REPRESENTATIONS FOR THE DRAZIN INVERSE OF BOUNDED OPERATORS ON BANACH SPACE*

DRAGANA S. CVETKOVIĆ-ILIĆ ${ }^{\dagger}$ AND YIMIN WEI ${ }^{\ddagger}$

Abstract

In this paper a representation is given for the Drazin inverse of a 2×2 operator matrix, extending to Banach spaces results of Hartwig, Li and Wei [SIAM J. Matrix Anal. Appl., 27 (2006) pp. 757-771]. Also, formulae are derived for the Drazin inverse of an operator matrix M under some new conditions.

Key words. Operator matrix, Drazin inverse, D-invertibility, GD-invertibility

AMS subject classifications. 47A52, 47A62, 15A24.

1. Introduction. Throughout this paper \mathcal{X} and \mathcal{Y} are Banach spaces over the same field. We denote the set of all bounded linear operators from \mathcal{X} into \mathcal{Y} by $\mathcal{B}(\mathcal{X}, \mathcal{Y})$ and by $\mathcal{B}(\mathcal{X})$ when $\mathcal{X}=\mathcal{Y}$. For $A \in \mathcal{B}(\mathcal{X}, \mathcal{Y})$, let $\mathcal{R}(A), \mathcal{N}(A), \sigma(A)$ and $r(A)$ be the range, the null space, the spectrum and the spectral radius of A, respectively. By $I_{\mathcal{X}}$ we denote the identity operator on \mathcal{X}.

In 1958, Drazin [16] introduced a pseudoinverse in associative rings and semigroups that now carries his name. When \mathcal{A} is an algebra and $a \in \mathcal{A}$, then $b \in \mathcal{A}$ is the Drazin inverse of a if

$$
\begin{equation*}
a b=b a, b=b a b \text { and } a(1-b a) \in \mathcal{A}^{\text {nil }}, \tag{1.1}
\end{equation*}
$$

where $\mathcal{A}^{\text {nil }}$ is the set of all nilpotent elements of algebra \mathcal{A}.

Caradus [5], King [23] and Lay [25] investigated the Drazin inverse in the setting of bounded linear operators on complex Banach spaces. Caradus [5] proved that a bounded linear operator T on a complex Banach space has the Drazin inverse if and

[^0]only if 0 is a pole of the resolvent $(\lambda I-T)^{-1}$ of T. The order of the pole is equal to the Drazin index of T which we shall denote by $\operatorname{ind}(A)$ or i_{A}. In this case we say that A is D-invertible. If $\operatorname{ind}(A)=k$, then Drazin inverse of A denoted by A^{D} satisfies
\[

$$
\begin{equation*}
A^{k+1} A^{D}=A^{k}, A^{D} A A^{D}=A^{D}, A A^{D}=A^{D} A \tag{1.2}
\end{equation*}
$$

\]

and k is the smallest integer such that (1.2) is satisfied. If $\operatorname{ind}(A) \leq 1$, then A^{D} is known as the group inverse of A, denoted by $A^{\sharp} . A$ is invertible if and only if $\operatorname{ind}(A)=0$ and in this case $A^{D}=A^{-1}$.

Harte [20] and Koliha [24] observed that in Banach algebra it is more natural to replace the nilpotent element in (1.1) by a quasinilpotent element. In the case when $a(1-b a)$ in (1.1) is allowed to be quasinilpotent, we call b the generalized Drazin inverse (g-Drazin inverse) of a and say that a is GD-invertible. g-Drazin inverse was introduced in the paper of Koliha [24] and it has many applications in a number of areas. Harte [20] associated with each quasipolar operator T an operator T^{\times}, which is an equivalent to the generalized Drazin inverse. Nashed and Zhao [29] investigated the Drazin inverse for closed linear operators and applied it to singular evolution equations and partial differential operators. Drazin [17] investigated extremal definitions of generalized inverses that give a generalization of the original Drazin inverse.

Finding an explicit representation for the Drazin inverse of a general 2×2 block matrix, posed by Campbell in [4], appears to be difficult. This problem was investigated in many papers (see [21], [27], [14], [22], [33], [26], [8], [12]). In this paper we give a representation for the Drazin inverse of a 2×2 bounded operator matrix. We show that the results given by Hartwig, Li and Wei [22] are preserved when passing from matrices to bounded linear operators on a Banach space. Also, we derive formulae for the Drazin inverse of an operator matrix M under some new conditions.

If $0 \notin \operatorname{acc} \sigma(A)$, then the function $z \mapsto f(z)$ can be defined as $f(z)=0$ in a neighborhood of 0 and $f(z)=1 / z$ in a neighborhood of $\sigma(A) \backslash\{0\}$. Function $z \mapsto f(z)$ is regular in a neighborhood of $\sigma(A)$ and the generalized Drazin inverse of A is defined using the functional calculus as $A^{d}=f(A)$. An operator $A \in \mathcal{B}(X)$ is GD-invertible, if $0 \notin \operatorname{acc} \sigma(A)$ and in this case the spectral idempotent P of A corresponding to $\{0\}$ is given by $P=I-A A^{d}$ (see the well-known Koliha's paper [24]). If A is GD-invertible, then the resolvent function $z \mapsto(z I-A)^{-1}$ is defined in a punctured neighborhood of $\{0\}$ and the generalized Drazin inverse of A is the operator A^{d} such that

$$
A^{d} A A^{d}=A^{d}, \quad A A^{d}=A^{d} A \text { and } A\left(I-A A^{d}\right) \text { is quasinilpotent. }
$$

It is well-known that if $A \in \mathcal{B}(\mathcal{X})$ is GD-invertible, then using the following
decomposition

$$
\mathcal{X}=\mathcal{N}(P) \oplus \mathcal{R}(P)
$$

we have that

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right]:\left[\begin{array}{c}
\mathcal{N}(P) \\
\mathcal{R}(P)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathcal{N}(P) \\
\mathcal{R}(P)
\end{array}\right]
$$

where $A_{1}: \mathcal{N}(P) \rightarrow \mathcal{N}(P)$ is invertible and $A_{2}: \mathcal{R}(P) \rightarrow \mathcal{R}(P)$ is quasinilpotent operator.

