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BANACH SPACES OF GLT SEQUENCES AND FUNCTION SPACES∗

V. B. KIRAN KUMAR† , RAHUL RAJAN† , AND N. S. SARATHKUMAR†

Abstract. Generalized locally Toeplitz (GLT) sequences of matrices originated from the spectral study of certain partial

differential equations. To be more precise, such matrix sequences arise when we numerically approximate either partial differ-

ential equations or fractional differential equations using any discretization by local methods (finite differences, finite elements,

finite volumes, isogeometric analysis, etc.). The study of the asymptotic spectral behavior of GLT sequences is important

in analyzing the solution of the corresponding partial differential equations and in finding fast and efficient methods for the

corresponding large linear systems. Approximating classes of sequences (a.c.s.) and spectral symbols are important notions

connected to GLT sequences. Recently, G. Barbarino obtained some results regarding the theoretical aspects of such notions.

He obtained the completeness of the space of matrix sequences with respect to pseudometric a.c.s. Also, he identified the space

of GLT sequences with the space of measurable functions. In this article, we follow the same research line and obtain various

connections between the subalgebras of matrix-sequence spaces and the subalgebras of function spaces. In some cases, these

are identifications as Banach spaces and some of them are Banach algebra identifications. We also prove that the convergence

notions in the sense of eigenvalue/singular value clustering are equivalent to the convergence with respect to the metrics intro-

duced here. These convergence notions are related to the study of preconditioners in the case of matrix/operator sequences.

As an application of our main results, we establish a Korovkin-type result in the setting of GLT sequences.

Key words. Singular value and eigenvalue asymptotics, Generalized locally Toeplitz sequences, Korovkin-type approxi-

mation.
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1. Introduction and preliminaries. A matrix sequence is a sequence of the form {An}n where each

An is an n × n matrix. The correspondence between matrix sequences and Lebesgue integrable functions

is very natural in many important cases such as the case of Toeplitz matrices. Here the spectral informa-

tion of the operator/matrix sequence is stored in the corresponding symbol function (recall the celebrated

Szegö distribution theorem [18]). Also, such matrix sequences in the multilevel setting arise naturally in

the study of partial differential equations with certain boundary conditions, using local methods like finite

difference and finite elements.

For example, if we consider the Schrödinger operator that maps f 7→ −f ′′
+ vf , where v is a real-valued

periodic potential function, then the corresponding finite difference approximation leads to a sequence of

block Toeplitz matrices. If we consider more general differential operators like those arising from diffusion

problems (f 7→ (−af ′
)
′

+ vf) or convection–diffusion–reaction problems (f 7→ (−af ′
)
′

+ bf
′

+ vf), we

end up with locally Toeplitz (LT) or generalized locally Toeplitz (GLT) sequences [16]. In most cases,

the resulting sequence of discretization matrices {An}n enjoys an asymptotic spectral distribution. This is

somehow related to the spectrum of the differential operator associated with the considered Partial differential

equations (PDE). The notion of asymptotic spectral distribution and asymptotic singular value distribution

is closely related.

Definition 1.1. Let {An}n be a matrix sequence and f : D ⊂ Rk → C be a measurable function.
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• We say that {An}n has an asymptotic singular value distribution with symbol f and write {An}n ∼σ
f , if, for all F ∈ Cc(R), the space of complex-valued continuous functions defined on R and with

bounded support,

lim
n→∞

1

n

n∑
i=1

F (σi(An)) =
1

µk(D)

∫
D

F (|f(x)|)dx,

where σi(An), i = 1, · · · , n, are the singular values of An, µk is the Lebesgue measure in Rk.
• We say that {An}n has an asymptotic eigenvalue distribution with symbol f and write {An}n ∼λ f ,

if, for all F ∈ Cc(C), the space of complex-valued continuous functions defined on C and with

bounded support,

lim
n→∞

1

n

n∑
i=1

F (λi(An)) =
1

µk(D)

∫
D

F (f(x))dx,

where λi(An), i = 1, · · · , n, are the eigenvalues of An.

Because of this inherent connection between matrix sequences and the corresponding symbol functions,

many researchers explored the possible generalizations of such results. To understand the spectral asymp-

totic, they tried to determine symbol functions or function spaces corresponding to some classes of matrix

sequences. Recently, such studies have been initiated in the setting of GLT sequences by researchers like S.

Serra-Capizzano, A. Böttcher, G. Barbarino, C. Garoni, etc. [1, 2, 3, 8, 16].

An equivalence between GLT sequences and measurable functions was obtained in [1]. In this article,

we follow the same research line and obtain various connections between the subalgebras of the space of all

matrix sequences and the subalgebras of space of measurable functions. In some cases, these connections

are identifications as Banach spaces and some of them are Banach algebra identifications. These spaces

of matrix sequences are defined using various pseudometric functions introduced in this article. These

notions are motivated from the pseudometric induced by the notion of approximating class of sequences

(a.c.s.) defined in [9] and used in [16]. As in [16], we also obtain characterizations of convergence notions

in the sense of eigenvalue/singular value clustering (these notions were originated from the preconditioning

problems in numerical linear algebra).

Definition 1.2. Let {An}n be a matrix sequence and {{Bn,m}n}m a sequence of matrix sequences.

We say that {{Bn,m}n}m is an approximating class of sequences (a.c.s.) for {An}n, and we write

{{Bn,m}n}m
a.c.s.−−−→ {An}n, if the following condition is met: for every m there exists an nm such that,

for n ≥ nm,

An = Bn,m +Rn,m +Nn,m, rank(Rn,m) ≤ c(m)n, ‖Nn,m‖ ≤ ω(m),

where ‖ . ‖ is the spectral norm, nm, c(m) and ω(m) depend only on m and

lim
m→∞

c(m) = lim
m→∞

ω(m) = 0.

The notion of a.c.s. is a powerful tool in the numerical linear algebra literature (see [3, 5, 17, 25] and

references therein). In particular, the asymptotic distribution of singular values/eigenvalues of {{Bn,m}n}m
can be used to compute the asymptotic distribution of singular values/eigenvalues of {An}n. For the defini-

tion of LT sequence, we need the notion of tensor product of functions and matrices and the direct sum of

matrices.
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Definition 1.3. Let fi : Di → C, i = 1, 2, be two functions and A,B be m×n, p×q matrices, respectively.

Then, f1 ⊗ f2 is the function defined on D1 ×D2 by

(f1 ⊗ f2)(x1, x2) = f1(x1)f2(x2), (x1, x2) ∈ D1 ×D2.

Also,

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 , A⊕B =

(
A 0

0 B

)
.

Now, following [16], we give the construction of the GLT matrix sequences, originally defined in [10, 25].

Definition 1.4. Let a : [0, 1] → C be a Riemann-integrable function and f ∈ L1([−π, π]). We say

that a matrix sequence {An}n is a LT sequence with symbol a ⊗ f , and we write {An}n ∼LT a ⊗ f , if

{{LTmn (a, f)}n}m∈N is an a.c.s. for {An}n, where

LTmn (a, f) = [Dm(a)⊗ Tbn/mc(f)]⊕On(modm)

= diag
i=1,...,n

[a

(
i

m

)
Tbn/mc(f)]⊕On(modm).

Here Tn(f) is the Toeplitz matrix generated by the function f and Dm(a) is a (m × m) diagonal matrix

associated with a given by

Dm(a) = diag
i=1,...,n

a

(
i

m

)
.

Definition 1.5. Let κ : [0, 1] × [−π, π] → C be a measurable function. We say that a matrix sequence

{An}n is a GLT sequence with symbol κ, and we write {An}n ∼GLT κ, if the following condition is met.

For every m varying in some infinite subset of N, there exists a finite number of LT sequences

{A(i,m)
n }n ∼LT ai,m ⊗ fi,m, i = 1, . . . , km, such that:

•
km∑
i=1

ai,m ⊗ fi,m → κ in measure over [0, 1]× [−π, π] when m→∞;

•
{{

km∑
i=1

A
(i,m)
n

}
n

}
m

is an a.c.s. for {An}n.

