V (f)} of W . Let H ∈
Mr,f (R) be such that H is the reduced row echelon form of K. For simplicity of notation, let us assume

that the leading columns of H are columns 1, . . . , s.
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Theorem 7.1. Consider the vectors:

z1 = pV (1), . . . , zs = pV (s),

and if s < f also the vectors:

zs+i = −(H1,s+iV (1) + · · ·+Hs,s+iV (s)) + V (s+ i), 1 ≤ i ≤ f − s.

Then, {z1, . . . , zf} is a basis of N (if s = 0 {z1, . . . , zf} is simply {V (1), . . . , V (f)}).

Proof. Given α = (α1, . . . , αf ) ∈ Rf , we have

Kα = 0 ⇔ Hα = 0,

and therefore (3.5) gives

α1V (1) + · · ·+ αfV (f) ∈ N ⇔ Hα = 0.

Our choice of H ensures that z1, . . . , zf ∈ N . Let G ∈ Mf (R) be the matrix whose columns are the

coefficients of z1, . . . , zf relative to the basis V (1), . . . , V (f) of W . Then, |G| = ps. On the other hand,

W/N ∼= C(K) is a vector space over R of dimension s, so there is a basis {u1, . . . , uf} of W such that

{pu1, . . . , pus, us+1, . . . , uf} is a basis of N . It follows from [9, Lemma 4.3] that {z1, . . . , zf} is a basis of N .

8. Examples.

(1) Consider the case R = Z, n = 4, and

A =

(
2 3 5 4

3 −5 2 −7

)
.

Let B (resp. C) be the 2 × 2 submatrix formed by the first (resp. last) two columns of A and let

D be the adjoint of B. Then |B| = −19, which implies |D| = −19 and |DC| ≡ |D||C| ≡ 0 mod 19.

Multiplying A on the left by C, we obtain the the following reduced matrix Z associated with A:

Z =
(
dI2 K

)
=

(
−19 0 −31 1

0 −19 −11 −26

)
.

The reduction of K modulo 19 has rank s = 1, since |K| ≡ 0 mod 19 and not all entries of K are

divisible by 19. In this case, the formulas from Section 7 give S/19W ∼= Z/19Z and W/S ∼= Z/19Z.
We can use this information to obtain a Z-basis of S. Indeed, by Section 3 the vectors:

V (1) = (−31/19,−11/19, 1, 0), V (2) = (1/19,−26/19, 0, 1),

form a Q-basis of T . Moreover, it is clear that if α1, α2 ∈ Q, then α1V (2) + α2V (2) ∈ S if and only

if α1, α2 ∈ Z and

−31α1 + α2 ≡ 0 mod 19, 11α1 + 26α2 ≡ 0 mod 19.

The second equation is redundant since |K| ≡ 0 mod 19, and the first equation is equivalent to

α2 ≡ 12α1 mod 19.

This yields the following vectors from S:

z1 = 19V (2) = (1,−26, 0, 19), z2 = V (1) + 12V (2) = (−1,−17, 1, 12).
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The 2× 2 matrix formed by coordinates of z1, z2 relative to V (1), V (2) is(
0 1

19 12

)
.

This implies W/(Rz1 ⊕Rz2) ∼= Z/19Z, whence {z1, z2} is a basis of S.

(2) Consider the case R = Z, r = 3, n = 6, and

A =

 1 1 1 1 2 3

1 3 7 4 5 6

1 9 49 7 8 9

 .

Let B be the 3 × 3 submatrix formed by the first three columns of A. Then B is a Vandermonde

matrix with determinant 48. Let C be the adjoint of B. Then,

C =

 84 −40 4

−42 48 −6

6 −8 2

 .

Multiplying A on the left by C, we obtain the matrix: 48 0 0 −48 0 48

0 48 0 108 108 108

0 0 48 −12 −12 −12

 .

Dividing every entry by 12, we obtain the following reduced matrix Z associated with A:

Z =
(
dI3 K

)
=

 4 0 0 −4 0 4

0 4 0 9 9 9

0 0 4 −1 −1 −1

 .

Thus, (3.3) produces a free submodule M of S of rank 3 with basis:

u1 = (4,−9, 1, 4, 0, 0), u2 = (0,−9, 1, 0, 4, 0), u3 = (−4,−9, 1, 0, 0, 4).

The Smith normal form of K is diag(1, 4, 0). Here, d = 4, f = 3, and t = 2, so according to (5.7),

we have

S/M ∼= Z/4Z⊕ Z/4Z.

We look for a, b, c ∈ Z such that

v =
au1 + bu2 + cu3

4
∈ Z3 but 2v /∈ M.

This translates into

a+ b+ c ≡ 0 mod 4 and (a, b, c) /∈ (2Z)3.

Taking (a, b, c) = (1,−1, 1), we find the following vectors from S:

z1 = (u1 − u2)/4, z2 = (u2 − u3)/4, u3.

We clearly have

(Zz1 ⊕ Zz2 ⊕ Zz3)/M ∼= Z/4Z⊕ Z/4Z,

which implies that {z1, z2, z3} is a basis of S.
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(3) Consider the case R = Z, r = 3, n = 6, and

A =

 12 24 36 −4 12 44

24 36 12 −2 10 20

36 12 24 0 20 44

 .

Multiplying A on the left by a suitable matrix from GL3(Q) yields the the following reduced matrix

associated with A:

Z =
(
dI3 K

)
=

 12 0 0 1 5 6

0 12 0 −1 −1 −2

0 0 12 −1 3 14

 .

Following (3.3), we obtain a free submodule M of S of rank 3 having basis:

u1 = (−1, 1, 1, 12, 0, 0), u2 = (−5, 1,−3, 0, 12, 0), u3 = (−6, 2,−14, 0, 0, 12).

The Smith normal form of K is diag(1, 4, 12). We have d = 12, f = 3 and t = 3, so (5.7) yields

S/M ∼= Z/4Z⊕ Z/12Z.

We use (6.9) to obtain the vector:

v =
−u1 − u2 + u3

12
= (0, 0,−1,−1,−1, 1) ∈ S.

Then, {v, u2, u3} is a basis of a module P containing M such that S/P ∼= Z/4Z. Applying (6.9)

once again yields the vector:

w =
4v + 2u2 + u3

4
= (−4, 1,−6,−1, 5, 4) ∈ S,

and the basis {w, v, u2} of S.
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