In this case, the generalized Drazin inverse of A has the following matrix decomposition:

$$
A^{d}=\left[\begin{array}{cc}
A_{1}^{-1} & 0 \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
\mathcal{N}(P) \\
\mathcal{R}(P)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathcal{N}(P) \\
\mathcal{R}(P)
\end{array}\right]
$$

For other important properties of Drazin inverses see ([1], [2], [3], [5], [7], [8], [9], [10], [13], [15], [19], [21], [26], [27], [30], [31], [32], [33], [34]).
2. Main results. Firstly, we will state a very useful result concerning the additive properties of Drazin inverses which is the main result proved in [6] with $a^{\pi}=1-a a^{\mathrm{d}}$.

Theorem 2.1. Let a, b be GD-invertible elements of algebra \mathcal{A} such that

$$
a^{\pi} b=b, a b^{\pi}=a, b^{\pi} a b a^{\pi}=0
$$

Then $a+b$ is GD-invertible and

$$
\begin{aligned}
(a+b)^{\mathrm{d}} & =\left(b^{\mathrm{d}}+\sum_{n=0}^{\infty}\left(b^{\mathrm{d}}\right)^{n+2} a(a+b)^{n}\right) a^{\pi}+b^{\pi} a^{d} \\
& +\sum_{n=0}^{\infty} b^{\pi}(a+b)^{n} b\left(a^{\mathrm{d}}\right)^{n+2}-\sum_{n=0}^{\infty}\left(b^{\mathrm{d}}\right)^{n+2} a(a+b)^{n} b a^{\mathrm{d}} \\
& -\sum_{n=0}^{\infty} b^{\mathrm{d}} a(a+b)^{n} b\left(a^{\mathrm{d}}\right)^{n+2}-\sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left(b^{\mathrm{d}}\right)^{k+2} a(a+b)^{n+k+1} b\left(a^{\mathrm{d}}\right)^{n+2}
\end{aligned}
$$

Next we extend [22, Lemma 2.4] to the linear operator.
Lemma 2.2. Let $M \in \mathcal{B}(\mathcal{X}), G \in \mathcal{B}(\mathcal{X}, \mathcal{Y})$ and $H \in \mathcal{B}(\mathcal{Y}, \mathcal{X})$ be operators such that $H G=I_{\mathcal{X}}$. If M is $G D$-invertible operator, then the operator $G M H$ is $G D$ invertible and

$$
\begin{equation*}
(G M H)^{d}=G M^{d} H \tag{2.1}
\end{equation*}
$$

Proof. It is evident that

$$
\left(G M^{d} H\right)(G M H)\left(G M^{d} H\right)=G M^{d} M M^{d} H=G M^{d} H
$$

and

$$
\left(G M^{d} H\right)(G M H)=G M^{d} M H=G M M^{d} H=(G M H)\left(G M^{d} H\right)
$$

To prove that $G M H\left(I-(G M H)\left(G M^{d} H\right)\right)$ is a quasinilpotent, note that

$$
G M H\left(I-(G M H)\left(G M^{d} H\right)\right)=G M\left(I-M M^{d}\right) H
$$

Since $M\left(I-M M^{d}\right)$ is quasinilpotent, we have

$$
\begin{aligned}
& r\left(G M H\left(I-(G M H)\left(G M^{d} H\right)\right)\right)=r\left(G M\left(I-M M^{d}\right) H\right) \\
& =\lim _{n \rightarrow \infty}\left\|\left(G M\left(I-M M^{d}\right) H\right)^{n}\right\|^{\frac{1}{n}} \\
& =\lim _{n \rightarrow \infty}\left\|G\left(M\left(I-M M^{d}\right)\right)^{n} H\right\|^{\frac{1}{n}} \\
& \leq \lim _{n \rightarrow \infty}\|G\|^{\frac{1}{n}} \cdot\left\|\left(M\left(I-M M^{d}\right)\right)^{n}\right\|^{\frac{1}{n}} \cdot\|H\|^{\frac{1}{n}}=0
\end{aligned}
$$

Hence, (2.1) is valid. \quad]

From now on, we will assume that \mathcal{X} and \mathcal{Y} are Banach spaces and $\mathcal{Z}=\mathcal{X} \oplus \mathcal{Y}$. For $A \in \mathcal{B}(\mathcal{X}), B \in \mathcal{B}(\mathcal{Y}, \mathcal{X}), C \in \mathcal{B}(\mathcal{X}, \mathcal{Y})$ and $D \in \mathcal{B}(\mathcal{Y})$, consider the operator $M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right] \in \mathcal{B}(\mathcal{Z})$.

Theorem 2.3. If A and D are GD-invertible operators such that

$$
B C=0 \quad \text { and } \quad D C=0,
$$

then M is GD-invertible and

$$
M^{d}=\left[\begin{array}{cc}
A^{d} & X \\
C\left(A^{d}\right)^{2} & Y+D^{d}
\end{array}\right]
$$

where
(2.2) $X=X(A, B, D)=\sum_{n=0}^{\infty}\left(A^{d}\right)^{n+2} B D^{n} D^{\pi}+\sum_{n=0}^{\infty} A^{\pi} A^{n} B\left(D^{d}\right)^{n+2}-A^{d} B D^{d}$ and $Y=C X D^{d}+C A^{d} X$.