In this article, the results presented are for D = [0, 1]× [−π, π]. All these results can be directly extended

to the multilevel case, D = [0, 1]d × [−π, π]d, by following the multidimensional GLT approach (see [5, 17]).

Let E = {{An}n : An ∈Mn(C)}, where Mn(C) is the space of n×n complex matrices. For An ∈Mn(C),

let

P (An) = inf

{
rank(Rn)

n
+ ‖Nn‖ : Rn +Nn = An, Rn, Nn ∈Mn(C)

}
,

where infimum is taken over all decompositions An = Rn +Nn.

Given {An}n ∈ E , we define

p({An}n) = lim sup
n→∞

P (An).

For {An}n, {Bn}n ∈ E , define

dacs({An}n, {Bn}n) = p({An −Bn}n).
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It was proved in [1, 15] that dacs is a pseudometric on E which turns E into a complete pseudometric

space (E , dacs).

Lemma 1.6 (Theorem 4.1 [16]). Let {An}n be a matrix sequence and let {{Bn,m}n}m be a sequence of

matrix sequences. Then the following conditions are equivalent

1. {{Bn,m}n}m is an a.c.s. for {An}n
2. p({An −Bn,m}n)→ 0 as m→∞

A class of matrix sequences that plays a central role in the framework of the theory of GLT sequences is the

class of zero-distributed sequences.

Definition 1.7. A matrix sequence {Zn}n is said to be a zero-distributed sequence if p({Zn}n) = 0.

Next theorem gives a sufficient condition for a matrix sequence {Zn}n to be zero distributed.

Theorem 1.8 (Theorem 2.10 of [16]). Let {Nn}n be a matrix sequence and suppose that, for some

p ∈ [1,∞), lim
n→∞

‖Nn‖p
n1/p

= 0. Then p({Nn}n) = 0.

Here ‖Nn‖p denotes the Schatten p-norm, that is, the lp norm of the vector of the singular values (see

[7]).

Let Z = {{An}n ∈ E : p({An}n) = 0}, the set of all zero-distributed sequences. Then the quotient space

Ẽ = E/Z is a metric space with respect to the metric d̃acs : Ẽ × Ẽ → R defined by

d̃acs({An}n + Z, {Bn}n + Z) = dacs({An}n, {Bn}n).

The following theorem gives an equivalent definition for P (·).

Theorem 1.9 (Theorem 5 of [15]). For any matrix An ∈Mn(C),

P (An) = min
i=0,1,...,n

{
i

n
+ σi+1(An)

}
,

where σi(An) is the ith singular value of An arranged in non-increasing order and we assume by convention

that σn+1(An) = 0.

Remark 1.10. d̃acs in Ẽ is not induced by any norm, because if {An}n = {In}n is the sequence of

identity matrices and {Bn}n = {On}n is the sequence of zero matrices, then

dacs({An}n, {Bn}n) = dacs({In}n, {On}n) = 1,

dacs({2An}n, {2Bn}n) = dacs({2In}n, {On}n) = 1,

and so dacs({2An}n, {2Bn}n) 6= 2dacs({An}n, {Bn}n).

It is known that the class of GLT matrix sequences with respect to a.c.s. metric forms a complete

*-algebra [16]. This space is isometrically isomorphic to the class of measurable functions on D [1].

The article is organized as follows. In Section 2, we introduce the seminorms qp, 1 ≤ p ≤ ∞, and

obtain their relation with Type 2 weak cluster (see Definition 2.2). Also, we identify the Banach spaces

Ãp, 1 ≤ p ≤ ∞, of matrix sequences with respect to the norms induced by these seminorms. In Section 3,

we introduce the spaces G̃p for 1 ≤ p ≤ ∞, the set of all equivalence classes of GLT matrix sequences which
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belongs to Ãp and obtain that these are Banach spaces. Also we prove our main result which states that

G̃p and Lp(D) are isometrically isomorphic. In Section 4, as an application of our main results, we obtain

a Korovkin-type approximation theorem for GLT matrix sequences analogous to the result for Toeplitz

sequences. The article ends with a concluding section, mentioning some further possibilities.

2. Banach spaces of matrix sequences. Motivated by the notion of a.c.s., we introduce certain

seminorms on the space of all matrix sequences.

Definition 2.1. Let {An}n be a matrix sequence and define the functions qp : E → R, 1 ≤ p ≤ ∞, as

qp({An}n) = inf

{
lim sup
n→∞

‖Nn‖p
n1/p

: Rn +Nn = An, rank(Rn) = o(n)

}
, 1 ≤ p <∞,

q∞({An}n) = inf

{
lim sup
n→∞

‖Nn‖ : Rn +Nn = An, rank(Rn) = o(n)

}
.

Here the infimum is taken over all such decompositions of An.

Define the subspaces Ap of E as follows:

Ap = {{An}n ∈ E : qp({An}n) <∞} .

Now we recall the notion of weak cluster convergence, strong cluster convergence, and uniform cluster

convergence used in [20, 23].

Definition 2.2. Let {An}n and {Bn}n be two matrix sequences. We say that {An − Bn}n converges

to the sequence of zero matrices {On}n in Type 2 weak cluster sense if for any ε > 0, there exist integers

n1,ε, n2,ε such that, for n > n2,ε,

An −Bn = Rn +Nn, rank(Rn) ≤ n1,ε, ‖Nn‖ < ε,

where n1,ε depends on both n and ε and is o(n).

The convergence is in the Type 2 uniform cluster sense if n1,ε is independent of ε and in the Type 2

strong cluster sense if n1,ε depends only on ε.

Remark 2.3 ([20]). {An − Bn}n converges to {On}n in Type 2 weak cluster sense if and only if for

any ε > 0 there exist integers n1,ε, n2,ε such that, for all n > n2,ε except at most n1,ε (n1,ε = o(n)) singular

values, all singular values of An − Bn lie in the interval [0, ε). The Type 2 convergence is equivalent to the

singular value clustering. There is a notion of Type 1 convergence that is equivalent to eigenvalue clustering.

Both originated from the study of preconditioners in numerical linear algebra problems (see, e.g., [23]).

The following lemma is a consequence of the results in [26] and provides a criterion to establish the conver-

gence notions defined above.

Lemma 2.4. Let {An}n and {Bn}n be two sequences of n×n matrices of growing order. If ‖An−Bn‖22 =

o(n), then we have the convergence in the Type 2 weak cluster sense. If ‖An − Bn‖22 = O(1), then the

convergence is in Type 2 strong cluster sense.

In [16], C. Garoni and S. Serra-Capizzano proved that a.c.s. convergence and Type 2 weak convergence are

equivalent. We state the result below.
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Theorem 2.5 (Theorem 4.1 of [16]). Let {An}n and {Bn}n be two matrix sequences. Then {An−Bn}n
converges to {On}n in Type 2 weak cluster sense if and only if dacs({An}n, {Bn}n) = 0.

The following theorem gives a characterization for q∞ and leads to a relation between Type 2 weak conver-

gence and q∞, analogous to Theorem 2.5.

Theorem 2.6. Let {An}n be a matrix sequence and σi(An) be the ith singular value of the matrix An
arranged in non-increasing order. Then,

q∞({An}n) = inf {α ∈ [0,∞) : #(σ(An) > α) = o(n)} ,

qp({An}n) = inf

α ∈ [0,∞) :

n∑
i=jn+1

σpi (An)

n
< αp except for finitely many n and jn = o(n)

 , 1 ≤ p <∞,

where #(σ(An) > α) is the number of singular values of An greater than α.

Proof. Let {Rn}n and {Nn}n be any matrix sequences such that {Rn}n + {Nn}n = {An}n and

rank(Rn) = o(n). Let σ1(An) ≥ σ2(An) ≥ . . . ≥ σn(An) be the singular values of An arranged in non-

increasing order. We know that from [7]

σi(An) ≤ σi(Rn) + ‖Nn‖.