Proof. We rewrite $M=P+Q$, where $P=\left[\begin{array}{cc}A & B \\ 0 & D\end{array}\right]$ and $Q=\left[\begin{array}{cc}0 & 0 \\ C & 0\end{array}\right]$. By [14, Theorem 5.1], P^{d} is GD-invertible and

$$
P^{d}=\left[\begin{array}{cc}
A^{d} & X \\
0 & D^{d}
\end{array}\right],
$$

where $X=X(A, B, D)$ is defined by (2.2). Also, Q is GD-invertible and $Q^{d}=0$. Now, we have that the condition $P^{\pi} Q=Q$ is equivalent to

$$
\begin{align*}
& -\left(A X+B D^{d}\right) C=0 \tag{2.3}\\
& \quad D^{\pi} C=C
\end{align*}
$$

whereas the condition $P Q P^{\pi}=0$ is equivalent to

$$
\begin{align*}
& B C A^{\pi}=0, D C A^{\pi}=0 \\
& -B C\left(A X+B D^{d}\right)=0 \tag{2.4}\\
& -D C\left(A X+B D^{d}\right)=0
\end{align*}
$$

Since, $B C=0$ and $D C=0$, from (2.3) and (2.4) we get that $P^{\pi} Q=Q$ and $P Q P^{\pi}=0$, so by Theorem 2.1, we have that M is GD-invertible and

$$
\begin{aligned}
M^{d} & =P^{d}+\sum_{n=0}^{\infty} M^{n} Q\left(P^{d}\right)^{n+2} \\
& =\left[\begin{array}{cc}
A^{d} & X \\
0 & D^{d}
\end{array}\right]+\sum_{n=0}^{\infty}\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]^{n}\left[\begin{array}{cc}
0 & 0 \\
C\left(A^{d}\right)^{n+2} & \sum_{i=1}^{n+2} C\left(A^{d}\right)^{i-1} X\left(D^{d}\right)^{n+2-i}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A^{d} & X \\
0 & D^{d}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
C\left(A^{d}\right)^{2} & \sum_{i=1}^{2} C\left(A^{d}\right)^{i-1} X\left(D^{d}\right)^{2-i}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A^{d} & X \\
C\left(A^{d}\right)^{2} & Y+D^{d}
\end{array}\right]
\end{aligned}
$$

for $Y=C X D^{d}+C A^{d} X$.

Remark 1. Theorem 2.3 is a strengthening of [14, Theorem 5.3], since it shows that one of the conditions of Theorem $2.3(B D=0)$ is actually redundant.

Theorem 2.4. If A and D are GD-invertible operators such that

$$
\begin{equation*}
C\left(I-A A^{d}\right) B=0, \quad A\left(I-A A^{d}\right) B=0 \tag{2.5}
\end{equation*}
$$

and $S=D-C A^{d} B$ is nonsingular, then M is $G D$-invertible and

$$
M^{d}=\left(I+\left[\begin{array}{cc}
0 & \left(I-A A^{d}\right) B \tag{2.6}\\
0 & 0
\end{array}\right] R\right) R\left(I+\sum_{i=0}^{\infty} R^{i+1}\left[\begin{array}{cc}
0 & 0 \\
C\left(I-A A^{d}\right) A^{i} & 0
\end{array}\right]\right)
$$

where

$$
R=\left[\begin{array}{cc}
A^{d}+A^{d} B S^{-1} C A^{d} & -A^{d} B S^{-1} \tag{2.7}\\
-S^{-1} C A^{d} & S^{-1}
\end{array}\right]
$$

Proof. In [18] it is proved that $\sigma(A) \cup \sigma(M)=\sigma(A) \cup \sigma(D)$, so we conclude that $0 \notin \operatorname{acc} \sigma(M)$, i.e., M is GD-invertible.

Using that $\mathcal{X}=\mathcal{N}(P) \oplus \mathcal{R}(P)$, for $P=I-A A^{d}$, we have

$$
M=\left[\begin{array}{ccc}
A_{1} & 0 & B_{1} \\
0 & A_{2} & B_{2} \\
C_{1} & C_{2} & D
\end{array}\right]:\left[\begin{array}{c}
\mathcal{N}(P) \\
\mathcal{R}(P) \\
Y
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathcal{N}(P) \\
\mathcal{R}(P) \\
Y
\end{array}\right]
$$

where $B=\left[\begin{array}{l}B_{1} \\ B_{2}\end{array}\right]: Y \rightarrow\left[\begin{array}{c}\mathcal{N}(P) \\ \mathcal{R}(P)\end{array}\right]$ and $C=\left[\begin{array}{ll}C_{1} & C_{2}\end{array}\right]:\left[\begin{array}{c}\mathcal{N}(P) \\ \mathcal{R}(P)\end{array}\right] \rightarrow Y$.

Now, we have

$$
\begin{aligned}
M_{1} & =I_{2}\left[\begin{array}{ccc}
A_{1} & 0 & B_{1} \\
0 & A_{2} & B_{2} \\
C_{1} & C_{2} & D
\end{array}\right] I_{1} \\
& =\left[\begin{array}{ccc}
A_{1} & B_{1} & 0 \\
C_{1} & D & C_{2} \\
0 & B_{2} & A_{2}
\end{array}\right]:\left[\begin{array}{c}
\mathcal{N}(P) \\
Y \\
\mathcal{R}(P)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathcal{N}(P) \\
Y \\
\mathcal{R}(P)
\end{array}\right],
\end{aligned}
$$

where

$$
\begin{aligned}
& I_{2}=\left[\begin{array}{lll}
I & 0 & 0 \\
0 & 0 & I \\
0 & I & 0
\end{array}\right]:\left[\begin{array}{c}
\mathcal{N}(P) \\
\mathcal{R}(P) \\
Y
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathcal{N}(P) \\
Y \\
\mathcal{R}(P)
\end{array}\right], \\
& I_{1}=\left[\begin{array}{lll}
I & 0 & 0 \\
0 & 0 & I \\
0 & I & 0
\end{array}\right]:\left[\begin{array}{c}
\mathcal{N}(P) \\
Y \\
\mathcal{R}(P)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathcal{N}(P) \\
\mathcal{R}(P) \\
Y
\end{array}\right] .
\end{aligned}
$$

Since $I_{1}=I_{2}^{-1}$, using Lemma 2.2, we have that $M^{d}=I_{1} M_{1}^{d} I_{2}$, so we proceed towards finding the Drazin inverse of M_{1}.