Setting rn = rank Rn, we have σi(An) ≤ ‖Nn‖ for all i > rn. Let r′n be the smallest integer such that

σi(An) ≤ ‖Nn‖ for all i > r′n. r′n may be zero, first we consider r′n 6= 0.

rn ≥ r′n and σr′n(An) > ‖Nn‖ ≥ σr′n+1(An). Let An = UnΣnV
∗
n be a singular value decomposition

(SVD) of An and set

R̃n = Un diag(σ1(An), . . . , σr′n(An), 0, . . . , 0)V ∗n ,

Ñn = Un diag(0, . . . , 0, σr′n+1(An), . . . , σn(An))V ∗n .

Then, An = R̃n + Ñn. If r′n = 0, then R̃n = 0 and Ñn = An. We have

rank(Rn) = rn ≥ r′n = rank(R̃n), ‖Nn‖ ≥ σr′n+1(An) = ‖Ñn‖.

Let lim sup
n→∞

‖Ñn‖ = α. Then for every ε > 0, there exists an n0 such that for all n > n0, ‖Ñn‖ < α + ε

and #(σ(An) ≥ α + ε) ≤ r′n. Now for every ε > 0, we have lim sup
n→∞

#(σ(An) ≥ α+ ε)

n
≤ lim sup

n→∞

r′n
n

. Now,

lim sup
n→∞

#(σ(An) > α+ ε)

n
≤ lim sup

n→∞

r′n
n
≤ lim sup

n→∞

rn
n

= 0. Therefore,

q∞({An}n) ≥ inf {α ∈ [0,∞) : #(σ(An) > α+ ε) = o(n)}
≥ inf {α ∈ [0,∞) : #(σ(An) > α) = o(n)} − ε ∀ε > 0.

To prove the other inequality, let An = UnΣnV
∗
n be a SVD of An. Let α ∈ [0,∞) such that #(σ(An) ≥

α) = o(n). Let Rn = UnΣ̃nV
∗
n , Nn = UnΣ̂nV

∗
n , where Σ̃n is the diagonal matrix obtained from Σn by setting

to 0 all the singular values of An that are less than or equal to α, and Σ̂n = Σ−Σ̃n. Hence, rank(Σ̃n) = o(n).

Then, An = Rn + Nn, rank(Rn) = #(σ(An) ≥ α) and lim supn→∞ ‖Nn‖ ≤ α. By taking infimum over all

such α, we get
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q∞({An}n) ≤ inf

{
α ∈ [0,∞) : lim sup

n→∞
‖Nn‖ ≤ α, rank(Rn) = o(n), An = Rn +Nn

}
≤ inf {α ∈ [0,∞) : #(σ(An) > α) = o(n)} .

Hence, q∞({An}n) = inf{α ∈ [0,∞) : #(σ(An) > α) = o(n)}.

Using the inequality σi+j−1(An) ≤ σi(Rn) + σj(Nn),∀i + j ≤ n + 1, we can prove the case 1 ≤ p < ∞
in same manner.

Corollary 2.7. Let {An}n and {Bn}n be two matrix sequences and let 1 ≤ p ≤ ∞. Then {An−Bn}n
converges to {On}n in Type 2 weak cluster sense if and only if qp({An −Bn}n) = 0.

Proof. The case p = ∞ follows from Theorem 2.6 and Remark 2.3. For 1 ≤ p < ∞, the result follows

from
‖Nn‖p
n1/p

≤ ‖Nn‖ and Theorem 1.8.

Corollary 2.8. A matrix sequence {Zn}n is a zero-distributed sequence if and only if qp({Zn}n) = 0.

Proof. Result follows from Corollary 2.7 and Definition 1.7.

Let Z = {{An}n ∈ E : p({An}n) = 0}, the set of all zero-distributed sequences and Zp = {{An}n ∈ Ap :

qp({An}n) = 0}. In the view of Corollary 2.8, Z = Zp for every 1 ≤ p ≤ ∞. Then Ãp = Ap/Z is the

quotient space of Ap.

Now we prove that Ãp are Banach spaces.

Theorem 2.9. Ãp, 1 ≤ p ≤ ∞, are Banach spaces with respect to the norms induced by the seminorms

qp. In particular, Ã∞ forms a C∗-algebra and Ã2 is a Hilbert space.

Proof. Here we prove only the case of Ãp, 1 ≤ p < ∞. For p = ∞, the proof is similar. First we fix

some notations. Let qA = qp({An}n), qB = qp({Bn}n), qA+B = qp({An}n+{Bn}n) and qAB = qp({AnBn}n).

From the definition of qp, for every m ∈ N, there exist four matrix sequences {RAn,m},{NA
n,m}, {RBn,m},{NB

n,m}
such that {RAn,m}+ {NA

n,m} = {An}n, {RBn,m}+ {NB
n,m} = {Bn}n, and

lim sup
n→∞

‖NA
n,m‖p
n1/p

≤ qA +
1

m
, lim sup

n→∞

‖NB
n,m‖p
n1/p

≤ qB +
1

m
.

Also, rank (RAn,m) = rank (RBn,m) = o(n).

Now we verify the axioms of seminorm. The nonnegativity and qp({On}n) = 0 are trivial. For triangular

inequality,

qA+B ≤ lim sup
n→∞

‖NA
n,m +NB

n,m‖p
n1/p

≤ lim sup
n→∞

‖NA
n,m‖p
n1/p

+ lim sup
n→∞

‖NB
n,m‖p
n1/p

≤ qA + qB +
2

m
.

Thus, qA+B ≤ qA + qB .

The equation qαA = |α|qA is obvious for every α ∈ C.

Hence, qp is a seminorm in Ap. Then the function q̃p : Ãp × Ãp → R defined as

q̃p({An}n + Z) = qp({An}n),

becomes a norm on Ãp.
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Next, we prove the completeness of Ãp. Let {{Bn,m}n + Lw}m be a Cauchy sequence in Ãp. It suffices

to show the convergence of a subsequence. We can extract a subsequence and name it as {{Bn,m}n + Z}m
itself such that

q̃p({Bn,m+1 −Bn,m}n + Z) < 2−m, m = 1, 2, 3, . . .

Then,

q̃p({Bn,m+i −Bn,m}n + Z) = qp({Bn,m+i −Bn,m}n) < 2(1−m), i = 1, 2, 3, . . .

Also we can construct two matrix sequences {Rmn,i}n and {Nm
n,i}n such that Bn,m+i − Bn,m = Rmn,i + Nm

n,i,

where
‖Nm

n,i‖p
n1/p

< 2−(m−1) and rank(Rmn,i) = o(n).

We can find a strictly increasing sequence of positive integers {ni,m}i such that for all n ≥ ni,m,
rank(Rmn,i)

n
<

1

i
. Also we choose {{ni,m}m}i such that

(2.1) ni,m+1 > ni+1,m.

This inequality helps us to obtain the required estimate. Since ni,m+1 > ni+1,m > ni,m, for a fixed i, {ni,m}m
is an increasing sequence.

Now consider {n2,m}m and construct a matrix sequence {An}n in such a way that An = Bn,j+1, whenever

n2,j−1 ≤ n < n2,j .

Consider An −Bn,m; for n2,m+i−1 ≤ n < n2,m+i,

An −Bn,m = Bn,m+i+1 −Bn,m = Rmn,i+1 +Nm
n,i+1,

where
‖Nm

n,i+1‖p
n1/p

< 2(1−m) and
rank(Rmn,i+1)

n
<

1

i+ 1
, for all n ≥ ni+1,m.

Here by inequality (2.1), n ≥ n2,m+i−1 > ni+1,m, then qp({An}n − {Bn,m}n) < 2(1−m).

Hence, lim
m→∞

q̃p({An}n − {Bn,m}n + Z) = lim
m→∞

qp({An}n − {Bn,m}n) = 0.

Thus, Ãp are Banach spaces for every 1 ≤ p ≤ ∞.

For the Banach algebra inequality, we consider

{AnBn}n = {RAn,mRBn,m +RAn,mN
B
n,m +NA

n,mR
B
n,m}n + {NA

n,mN
B
n,m}n.

Here rank(RAn,mR
B
n,m +RAn,mN

B
n,m +NA

n,mR
B
n,m) = o(n). Then,

q∞({AnBn}n) ≤ lim sup
n→∞

‖NA
n,mN

B
n,m‖

≤ lim sup
n→∞

‖NA
n,m‖ lim sup

n→∞
‖NB

n,m‖

≤ (q∞({An}n) +
1

m
)(q∞({Bn}n) +

1

m
).

Thus, q∞({AnBn}n) ≤ q∞({An}n)q∞({Bn}n) (note that this result is not true for Ãp, p 6=∞).

Hence, Ã∞ is a C∗-algebra with usual complex conjugate transpose of the matrix as the involution, that

is, {An}∗n = {A∗n}n.
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Finally, we prove that Ã2 is a Hilbert space. Let q̃2({An}n +Z) = α and q̃2({Bn}n +Z) = β. Then for

every ε > 0, there exist matrix sequences {RAn }n, {RBn }n, {NA
n }n, {NB

n }n and a positive integer n0 such that

‖NA
n ‖22
n

≤ α2 + ε ∀n > n0, An = RAn +NA
n , rank(RAn ) = o(n),

‖NB
n ‖22
n

≤ β2 + ε ∀n > n0, Bn = RBn +NB
n , rank(RBn ) = o(n).

Now An +Bn = RAn +RBn +NA
n +NB

n and An −Bn = RAn −RBn +NA
n −NB

n . Then

q2({An +Bn})2 ≤ lim sup
n→∞

‖NA
n +NB

N ‖22
n

, q2({An −Bn})2 ≤ lim sup
n→∞

‖NA
n −NB

N ‖22
n

.

q2({An +Bn})2 + q2({An −Bn})2 ≤ lim sup
n→∞

‖NA
n +NB

n ‖22
n

+ lim sup
n→∞

‖NA
n −NB

n ‖22
n

≤ 2α2 + 2β2 + 4ε.

Thus,

(2.2) q̃2({An +Bn}+ Z)2 + q̃2({An −Bn}+ Z)2 ≤ 2q̃2({An}n + Z)2 + 2q̃2({Bn}n + Z)2.

Let q̃2({An + Bn}n + Z) = α′ and q̃2({An − Bn}n + Z) = β′. Then for every ε > 0, there exist matrix

sequences {Rn}n, {R′n}n, {Nn}n, {N ′n}n and a positive integer n1 such that

‖Nn‖22
n

≤ α′2 + ε ∀n > n1, An +Bn = Rn +Nn, rank(Rn) = o(n),

‖N ′n‖22
n

≤ β′2 + ε ∀n > n1, An −Bn = R′n +N ′n, rank(R′n) = o(n).

Now 2An = Rn +R′n +Nn +N ′n and 2Bn = Rn −R′n +Nn −N ′n. Then,

4q2({An}n)2 ≤ lim sup
n→∞

‖Nn +N ′n‖22
n

, 4q2({Bn}n)2 ≤ lim sup
n→∞

‖Nn −N ′n‖22
n

.

4q2({An}n)2 + 4q2({Bn}n)2 ≤ lim sup
n→∞

‖Nn +N ′n‖22
n

+ lim sup
n→∞

‖Nn −N ′n‖22
n

≤ 2α′
2

+ 2β′
2

+ 4ε.

Thus,

(2.3) 2q̃2({An}n + Z)2 + 2q2({Bn}n + Z)2 ≤ q̃2({An +Bn}+ Z)2 + q̃2({An −Bn}+ Z)2.

From (2.2) and (2.3),

q̃2({An +Bn}+ Z)2 + q̃2({An −Bn}+ Z)2 = 2q̃2({An}n + Z)2 + 2q̃2({Bn}n + Z)2.

Since the norm q̃2 satisfies parallelogram equality, Ã2 forms a Hilbert space.

The convergence of a sequence {{Bn,m}m}n to {An}n in the topology induced by qp is denoted by

{{Bn,m}n}m
qp−→ {An}n.

The following theorem gives the relation between a.c.s. convergence and the convergence with respect

to qp.

Theorem 2.10. q∞ convergence =⇒ qp convergence =⇒ a.c.s. convergence, 1 ≤ p <∞.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 295-316, April 2022.

V. B. Kiran Kumar et al. 304

Proof. q∞ convergence implies qp convergence and a.c.s. convergence follows from Definition 2.1 and

Lemma 1.6.

Now we prove that qp convergence implies a.c.s. convergence.

Consider a sequence {{An,m}n}m and qp({An,m}n − {An})→ 0 as m→∞.

Hence for ε > 0, there exists a positive integer m0 such that for all m > m0,

qp({An,m}n − {An}n) < ε/2.

Fix a m > m0. Then there exists a decomposition An,m −An = Rmn +Nm
n such that

lim sup
n→∞

‖Nm
n ‖p

n1/p
< ε, rank(Rmn ) = o(n).

Therefore, there exists a positive integer n0 such that, for all n > n0,
‖Nm

n ‖p
n1/p

< ε.

Let σi(N
m
n ) be the ith singular value of Nm

n when arranged in non-increasing order. So, for all n > n0,(
1

n

n∑
i=1

σi(N
m
n )p

)1/p

< ε,

1

n

n∑
i=1

σi(N
m
n )p < εp.

Let kn be the number of singular values of Nm
n which are greater than

√
ε. Then for all n > n0,

1

n

kn∑
i=1

σi(N
m
n )p ≤ 1

n

n∑
i=1

σi(N
m
n )p < εp,

1

n

kn∑
i=1

σi(N
m
n )p >

kn
n
εp/2.

Thus, for all n > n0, kn
n < εp/2. Now consider,

P (Nm
n ) = min

i=0,1,...,n

{
i

n
+ σi+1(Nm

n )

}
.

For i = kn,
i

n
+ σi+1(Nm

n ) =
kn
n

+ σk+1(Nm
n ) < εp/2 + ε1/2,

p({Nm
n }n) = lim sup

n→∞
P (Nm

n ) ≤ εp/2 + ε1/2.

Since p({Rmn }n) = 0,

p({An,m}n − {An}n) ≤ p({Rmn }n) + p({Nm
n }n) ≤ εp/2 + ε1/2.

Thus, for all m > m0,

p({An,m}n − {An}n) ≤ εp/2 + ε1/2.

Hence, qp convergence implies a.c.s. convergence.

Remark 2.11. Reverse implication is false, as we shall see in the following example. Also, qp convergence

implies qr convergence if 1 ≤ r < p <∞.
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Example 2.12. Let Bn,m be the diagonal matrix with its first b nmc diagonal entries 1 and others 0.

p({Bn,m}n) = inf

{
lim sup
n→∞

{
rank(R)

n
+ ‖N‖ : R+N = Bn,m

}}
≤ lim sup

n→∞

rank(Bn,m)

n

=
b nmc
n

≤ 1

m

Then, by Lemma 1.6, {{Bn,m}n}m
a.c.s.−−−→ {On}n. But q∞({Bn,m}n) is 1 for all m. Hence, {{Bn,m}n}m does

not converge to {On}n in Ã∞.

For a.c.s. convergence does not imply qp convergence, take the same example with m instead of 1 in

Bn,m.

3. Main results: GLT matrix sequences and Lp spaces. In this section, we prove our main result.

Recall the definition of GLT matrix sequences (Definition 1.5). Let Gp be the space defined as follows.

Gp = {{An}n ∈ Ap : {An}n ∼GLT f}.

Let

Zp = {{An}n ∈ Gp : qp({An}n) = 0}.

From Corollary 2.8, it follows that Z = Zp for every 1 ≤ p ≤ ∞. Let G̃p = Gp/Z be the quotient space of

Gp.

We recall two theorems of GLT matrix sequences from [1, 16];

Theorem 3.1. Let {An}n ∼GLT f and {Bn}n ∼GLT g. Then,

1. {A∗n}n ∼GLT f̄ .

2. {αAn + βBn}n ∼GLT αf + βg, for all α, β ∈ C.
3. {AnBn}n ∼GLT fg.

4. if {An}n ∼GLT h then f = h a.e.

5. {An}n is zero distributed iff f = 0 a.e.

Theorem 3.2. For all measurable functions f defined on D = [0, 1] × [−π, π], there exists a matrix

sequence {An}n such that {An}n ∼GLT f .