In order to get an explicit formula for M_{1}^{d}, we partition M_{1} as a 2×2 block-matrix, i.e.,

$$
M_{1}=\left[\begin{array}{ll}
A_{3} & B_{3} \\
C_{3} & D_{3}
\end{array}\right]
$$

where

$$
A_{3}=\left[\begin{array}{cc}
A_{1} & B_{1} \\
C_{1} & D
\end{array}\right], B_{3}=\left[\begin{array}{c}
0 \\
C_{2}
\end{array}\right], C_{3}=\left[\begin{array}{ll}
0 & B_{2}
\end{array}\right], D_{3}=A_{2}
$$

From (2.5), we get $C_{2} B_{2}=0$ and $A_{2} B_{2}=0$, so $B_{3} C_{3}=0$ and $D_{3} C_{3}=0$. Also, by $\sigma\left(A_{3}\right) \cup \sigma\left(A_{1}\right)=\sigma\left(A_{1}\right) \cup \sigma(D)$, it follows that A_{3} is GD-invertible. Applying Theorem 2.3 we get that

$$
\begin{aligned}
M_{1}^{d} & =\left[\begin{array}{cc}
A_{3}^{d} & \sum_{i=0}^{\infty}\left(A_{3}^{d}\right)^{i+2} B_{3} D_{3}^{i} \\
C_{3}\left(A_{3}^{d}\right)^{2} & \sum_{i=0}^{\infty} C_{3}\left(A_{3}^{d}\right)^{i+3} B_{3} D_{3}^{i}
\end{array}\right] \\
& =\left[\begin{array}{c}
I \\
C_{3} A_{3}^{d}
\end{array}\right] A_{3}^{d}\left[\begin{array}{cc}
I & \sum_{i=0}^{\infty}\left(A_{3}^{d}\right)^{i+1} B_{3} D_{3}^{i}
\end{array}\right] .
\end{aligned}
$$

For the operator matrix A_{3} we have that its upper left block, the operator A_{1} is nonsingular and its Schur complement

$$
S\left(A_{3}\right)=D-C_{1} A_{1}^{-1} B_{1}=D-C A^{d} B
$$

is nonsingular, which implies that the operator A_{3} is nonsingular and

$$
A_{3}^{-1}=\left[\begin{array}{cc}
A_{1}^{-1}+A_{1}^{-1} B_{1} S^{-1} C_{1} A_{1}^{-1} & A_{1}^{-1} B_{1} S^{-1} \\
S^{-1} C_{1} A_{1}^{-1} & S^{-1}
\end{array}\right]
$$

Now,

$$
\begin{aligned}
M^{d} & =I_{1} M_{1}^{d} I_{2} \\
& =\left(I_{3}+\left[\begin{array}{l}
0 \\
I \\
0
\end{array}\right] C_{3} A_{3}^{d}\right) A_{3}^{d}\left(I_{4}+\sum_{i=0}^{\infty}\left(A_{3}^{d}\right)^{i+1} B_{3} D_{3}^{i}\left[\begin{array}{lll}
0 & I & 0
\end{array}\right]\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& I_{3}=\left[\begin{array}{ll}
I & 0 \\
0 & 0 \\
0 & I
\end{array}\right]:\left[\begin{array}{c}
\mathcal{N}(P) \\
Y
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathcal{N}(P) \\
\mathcal{R}(P) \\
Y
\end{array}\right], \\
& I_{4}=\left[\begin{array}{lll}
I & 0 & 0 \\
0 & 0 & I
\end{array}\right]:\left[\begin{array}{c}
\mathcal{N}(P) \\
\mathcal{R}(P) \\
Y
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathcal{N}(P) \\
Y
\end{array}\right] .
\end{aligned}
$$

It is obvious that $I_{4} I_{3}=I_{\mathcal{N}(P) \oplus Y}$. Let us denote by $R=I_{3} A_{3}^{d} I_{4}$,

$$
\begin{aligned}
& I_{5}=\left[\begin{array}{l}
0 \\
I \\
0
\end{array}\right]: \mathcal{R}(P) \rightarrow\left[\begin{array}{c}
\mathcal{N}(P) \\
\mathcal{R}(P) \\
Y
\end{array}\right], \\
& I_{6}=\left[\begin{array}{lll}
0 & I & 0
\end{array}\right]:\left[\begin{array}{c}
\mathcal{N}(P) \\
\mathcal{R}(P) \\
Y
\end{array}\right] \rightarrow \mathcal{R}(P) .
\end{aligned}
$$

Obviously, R is given by (2.7). Now,

$$
M^{d}=\left(I_{\mathcal{Z}}+I_{5} C_{3} A_{3}^{d} I_{4}\right) R\left(I_{\mathcal{Z}}+I_{3} \sum_{i=0}^{\infty}\left(A_{3}^{d}\right)^{i+1} B_{3} D_{3}^{i} I_{6}\right)
$$

By computation, we get that

$$
\begin{aligned}
I_{5} C_{3} A_{3}^{d} I_{4} & =\left[\begin{array}{cc}
0 & \left(I-A A^{d}\right) B \\
0 & 0
\end{array}\right] R, \\
I_{3}\left(A_{3}^{d}\right)^{i+1} B_{3} D_{3}^{i} I_{6} & =I_{3}\left(A_{3}^{d}\right)^{i} I_{4}\left(I_{3} A_{3}^{d} B_{3} I_{6}\right)\left(I_{5} D_{3}^{i} I_{6}\right) \\
& =R^{i} R\left[\begin{array}{cc}
0 & 0 \\
C\left(I-A A^{d}\right) & 0
\end{array}\right]\left[\begin{array}{cc}
\left(I-A A^{d}\right) A^{i} & 0 \\
0 & 0
\end{array}\right] \\
& =R^{i+1}\left[\begin{array}{cc}
0 & 0 \\
C\left(I-A A^{d}\right) A^{i} & 0
\end{array}\right],
\end{aligned}
$$

so, (2.6) is valid.
Remark 2. Theorem 2.3 generalizes [22, Theorem 3.1] to the bounded linear operator.