Let D = [0, 1]× [−π, π] and define a function φp : G̃p → Lp(D), 1 ≤ p ≤ ∞, such that whenever {An}n ∼GLT
f ,

φp({An}n) =


f if p =∞,

1

(2π)
1
p

f if p 6=∞.

φp is well defined by Theorem 3.1, item 4. Now we are in a position to prove our main result (Theorem

3.6). In fact, we prove that φp is an isometric isomorphism between G̃p and Lp(D), 1 ≤ p ≤ ∞. This is a

consequence of Theorems 3.1, 3.2, and the following two lemmas.
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Lemma 3.3. If {An}n ∼σ f , then q∞({An}n) = ‖f‖∞ and qp({An}n) =
1

(2π)(1/p)
‖f‖p, for 1 ≤ p <∞.

Proof. Suppose ‖f‖∞ = ess sup
x∈D

|f(x)| = l <∞.

By definition of essential supremum, for any ε > 0,

µ{x : |f(x)| ≥ l + ε} = 0,

where µ is the Lebesgue measure. Since {An}n ∼σ f , we have

lim
n→∞

1

n

n∑
i=1

F (σi(An)) =
1

2π

∫
D

F (|f(x)|)dx,

for every F ∈ Cc(R). Suppose that the singular values σi(An) are arranged in non-increasing order: σ1(An) ≥
σ2(An) ≥ · · · ≥ σn(An). Consider a real-valued continuous function F with compact support, such that

χ[−ε,l+2ε] ≥ F ≥ χ[0,l+ε]. Then

lim
n→∞

1

n

n∑
i=1

F (σi(An)) ≤ lim inf
n→∞

1

n
#(σ(An) ≤ l + 2ε),

and ∫
D

F (|f(x)|)dx ≥ µ{x : |f(x)| ≤ l + ε}.

Now,

lim inf
n→∞

1

n
#(σ(An) ≤ l + 2ε) ≥ 1

2π
µ{x : |f(x)| ≤ l + ε},

lim inf
n→∞

1

n
{n−#(σ(An) > l + 2ε)} ≥ 1

2π
(2π − µ{x : |f(x)| > l + ε}),

1− lim sup
n→∞

1

n
#(σ(An) > l + 2ε) ≥ 1− 1

2π
µ{x : |f(x)| > l + ε},

lim sup
n→∞

1

n
#(σ(An) > l + 2ε) ≤ 1

2π
µ{x : |f(x)| > l + ε} = 0.

By Theorem 2.6, q∞({An}n) ≤ l + 2ε. Thus, q∞({An}n) ≤ ‖f‖∞.

To prove the other inequality, suppose q∞({An}) = k <∞. By Theorem 2.6, for ε > 0,

lim
n→∞

#(σ(An) > k + ε)

n
= 0.

Since {An}n ∼σ f , we have

lim
n→∞

1

n

n∑
i=1

F (σi(An)) =
1

2π

∫
D

F (|f(x)|)dx,

for every F ∈ Cc(R). Consider a function F ∈ Cc(R) such that χ[−ε,k+2ε] ≥ F ≥ χ[0,k+ε]. Then,

lim inf
n→∞

#(σ(An) ≤ k + ε)

n
≤ lim
n→∞

1

n

n∑
i=1

F (σi(An)),



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 295-316, April 2022.

307 Banach spaces of GLT sequences and function spaces

∫
D

F (|f(x)|)dx ≤ µ{x : |f(x)| ≤ k + 2ε},

lim inf
n→∞

1

n
#(σi(An) ≤ k + ε) ≤ 1

2π
µ{x : |f(x)| ≤ k + 2ε},

1

2π
µ{x : |f(x)| > k + 2ε} ≤ lim sup

n→∞

1

n
#(σi(An) > k + ε) = 0.

Thus, ‖f‖∞ ≤ k + 2ε and ‖f‖∞ ≤ q∞({An}n).

Now, the case q∞({An}n) = ‖f‖∞ =∞ is straight forward.

The proof of qp({An}n) =
1

(2π)(1/p)
‖f‖p is almost similar.

Let f ∈ Lp(D) and

∫
D

|f(x)|pdx = lp. Consider a function F1 ∈ Cc(R) such that xpχ[0,m] ≤ F1(x) ≤
xpχ[0,m+1]. Then,

(3.4) lim sup
n→∞

1

n

∑
Em

σpi (An) ≤ lim
n→∞

1

n

n∑
i=1

F1(σi(An)) =
1

2π

∫
D

F1(|f(x)|)dx ≤ 1

2π
lp,

where Em = {i : σi(An) ≤ m}. Now take F2 ∈ Cc(R) such that χ[0,m−1] ≤ F2 ≤ χ[0,m]. Then,

lim
n→∞

1

n

n∑
i=1

F2(σi(An)) ≤ lim inf
n→∞

1

n
#(σ(An) ≤ m),

and ∫
D

F2(|f(x)|)dx ≥ µ{x : |f(x)| ≤ m− 1}.

Now,

lim inf
n→∞

1

n
#(σ(An) ≤ m) ≥ 1

2π
µ{x : |f(x)| ≤ m− 1},

(3.5) lim sup
n→∞

1

n
#(σ(An) > m) ≤ 1

2π
µ{x : |f(x)| > m− 1}.

We can choose m such that 1
2πµ{x : |f(x)| > m − 1} < 1

t . From (3.4) and (3.5), for each t ∈ N we got a

decomposition An = Rtn +N t
n such that

Rtn = Un diag(σ1(An), . . . , σjt(An), 0, . . . , 0)V ∗n ,

N t
n = Un diag(0, . . . , 0, σjt+1(An), . . . , σn(An))V ∗n ,

where σjt(An) > m and σjt+1(An) ≤ m. Also

lim sup
n→∞

rank(Rtn)

n
≤ 1

t
, lim sup

n→∞

‖N t
n‖

n1/p
≤ 1

(2π)1/p
l.

Fix ε > 0, for each t ∈ N, there exists nt ∈ N such that for n > nt,

rank(Rtn)

n
<

2

t
,
‖N t

n‖p
n1/p

<
1

(2π)1/p
l + ε.
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Also choose nt+1 > nt. Now for nt + 1 ≤ n ≤ nt+1, define Rn = Rtn and Nn = N t
n. So this implies

rank(Rn) = o(n), lim sup
n→∞

‖Nn‖
n1/p

≤ 1

(2π)1/p
l + ε.

Since ε is arbitrary, qp({An}n) ≤ 1

(2π)1/p
l. To prove the other inequality, suppose qp({An}) = k < ∞. By

Theorem 2.6, for ε > 0,

(3.6)
1

n

n∑
i=jn+1

σpi (An) ≤ kp + ε except for finitely many n and jn = o(n).

Consider a function F ∈ Cc(R) such that xpχ[0,m−1] ≤ F (x) ≤ xpχ[0,m]. Then,

1

2π

∫
Dm

|f(x)|pdx ≤ 1

2π

∫
D

F (|f(x)|)dx = lim
n→∞

1

n

n∑
i=1

F (σi(An)) ≤ lim inf
n→∞

1

n

∑
Em

σpi (An),

where Dm = {x : |f(x)| ≤ m−1} and Em = {i : σi(An) ≤ m}. If for all m ∈ N, lim inf
n→∞

1

n

∑
Em

σpi (An) ≤ kp+ε,

we are done. Suppose this is not true, then there exists m ∈ N such that

lim inf
n→∞

1

n

∑
Em

σpi (An) > kp + ε.

Therefore, there exists n0 such that for all n > n0,

(3.7)
1

n

n∑
i=rn+1

σpi (An) > kp + ε, σrn(An) > m, σrn+1(An) ≤ m.

From (3.6) and (3.7),

lim sup
n→∞

1

n

jn∑
i=rn+1

σpi (An) ≤ lim sup
n→∞

jn
n
mp = 0.

Thus,

lim inf
n→∞

1

n

n∑
i=rn+1

σpi (An) = lim
n→∞

1

n

jn∑
i=rn+1

σpi (An) + lim inf
n→∞

1

n

n∑
i=jn+1

σpi (An)

≤ kp + ε.