Taking conjugate operator of M in Theorem 2.4, we derived the following corollary:

Corollary 2.5. If A and D are $G D$-invertible operators such that

$$
C\left(I-A A^{d}\right) B=0, \quad C\left(I-A A^{d}\right) A=0
$$

and $S=D-C A^{d} B$ is nonsingular, then M is $G D$-invertible and

$$
M^{d}=\left(I+\left[\begin{array}{lc}
0 & \sum_{i=0}^{\infty} A^{i}\left(I-A A^{d}\right) B \\
0 & 0
\end{array}\right] R^{i+1}\right) R\left(I+R\left[\begin{array}{cc}
0 & 0 \\
C\left(I-A A^{d}\right) & 0
\end{array}\right]\right)
$$

where R is defined by (2.7).
If an additional condition $C\left(I-A A^{d}\right) A=0$ is satisfied in Theorem 2.4, we get a simpler formula for M^{d} :

Corollary 2.6. If A and D are $G D$-invertible operators such that

$$
C\left(I-A A^{d}\right) B=0, \quad A\left(I-A A^{d}\right) B=0, \quad C\left(I-A A^{d}\right) A=0
$$

and $S=D-C A^{d} B$ is nonsingular, then M is $G D$-invertible and

$$
M^{d}=\left(I+\left[\begin{array}{cc}
0 & \left(I-A A^{d}\right) B \\
0 & 0
\end{array}\right] R\right) R\left(I+R\left[\begin{array}{cc}
0 & 0 \\
C\left(I-A A^{d}\right) & 0
\end{array}\right]\right)
$$

where R is defined by (2.7).
In the paper of Miao [28] a representation of the Drazin inverse of block-matrices M is given under the conditions:

$$
C\left(I-A A^{D}\right)=0, \quad\left(I-A A^{D}\right) B=0 \quad \text { and } \quad S=D-C A^{D} B=0
$$

Hartwig et al. [22] generalized this result in Theorem 4.1 and gave a representation of the Drazin inverse of block-matrix M under the conditions:

$$
C\left(I-A A^{D}\right) B=0, \quad A\left(I-A A^{D}\right) B=0 \quad \text { and } \quad S=D-C A^{D} B=0 .
$$

In the following theorem we generalized Theorem 4.1 from [22] to the linear bounded operator.

Theorem 2.7. If A and D are GD-invertible operators such that

$$
C\left(I-A A^{d}\right) B=0, \quad A\left(I-A A^{d}\right) B=0, \quad S=D-C A^{d} B=0
$$

and the operator $A W$ is GD-invertible, then M is GD-invertible and

$$
M^{d}=\left(I+\left[\begin{array}{cc}
0 & \left(I-A A^{d}\right) B \tag{2.8}\\
0 & 0
\end{array}\right] R_{1}\right) R_{1}\left(I+\sum_{i=0}^{\infty} R_{1}^{i+1}\left[\begin{array}{cc}
0 & 0 \\
C\left(I-A A^{d}\right) A^{i} & 0
\end{array}\right]\right)
$$

where

$$
R_{1}=\left[\begin{array}{c}
I \tag{2.9}\\
C A^{d}
\end{array}\right] A^{d, w}\left[\begin{array}{ll}
I & A^{d} B
\end{array}\right],
$$

and $A^{d, w}=\left[(A W)^{d}\right]^{2} A$ is the weighted Drazin inverse [11] of A with weight operator $W=A A^{d}+A^{d} B C A^{d}$.

Proof. Using the notations and method from the proof of Theorem 2.4, we have that

$$
\begin{aligned}
M_{1}^{d} & =\left[\begin{array}{cc}
A_{3}^{d} & \sum_{i=0}^{\infty}\left(A_{3}^{d}\right)^{i+2} B_{3} D_{3}^{i} \\
C_{3}\left(A_{3}^{d}\right)^{2} & \sum_{i=0}^{\infty} C_{3}\left(A_{3}^{d}\right)^{i+3} B_{3} D_{3}^{i}
\end{array}\right] \\
& =\left[\begin{array}{c}
I \\
C_{3} A_{3}^{d}
\end{array}\right] A_{3}^{d}\left[\begin{array}{cc}
I & \sum_{i=0}^{\infty}\left(A_{3}^{d}\right)^{i+1} B_{3} D_{3}^{i}
\end{array}\right] .
\end{aligned}
$$

Now, prove that the generalized Drazin inverse of A_{3} is given by

$$
F=\left[\begin{array}{c}
I \\
C_{1} A_{1}^{-1}
\end{array}\right]\left(\left(A_{1} H\right)^{2}\right)^{d} A_{1}\left[\begin{array}{ll}
I & A_{1}^{-1} B_{1}
\end{array}\right]
$$

where $H=I+A_{1}^{-1} B_{1} C_{1} A_{1}^{-1}$. Remark that from the fact that $A W$ is GD-invertible, it follows that $A_{1} H$ is GD-invertible. By computation we check that

$$
A_{3} F=F A_{3} \quad \text { and } \quad F A_{3} F=F
$$

To prove that the operator $A_{3}\left(I-F A_{3}\right)$ is a quasinilpotent, we will use the fact that for bounded operators A and B on Banach spaces, $r(A B)=r(B A)$. First note that

$$
A_{3}=\left[\begin{array}{c}
I \\
C_{1} A_{1}^{-1}
\end{array}\right] A_{1}\left[\begin{array}{ll}
I & A_{1}^{-1} B_{1}
\end{array}\right] \text { and } H=\left[\begin{array}{ll}
I & A_{1}^{-1} B_{1}
\end{array}\right]\left[\begin{array}{c}
I \\
C_{1} A_{1}^{-1}
\end{array}\right]
$$