This is contrary to our assumption. Hence,
1

2π1/p
‖f‖p ≤ qp({An}n).

Corollary 3.4. Let {An}n ∼σ f . Then {An}n ∈ Ap if and only if f ∈ Lp(D), 1 ≤ p ≤ ∞.

We give an example of a matrix sequence that belongs to G̃1 but not to G̃2.

Example 3.5. Let a : [0, 1]→ R,

a(x) =

{
1√
x

if 0 < x ≤ 1,

0 if x = 0,
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let g : [−π, π]→ C be the constant function 1, and let {An}n be the matrix sequence given by

An =



√
n 0 0 · · · 0

0
√

n
2 0 · · · 0

0 0
√

n
3 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

 .

The matrix sequence {An}n belongs to G̃1 but not to G̃2 and its symbol is the function f : [0, 1]×[−π, π]→ R
defined by f = a⊗ g.

Theorem 3.6. The Banach spaces G̃p and Lp(D) are isometrically isomorphic for every 1 ≤ p ≤ ∞. In

particular, G̃∞ and L∞(D) are isomorphic as C∗-algebras.

Proof. φp is an injective *-homomorphism of Banach spaces, which can be readily inferred from Theorem

3.1. The surjectivity follows from the definition of G̃p and Theorem 3.2. Hence it is a *-isomorphism. From

Lemma 3.3, it follows that φp is an isometry. In particular, φ∞ is a C∗-isomorphism.

Theorem 3.6 yields a natural isometry between the spaces G̃p and Lp(D), for 1 ≤ p ≤ ∞, which is

analogous to the isometry identified in [1] between space of GLT matrix sequences and space of measurable

functions. Notice that in [1], the author derived a metric space isometry. Here we achieved a Banach space

isometric isomorphism. A general setting in a Toeplitz and multilevel Toeplitz setting is studied in [14, 23],

while for general matrix sequences, the readers are referred to [11, 12].

Remark 3.7. All the relations between the convergences of matrix sequences reflect the same properties

between functions, where the convergence qp is the convergence in Lp and the a.c.s. convergence is the

convergence in measure.

4. Korovkin-Type theorem. P. P. Korovkin proved a classical approximation theorem in 1953, which

unified several approximation processes. Korovkin-type theorems in the setting of Toeplitz operators acting

on Hardy spaces and Fock spaces were obtained in [6, 20, 22]. Type 2 strong/weak cluster sense convergence

was considered there. Here we obtain an analogous result for GLT matrix sequences.

Consider Mn(C), with Frobenius norm induced from the inner product 〈A,B〉 = trace(B∗A). Let {Un}n
be a sequence of unitary matrices such that each Un is of order n. For each n, define the subalgebra MUn of

Mn(C) as

MUn = {A ∈Mn(C) : U∗nAUn is diagonal}.

MUn is a closed subspace of Mn(C). We denote the orthogonal projection of Mn(C) onto MUn by PUn(·) and

PUn(A) = U∗ndiag(UnAU
∗
n)Un. It is known that the operator norm ‖PUn(·)‖ = 1 and the Frobenius norm

‖PUn(·)‖F = 1 (see [22] for details). For A ∈Mn(C), PUn(A) is called a preconditioner for A.

Preconditioners play a crucial role in solving linear systems by iterative techniques. They help to increase

the convergence rate of iterations. For instance, consider the linear system with Toeplitz structure,

Tn(f)x = bn.

For a fixed f , we can consider a sequence of Toeplitz matrices {Tn(f)}n. If we can find a sequence of matrices

{Cn(f)}n such that {Cn(f) − Tn(f)}n converges to {On}n in Type 2 strong/weak cluster sense, {Cn(f)}n
can be considered as an efficient preconditioner [21]. In this case, the eigenvalues of Cn(f)−1Tn(f) will be
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clustered at 1. This will help to improve the stability of the corresponding linear system. In [13], R. H. Chan

and M. C. Yeung proved that if Un = Fn (the Fourier matrix of order n) and f is a continuous periodic

function, then {PUn(Tn(f))−Tn(f)}n converges to {On}n in Type 2 strong cluster sense, the corresponding

preconditioners are known as circulant preconditioners. Depending on the choice of Un, we can obtain other

efficient preconditioners such as Hartley [19], Tau [24], etc., for Toeplitz matrices.

Since linear systems involving GLT matrix sequences appear in various situations, finding efficient pre-

conditioners for GLT matrix sequences is also an important problem.

In what follows, we propose an example of an efficient preconditioner for GLT matrix sequences. The

method we use here is quite similar to the methods used by G. Barbarino in [4].

Consider a LT sequence {An}n ∼LT a⊗ f , where a is a Riemann integrable function on [0, 1] and f is a

continuous periodic function on [−π, π]. We give an example of preconditioner for this LT sequence and also

obtain a preconditioner for a GLT sequence. A general setting in a Toeplitz and multilevel Toeplitz setting

is studied in [14, 23], while for general matrix sequences the reader is referred to [11, 12]. Let

Un =


Fb nm c 0 0 · · · 0

0 Fb nm c 0 · · · 0

0 0 Fb nm c · · · 0
...

...
...

. . .
...

0 0 0 · · · Fn(modm)

 ,

where Fn =
(

1√
n
e

2πijl
n

)n−1
j,l=0

is the Fourier matrix of order n. Consider

LTmn (a, f) = Dm(a)⊗ Tb nm c(f)⊕On(modm).

We can construct a matrix sequence {Ãn}n which is an a.c.s. limit for the sequence {{LTmn (a, f)}n}m such

that Ãn = LTmn (a, f) for some m and n ≥ m2. Now consider

PUn(Ãn)− Ãn =


a( 1
m )PFk(Tk(f)) 0 0 · · · 0

0 a( 2
m )PFk(Tk(f)) 0 · · · 0

...
...

. . . · · ·
...

0 0 · · · a(1)PFk(Tk(f)) 0

0 0 · · · 0 On(modm)



−


a( 1
m )Tk(f) 0 0 · · · 0

0 a( 2
m )Tk(f) 0 · · · 0

...
...

. . . · · ·
...

0 0 · · · a(1)Tk(f) 0

0 0 · · · 0 On(modm)

 ,

where k = b nmc. Since {PFk(Tk(f)) − Tk(f)}n converges to {On}n in Type 2 strong cluster sense, we can

show that {PUn(Ãn) − Ãn}n converges to {On}n in Type 2 weak cluster sense. Since q∞({An − Ãn}n) =

0, {PUn(Ãn)−An}n converges to {On}n in Type 2 weak cluster sense.

Definition 4.1. A matrix sequence {An}n is said to be a norm bounded matrix sequence if there exists

a real number M <∞ such that for all n, ‖An‖ ≤M.
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Remark 4.2. Note that {An}n in the above example needs not be norm bounded. If {An}n is norm

bounded, then {PUn(An)−An}n converges to {On}n in Type 2 weak cluster sense (see Lemma 4.4).

Now consider a GLT sequence {Bn}n belongs to G̃∞ with symbol κ, such that
km∑
i=1

ai,m ⊗ fi,m converges to

κ in essential supremum norm (or in measure), where each ai,m is a Riemann integrable function on [0, 1]

and fi,m is a continuous periodic function on [−π, π]. Then {{
km∑
i=1

PUn(Dn(ai,m)Tn(fi,m))}n}m converges

to {Bn}n in G̃∞ (or in G̃, the space of all GLT sequences). Then we can construct a sequence {Ân}n as

in the proof of Theorem 2.9 such that Ân = PUn(
km∑
i=1

Dn(ai,m)Tn(fi,m)) for some m (depending on n) and

q∞({Ân}n − {Bn}n) = 0. Thus ,{Ân}n is a good preconditioner for {Bn}n.

Since the convergence of {PUn(Tn(f)) − Tn(f)}n to {On}n in Type 2 strong/weak cluster sense leads

to efficient preconditioners, it is important to know when does this convergence hold. The Korovkin-type

theorems obtained in [6, 20, 21, 22] reduce this task into a finite subset of the class of symbols. With the

assumptions of convergence on a finite subset of symbols (test set), we get convergence in a class of operators

generated by this test set. Here we obtain a similar result in the setting of GLT matrix sequences. First, we

prove three lemmas.

Lemma 4.3. Suppose {An}n is a norm bounded matrix sequence with ‖An‖ ≤ M < ∞. Then

q∞({An}n) = 0 if and only if ‖An‖2F = o(n).

Proof. If ‖An‖2F = o(n), then by Lemma 2.4, {An}n converges to {On}n in Type 2 weak cluster sense.

By Corollary 2.7, q∞({An}n) = 0.

Conversely assume that q∞({An}n) = 0. Then {An}n converges to {On}n in Type 2 weak cluster sense.

Using Theorem 2.5, we get lim
n→∞

P (An) = 0. Also, by Theorem 1.9, we have

P (An) = min
i=0,1,...,n

{
i

n
+ σi+1(An)

}
.

Since lim
n→∞

P (An) = 0, for ε > 0, there exists a positive integer nε such that for all n ≥ nε, P (An) < ε.

Hence, we have for n ≥ nε,

min
i=0,1,...,n

{
i

n
+ σi+1(An)

}
< ε.

Then there exists a j, such that j
n + σj+1(An) < ε. Now

1

n

(
j∑
i=1

σi
2

)
< M2ε,

n∑
i=j+1

σi
2 < ε2(n− j).

Then, for every n ≥ nε,

‖An‖2F =

n∑
i=1

σi
2(A) < M2ε+ (n− j)ε2, ‖An‖2F

n
<
M2ε

n
+ ε2.

Hence ,‖An‖2F = o(n).

Lemma 4.4. Let {An}n be a matrix sequence such that for each n, ‖An‖ ≤M <∞. If q∞({An}n) = 0,

then q∞({PUn(An)}n) = 0.
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Proof. Suppose that q∞({An}n) = 0. Then by Lemma 4.3, ‖An‖2F = o(n). Since ‖PUn‖F = 1,

‖PUn(An)‖2F ≤ ‖An‖2F = o(n). Thus, q∞({PUn(An)}n) = 0.

Lemma 4.5. For every f ∈ L∞(D), there exists a norm bounded GLT matrix sequence {An}n such that

{An}n ∼GLT f .

Proof. Let f ∈ L∞(D). From Theorem 3.6, there exists a GLT matrix sequence {Bn}n such that

{Bn}n ∼GLT f and by Lemma 3.3, q∞({Bn}n) = ‖f‖∞.

By the definition of q∞, for ε > 0, there exist two matrix sequences {Rn}n and {Nn}n such that

‖Nn‖ < ‖f‖∞ + ε, rank(Rn) = o(n), Bn = Rn +Nn.

Consider An = Nn. Rank(Rn) = o(n) implies {Rn}n ∼GLT 0. Hence, by Theorem 3.1, item 2, {An}n ∼GLT
f . Also ‖An‖ < ‖f‖∞ + ε <∞.

Theorem 4.6 (Uchiyama’s inequality [27]). Let Φ be a contractive positive map on a C∗-algebra A and

let ◦ denote the Jordan product. For f, g ∈ A, let

X = Φ(f∗ ◦ f)− Φ(f∗) ◦ Φ(f) ≥ 0,

Y = Φ(g∗ ◦ g)− Φ(g∗) ◦ Φ(g) ≥ 0,

Z = Φ(f∗ ◦ g)− Φ(f∗) ◦ Φ(g).

Then |φ(Z)| ≤ |φ(X)|1/2|φ(Y )|1/2 for all states φ on A.

Remark 4.7. Note that the above inequality holds for completely positive maps with norm less than or

equal to 1 with respect to the usual C∗ product. We will use Uchiyama’s inequality for a particular state φx
on Mn(C), where φx is defined by φx(An) = 〈Anx, x〉, x ∈ Cn, ‖x‖ = 1.

The next lemma is analogous to Lemma 2.6 of [20] and the proof is quite similar, so we omit the proof.

Lemma 4.8. Let {An}n and {Bn}n be two positive matrix sequences (sequences of positive semi-definite

matrices) such that {An +Bn}n converges to {On}n in Type 2 weak cluster sense. Then {An}n and {Bn}n
converge to {On}n in Type 2 weak cluster sense.

Now we present the Korovkin-type theorem in the setting of GLT matrix sequences. Here we obtain pre-

conditioners for the norm bounded GLT matrix sequences. For arbitrary GLT matrix sequences, see the

Corollary 4.10.

Theorem 4.9. Let {f1, f2,. . . , fk} ⊆ L∞(D) and {An(f)}n ∼GLT f is norm bounded for each f ∈
{f1, f2,. . . , fk,

∑k
i=1 fif

∗
i }. Suppose that {PUn(An(g)) − An(g)} converges to {On} in Type 2 weak cluster

sense for g ∈ {f1, f2,. . . , fk,
∑k
i=1 fif

∗
i }. Then for every f in the C∗-algebra generated by {f1, f2, . . . , fk}, if

{An(f)}n ∼GLT f is norm bounded, then {PUn(An(f))−An(f)} converges to {On} in Type 2 weak cluster

sense.

Proof. Let fi, fj ∈ {f1, f2,. . . , fk} ⊆ L∞(D). Lemma 4.5 shows that for each f ∈ L∞(D), there exists a

GLT sequence {An(f)}n such that ‖An(f)‖ ≤M <∞,∀n ∈ N.

Let {An(fi)}n and {An(fj)}n be sequences such that ‖An(fi)‖ ≤Mi <∞ and ‖An(fj)‖ ≤Mj <∞.

PUn(·) : Mn(C)→MUn is a completely positive map and ‖PUn(·)‖ = 1. Let,

Xn = PUn(An(f∗i )An(fi))− PUn(An(f∗i ))PUn(An(fi)) ≥ 0,
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Yn = PUn(An(f∗j )An(fj))− PUn(An(f∗j ))PUn(An(fj)) ≥ 0,

Zn = PUn(An(f∗i )An(fj))− PUn(An(f∗i ))PUn(An(fj)).

We know {PUn(An(
∑k
i=1 f

∗
i fi)) − An(

∑k
i=1 f

∗
i fi)}n converges to {On}n in Type 2 weak cluster sense. By

Theorem 3.1, item 1,2 and 5, {An(fi)
∗ −An(f∗i )}n is zero distributed. Now,

(4.8) q∞

(
An

(
k∑
i=1

f∗i fi

)
−

k∑
i=1

An(f∗i )An(fi)

)
= 0.

Also
∥∥∥An (∑k

i=1 f
∗
i fi

)
−
∑k
i=1An(f∗i )An(fj)

∥∥∥ ≤ K <∞. Therefore By Lemma 4.4,

(4.9) q∞

(
PUn

[
An

(
k∑
i=1

f∗i fi

)
−

k∑
i=1

An(f∗i )An(fi)

])
= 0.

Now,

k∑
i=1

PUn(An(f∗i )An(fi))− PUn(An(f∗i ))PUn(An(fi))(4.10)

=

k∑
i=1

{PUn(An(f∗i )An(fi))−An(f∗i )An(fi)}+

k∑
i=1

{An(f∗i )An(fi)− PUn(An(f∗i ))PUn(An(fi))} .

Consider the first term,

k∑
i=1

PUn(An(f∗i )An(fi))− PUn

(
An

(
k∑
i=1

f∗i fi

))
+ PUn

(
An

(
k∑
i=1

f∗i fi

))
−An

(
k∑
i=1

f∗i fi

)

+An

(
k∑
i=1

f∗i fi

)
−

k∑
i=1

An(f∗i )An(fi).

By (4.8) and (4.9), we get that first sum in the right-hand side of (4.10) converges to {On}n in Type 2 weak

cluster sense.