Since

$$
A_{3}\left(I-F A_{3}\right)=\left[\begin{array}{c}
I \\
C_{1} A_{1}^{-1}
\end{array}\right]\left(I-\left(A_{1} H\right)\left(A_{1} H\right)^{d}\right) A_{1}\left[\begin{array}{ll}
I & A_{1}^{-1} B_{1}
\end{array}\right]
$$

it follows that

$$
r\left(A_{3}\left(I-F A_{3}\right)\right)=r\left(\left(I-\left(A_{1} H\right)\left(A_{1} H\right)^{d}\right) A_{1} H\right)=0
$$

so $A_{3}\left(I-F A_{3}\right)$ is a quasinilpotent. Hence, $A_{3}^{d}=F$.
Now, for $R_{1}=I_{3} A_{3}^{d} I_{4}$, we get that (2.8) holds. By computation we obtain that $R_{1}=I_{3} A_{3}^{d} I_{4}=\left[\begin{array}{c}I \\ C A^{d}\end{array}\right] A^{d, w}\left[\begin{array}{ll}I & A^{d} B\end{array}\right]$, where $W=\left[\begin{array}{cc}H & 0 \\ 0 & 0\end{array}\right]=A A^{d}+$ $A^{d} B C A^{d}$.

We obtain the following corollary by taking conjugate operator:
Corollary 2.8. If A and D are $G D$-invertible operators such that

$$
C\left(I-A A^{d}\right) B=0, \quad C\left(I-A A^{d}\right) A=0, S=D-C A^{d} B=0
$$

and the operator $A W$ is GD-invertible, then M is GD-invertible and

$$
M^{d}=\left(I+\sum_{i=0}^{\infty}\left[\begin{array}{lc}
0 & A^{i}\left(I-A A^{d}\right) B \\
0 & 0
\end{array}\right] R_{1}^{i+1}\right) R_{1}\left(I+R_{1}\left[\begin{array}{cc}
0 & 0 \\
C\left(I-A A^{d}\right) & 0
\end{array}\right]\right)
$$

where R_{1} is given by (2.9) in Theorem 2.7.
If the condition $C\left(I-A A^{d}\right) A=0$ is added to Theorem 2.7, we have a simpler formula for M^{d}.

Corollary 2.9. If A and D are $G D$-invertible operators such that

$$
C\left(I-A A^{d}\right) B=0, \quad C\left(I-A A^{d}\right) B=0, \quad A\left(I-A A^{d}\right) B=0, S=D-C A^{d} B=0
$$

and the operator $A W$ is GD-invertible, then M is GD-invertible and

$$
M^{d}=\left(I+\left[\begin{array}{cc}
0 & \left(I-A A^{d}\right) B \\
0 & 0
\end{array}\right] R_{1}\right) R_{1}\left(I+R_{1}\left[\begin{array}{cc}
0 & 0 \\
C\left(I-A A^{d}\right) & 0
\end{array}\right]\right)
$$

where R_{1} is given by (2.9) in Theorem 2.7.

The next theorem presents new conditions under which we give a representation of M^{d} in terms of the block-operators of M.

Theorem 2.10. If A and D are $G D$-invertible operators and

$$
\begin{equation*}
A A^{d} B=0 \quad \text { and } \quad C\left(I-A A^{d}\right)=0 \tag{2.10}
\end{equation*}
$$

then M is GD-invertible and

$$
M^{d}=R^{d}\left(I+\left[\begin{array}{cc}
0 & 0 \\
C A^{d} & 0
\end{array}\right]\right)+R^{\pi} \sum_{i=0}^{\infty} R^{i}\left[\begin{array}{cc}
0 & 0 \\
C\left(A^{d}\right)^{i+2} & 0
\end{array}\right]+\left[\begin{array}{cc}
A^{d} & 0 \\
0 & 0
\end{array}\right]
$$

where

$$
R=\left[\begin{array}{cc}
\left(I-A A^{d}\right) A & B \\
0 & D
\end{array}\right] \text { and } R^{d}=\left[\begin{array}{cc}
0 & \sum_{i=0}^{\infty}\left(I-A A^{d}\right) A^{i} B\left(D^{d}\right)^{i+2} \\
0 & D^{d}
\end{array}\right]
$$

Proof. As in the proof of the Theorem 2.4, we conclude that M is GD-invertible. Using that $\mathcal{X}=\mathcal{N}(P) \oplus \mathcal{R}(P)$, for $P=I-A A^{d}$, we have

$$
M=\left[\begin{array}{ccc}
A_{1} & 0 & B_{1} \\
0 & A_{2} & B_{2} \\
C_{1} & C_{2} & D
\end{array}\right]:\left[\begin{array}{c}
\mathcal{N}(P) \\
\mathcal{R}(P) \\
Y
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathcal{N}(P) \\
\mathcal{R}(P) \\
Y
\end{array}\right]
$$

where $B=\left[\begin{array}{l}B_{1} \\ B_{2}\end{array}\right]: Y \rightarrow\left[\begin{array}{c}\mathcal{N}(P) \\ \mathcal{R}(P)\end{array}\right]$ and $C=\left[\begin{array}{ll}C_{1} & C_{2}\end{array}\right]:\left[\begin{array}{c}\mathcal{N}(P) \\ \mathcal{R}(P)\end{array}\right] \rightarrow Y$.
Now,