Since {PUn(An(f∗i )) − An(f∗i )}n converges to {On}n and {PUn(An(fi)) − An(fi)}n converges to

{On}n in Type 2 weak cluster sense, then it is easy to show that {PUn(An(f∗i ))PUn(An(fi)) −
An(f∗i )An(fi)}n converges to {On}n in Type 2 weak cluster sense (see Lemma 2.5 of [20]). Hence, sec-

ond sum in the right-hand side of (4.10) converges to {On}n in Type 2 weak cluster sense. Hence,{∑k
i=1 PUn(An(f∗i )An(fi))− PUn(An(f∗i ))PUn(An(fi))

}
converges to {On}n in Type 2 weak cluster sense.

By Lemma 4.8, for each i = 1, 2, . . . , k, {PUn(An(f∗i )An(fi)) − PUn(An(f∗i ))PUn(An(fi))}n converges to

{On}n in Type 2 weak cluster sense.

Thus, {Xn}n converges to {On}n in Type 2 weak cluster sense. Similarly, {Yn}n converges to {On}n
in Type 2 weak cluster sense. Now consider the state φx on Mn(C) defined by φx(An) = 〈Anx, x〉 where

x ∈ Cn and ‖x‖ = 1. By Uchiyama’s inequality

|φx(Zn)| = |〈Znx, x〉| ≤ 〈Xnx, x〉1/2〈Ynx, x〉1/2.
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Then as in the proof of Theorem 3.4 of [20], we obtain {Zn}n converges to {On}n in Type 2 weak cluster

sense. Now

PUn(An(f∗i )An(fj))−An(f∗i )An(fj) = (PUn(An(f∗i )An(fj))− PUn(An(f∗i ))PUn(An(fj)))

+ (PUn(An(f∗i ))PUn(An(fj))−An(f∗i )An(fj)) .

The first term is Zn and hence converges to {On}n in Type 2 weak cluster sense. The second term

converges to {On}n in Type 2 weak cluster sense (see Lemma 2.5 of [20]). Hence, {PUn(An(f∗i )An(fj)) −
An(f∗i )An(fj)}n converges to {On}n in Type 2 weak cluster sense. Since q∞({An(f∗i )An(fj)−An(f∗i fj)}n) =

0, {PUn(An(f∗i )An(fj)−An(f∗i fj))}n converges to {On}n in Type 2 weak cluster sense. *-algebra generated

by the test set contains all linear combinations of products of elements in the test set and their adjoints.

Hence by the above calculation, we obtain convergence on the whole *-algebra generated by the test set.

From the *-algebra to reach C∗-algebra (i.e., the closure in the C∗-algebra norm), we proceed as follows.

Let g belong to the C∗-algebra generated by {f1, f2, . . . , fk} and {gm} be a sequence which converges to

g, where each gm belongs to *-algebra generated by {f1, f2, . . . , fk}. Then by Lemma 4.5, there exist norm

bounded GLT matrix sequences {An(gm)}n and {An(g)}n corresponding to each gm and g, respectively,

such that {{An(gm)}n}m converges to {An(g)}n in G̃∞.

Therefore, for ε > 0, there exists a positive integer t such that q∞({An(gt)−An(g)}n) < ε/2. Then there

exist two norm bounded sequences {Rn}n,t and {Nn}n,t such that

An(gt)−An(g) = Rn,t +Nn,t, lim
n→∞

rank(Rn,t)

n
= 0, ‖Nn,t‖ < ε/2.

Now consider

q∞({PUn(An(g))−An(g)}n) = q∞({PUn(An(g))− PUn(An(gt))

+ PUn(An(gt))−An(gt) +An(gt)−An(g)}n)

≤ q∞({PUn(An(g)−An(gt))}n)

+ q∞({PUn(An(gt))−An(gt)}n)

+ q∞({An(gt)−An(g)})n).

The second term on the right-hand side is zero and q∞({An(gt) − An(g)})n) < ε/2. Now consider the first

term on the right-hand side:

q∞({PUn(An(g)−An(gt))}n) = q∞({PUn(Rn,t +Nn,t)}n)

≤ q∞({PUn(Rn,t)}n) + q∞({PUn(Nn,t)}).

Since q∞({Rn,t}n) = 0, by Lemma 4.4, q∞({PUn(Rn,t)}n) = 0. Also we know that ‖PUn‖ = 1, then

‖PUn(Nn,t)‖ ≤ ‖Nn,t‖ and hence q∞({PUn(Nn,t)}n) < ε/2. Thus, q∞({PUn(An(g)) − An(g)}n) < ε. Hence

{PUn(An(g))−An(g)}n converges to {On}n in Type 2 weak cluster sense.

Corollary 4.10. Under the conditions of Theorem 4.9, if
∑km
i=1 gi,m converges to g in measure, where

each gi,m belongs to the C∗- algebra generated by {f1, f2, . . . , fk}, then we can extract a preconditioner

sequence {PUn(An(hi))}n for {An(g)}n.

Proof.
∑km
i=1 gi,m belongs to C∗{f1, f2, . . . , fm}, the C∗-algebra generated by {f1, f2, . . . , fm}. Hence,

{PUn(An(
∑km
i=1 gi,m))−An(

∑km
i=1 gi,m)}n converges to {On}n in Type 2 weak cluster sense if An(

∑km
i=1 gi,m)
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is of bounded norm and An(
∑km
i=1 gi,m) ∼GLT

∑km
i=1 gi,m. Since

∑km
i=1 gi,m converges to g in measure,

An(
∑km
i=1 gi,m) and {PUn(An(

∑km
i=1 gi,m))}n are a.c.s. for An(g). We can extract a sequence {PUn(An(hj))}n

from {{PUn(An(
∑km
i=1 gi,m))}n}m such that {PUn(An(

∑km
i=1 gi,m))}n

a.c.s.−−−→ {PUn(An(hj))}n, where hj =∑km
i=1 gi,m for some m (the construction is in the proof of Theorem 2.1 of [1]). Hence the result follows.

Remark 4.11. Theorem 4.9 does not hold in general if {An(f)} is not norm bounded. Let f ∈ L∞(D)

and consider a GLT sequence {An(f)}n such that ‖An(f)‖ ≤ M < ∞, for all n. Let q∞({PUn(An(f) −
An(f))})n = 0 and {Bn}n be another sequence such that q∞({Bn − An(f)}n) = 0. If ‖Bn‖ is unbounded,

then q∞({PUn(Bn)−Bn}n) needs not be zero. Indeed, consider Bn = An(f)+Zn, where U∗nZnUn = (aij)
n
i,j=1

and aij = 1 for all 1 ≤ i, j ≤ n. Clearly, q∞({PUn(Bn) − Bn}n) 6= 0. But q∞({PUn(An(f)) − Bn}) = 0.

So we can treat PUn(An(f)) as a preconditioner for {Bn}n. Also note that the function g in Corollary 4.10

needs not be essentially bounded.

Notice that in Remark 4.2, we have already proved that for any g = a ⊗ f with Riemann Integrable a(x)

and continuous periodic f(θ), since they are bounded. As a consequence, {PUn(An(g)) − An(g)}n is zero

distributed also for any linear combination g(x, θ) of functions in

F = {a(x)⊗ f(θ)} : a(x)R.I., f(θ)continuous, periodic},

but since the product of two elements of F is still an element of F , then {PUn(An(g)) − An(g)}n is zero

distributed for any g in the *-algebra generated by F . By repeating the second part of the proof of Theorem

4.9,{PUn(An(g))−An(g)}n is zero distributed for all g in the C∗-algebra generated by F .

5. Concluding remarks. As we know, the theory of Toeplitz matrix sequences has a rich operator

theoretic analogue on the Hardy space via the symbol function. There are variations of it into Bergman

space, Fock space, etc. We expect such versions in the case of GLT matrix sequences also. The development

must be through the identification of corresponding symbols. The major achievement of this article is that

we are able to identify the connection between the space of symbols and the subspaces of GLT matrix

sequences. We hope that these identifications will be helpful in establishing the operator theoretic analogue

of the spectral distributional results of such matrix sequences. The Korovkin-type result we obtained in this

article makes use of a topology on the space of GLT matrix sequences. The connection with the topologies

on B(H), the space of all bounded linear operators on Hilbert space H, and the topologies introduced in this

article would be another interesting point. Obtaining the convergence in eigenvalue clustering as convergence

with respect to some topology on B(H) is the main target of our future research.
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