$$
\begin{aligned}
M_{1} & =J_{2} M J_{1} \\
& =\left[\begin{array}{ccc}
A_{2} & B_{2} & 0 \\
C_{2} & D & C_{1} \\
0 & B_{1} & A_{1}
\end{array}\right]:\left[\begin{array}{c}
\mathcal{R}(P) \\
Y \\
\mathcal{N}(P)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathcal{R}(P) \\
Y \\
\mathcal{N}(P)
\end{array}\right],
\end{aligned}
$$

where $J_{2}=\left[\begin{array}{lll}0 & I & 0 \\ 0 & 0 & I \\ I & 0 & 0\end{array}\right]:\left[\begin{array}{c}\mathcal{N}(P) \\ \mathcal{R}(P) \\ Y\end{array}\right] \rightarrow\left[\begin{array}{c}\mathcal{R}(P) \\ Y \\ \mathcal{N}(P)\end{array}\right]$ and $J_{1}=\left[\begin{array}{ccc}0 & 0 & I \\ I & 0 & 0 \\ 0 & I & 0\end{array}\right]:$ $\left[\begin{array}{c}\mathcal{R}(P) \\ Y \\ \mathcal{N}(P)\end{array}\right] \rightarrow\left[\begin{array}{c}\mathcal{N}(P) \\ \mathcal{R}(P) \\ Y\end{array}\right]$.

Using Lemma 2.2, we deduce that $M^{d}=J_{1} M_{1}^{d} J_{2}$. In order to compute M^{d} it suffices to find the Drazin inverse of M_{1}. To derive an explicit formula for M_{1}^{d}, we partition M_{1} as a 2×2 block-matrix, i.e.,

$$
M_{1}=\left[\begin{array}{ll}
A_{3} & B_{3} \\
C_{3} & D_{3}
\end{array}\right]
$$

where

$$
A_{3}=\left[\begin{array}{cc}
A_{2} & B_{2} \\
C_{2} & D
\end{array}\right], B_{3}=\left[\begin{array}{c}
0 \\
C_{1}
\end{array}\right], C_{3}=\left[\begin{array}{cc}
0 & B_{1}
\end{array}\right], D_{3}=A_{1}
$$

Since

$$
B_{3} C_{3}=0 \Leftrightarrow C_{1} B_{1}=0 \Leftrightarrow C A A^{d} B=0
$$

and

$$
D_{3} C_{3}=0 \Leftrightarrow A_{1} B_{1}=0 \Leftrightarrow A A^{d} B=0
$$

by (2.10) we have $B_{3} C_{3}=0, D_{3} C_{3}=0$ and $B_{1}=0$.

Similarly as in the proof of the Theorem 2.4, we conclude that A_{3} is GD-invertible operator. Now, by Theorem 2.3,

$$
\begin{aligned}
M_{1}^{d} & =\left[\begin{array}{cc}
A_{3}^{d} & \sum_{i=0}^{\infty} A_{3}^{\pi} A_{3}^{i} B_{3}\left(A_{1}^{-1}\right)^{i+2}-A_{3}^{d} B_{3} A_{1}^{-1} \\
0 & \left(A_{1}\right)^{-1}
\end{array}\right] \\
& =\left[\begin{array}{l}
I \\
0
\end{array}\right] A_{3}^{d}\left[\begin{array}{ll}
I & -B_{3} A_{1}^{-1}
\end{array}\right]+\left[\begin{array}{l}
I \\
0
\end{array}\right] A_{3}^{\pi}\left[\begin{array}{cc}
0 & \sum_{i=0}^{\infty} A_{3}^{i} B_{3}\left(A_{1}^{-1}\right)^{i+2}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & A_{1}^{-1}
\end{array}\right] .
\end{aligned}
$$

By the second condition of (2.10), we obtain that $C_{2}=0$, as for the operator A_{3} we have that

$$
B_{2} C_{2}=0 \quad \text { and } \quad D C_{2}=0
$$

Applying Theorem 2.3 to A_{3}, we get

$$
A_{3}^{d}=\left[\begin{array}{cc}
0 & \sum_{i=0}^{\infty} A_{2}^{i} B_{2}\left(D^{d}\right)^{i+2} \\
0 & D^{d}
\end{array}\right]
$$

Now,

$$
\begin{aligned}
M^{d} & =J_{1} M_{1}^{d} J_{2} \\
& =J_{3} A_{3}^{d}\left(J_{4}+B_{3} A_{1}^{-1} J_{5}\right)+J_{3} A_{3}^{\pi}\left(\sum_{i=0}^{\infty} A_{3}^{i} B_{3}\left(A_{1}^{-1}\right)^{i+2} J_{5}\right)+\left[\begin{array}{cc}
A^{d} & 0 \\
0 & 0
\end{array}\right] \\
& =R^{d}\left(I+J_{3} B_{3} A_{1}^{-1} J_{5}\right)+R^{\pi} J_{3} \sum_{i=0}^{\infty} A_{3}^{i} B_{3}\left(A_{1}^{-1}\right)^{i+2} J_{5}+\left[\begin{array}{cc}
A^{d} & 0 \\
0 & 0
\end{array}\right],
\end{aligned}
$$

where $R=J_{3} A_{3} J_{4}, J_{3}=\left[\begin{array}{cc}0 & 0 \\ I & 0 \\ 0 & I\end{array}\right], J_{4}=\left[\begin{array}{lll}0 & I & 0 \\ 0 & 0 & I\end{array}\right]$ and $J_{5}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$.

It is evident that $J_{4} J_{3}=I$. By computation, we get that

$$
\begin{aligned}
& J_{3} B_{3} A_{1}^{-1} J_{5}=\left[\begin{array}{cc}
0 & 0 \\
C A^{d} & 0
\end{array}\right] \\
& J_{3} A_{3}^{i} B_{3}\left(A_{1}^{-1}\right)^{i+2} J_{5}=R^{i}\left[\begin{array}{cc}
0 & 0 \\
C\left(A^{d}\right)^{i+2} & 0
\end{array}\right] .
\end{aligned}
$$

Also, from the definition of R, we have that

$$
R=\left[\begin{array}{cc}
\left(I-A A^{d}\right) A & B \\
0 & D
\end{array}\right]
$$

and by [14, Theorem 5.1]

$$
R^{d}=\left[\begin{array}{cc}
0 & \sum_{i=0}^{\infty}\left(I-A A^{d}\right) A^{i} B\left(D^{d}\right)^{i+2} \\
0 & D^{d}
\end{array}\right]
$$

3. Concluding remarks. The whole paper would appear to be valid in general Banach algebras, not just algebras of operators. Whenever $P=P^{2} \in G$, for a Banach algebra G, there is an induced block structure

$$
G=\left[\begin{array}{cc}
A & M \\
N & B
\end{array}\right]
$$

in which A and B are Banach algebras and M and N are bimodules over A and B.

REFERENCES

[1] A. Ben-Israel and T.N.E. Greville. Generalized Inverses: Theory and Applications, Second Edition. Springer, New York, 2003.
[2] R. Bru, J. Climent, and M. Neumann. On the index of block upper triangular matrices. SIAM J. Matrix Anal. Appl., 16:436-447, 1995.
[3] S. L. Campbell and C. D. Meyer Jr. Generalized Inverses of Linear Transformations. Dover Publications, Inc., New York, 1991.
[4] S. Campbell. The Drazin inverse and systems of second order linear differential equations. Linear Multilinear Algebra, 14: 195-198, 1983.
[5] S.R. Caradus. Generalized Inverses and Operator Theory. Queen's Paper in Pure and Applied Mathematics, Queen's University, Kingston, Ontario, 1978.
[6] N. Castro González, and J.J. Koliha. New additive results for the g-Drazin inverse. Proc. Roy. Soc. Edinburgh Sect.A, 134:1085-1097, 2004.
[7] N. Castro González and E. Dopazo. Representations of the Drazin inverse for a class of block matrices. Linear Algebra Appl., 400:253-269, 2005.
[8] N. Castro-González, E. Dopazo, and J. Robles. Formulas for the Drazin inverse of special block matrices. Appl. Math. Comput., 174:252-270, 2006.
[9] N. Castro González, J.J. Koliha, and V. Rakočević. Continuity and general perturbation of the Drazin inverse of for closed linear operators. Abstr. Appl. Anal., 7:335-347, 2002.
[10] N. Castro González and J.Y. Vélez-Cerrada. On the perturbation of the group generalized inverse for a class of bounded operators in Banach spaces. J. Math. Anal. Appl., 341:12131223, 2008.
[11] R. Cline and T. N. E. Greville. A Drazin inverse for rectangular matrices. Linear Algebra Appl., 29: 53-62, 1980.
[12] D. S. Cvetković-Ilić, J. Chen, and Z. Xu. Explicit representations of the Drazin inverse of block matrix and modified matrix. Linear Multilinear Algebra, 57(4):355-364, 2009.
[13] X. Chen and R.E. Hartwig. The group inverse of a triangular matrix. Linear Algebra Appl., 237/238:97-108, 1996.
[14] D. S. Djordjević and P. S. Stanimirović. On the generalized Drazin inverse and generalized resolvent. Czechoslovak Math. J., 51:617-634, 2001.
[15] D. Cvetković-Ilić, D. Djordjević, and Y. Wei. Additive results for the generalized Drazin inverse in a Banach algebra. Linear Algebra Appl., 418:53-61, 2006.
[16] M.P. Drazin. Pseudoinverse in associative rings and semigroups. Amer. Math. Monthly, 65:506-514, 1958.
[17] M.P. Drazin. Extremal definitions of generalized inverses. Linear Algebra Appl., 165:185-196, 1992.
[18] K. H. Förster and B. Nagy. Transfer functions and spectral projections. Publ. Math. Debrecen, 52:367-376, 1998.
[19] R. E. Harte. Invertibility and Singularity for Bounded Linear Operators. Marcel Dekker, New York, 1988.
[20] R. E. Harte. Spectral projections. Irish. Math. Soc. Newsletter, 11:10-15, 1984.
[21] R.E. Hartwig and J.M. Shoaf. Group inverse and Drazin inverse of bidiagonal and triangular Toeplitz matrices. Austral. J. Math., 24A:10-34, 1977.
[22] R. Hartwig, X. Li and Y. Wei. Representations for the Drazin inverse of 2×2 block matrix. SIAM J. Matrix Anal. Appl., 27:757-771, 2006.
[23] C. F. King. A note of Drazin inverses. Pacific. J. Math., 70:383-390, 1977.
[24] J.J. Koliha. A generalized Drazin inverse. Glasgow Math. J., 38:367-381, 1996.
[25] D.C. Lay. Spectral properties of generalized inverses of linear operators. SIAM J. Appl. Math., 29:103-109, 1975.
[26] X. Li and Y. Wei. A note on the representations for the Drazin inverse of 2×2 block matrices.

Linear Algebra Appl., 423:332-338, 2007.
[27] C.D. Meyer and N.J. Rose. The index and the Drazin inverse of block triangular matrices. SIAM J. Appl. Math., 33:1-7, 1977.
[28] J. Miao. Result of the Drazin inverse of block matrices. J. Shanghai Normal University, 18:25-31, 1989.
[29] M.Z. Nashed and Y. Zhao. The Drazin inverse for singular evolution equations and partial differential equations. World Sci. Ser. Appl. Anal., 1:441-456, 1992.
[30] V. Rakočević. Continuity of the Drazin inverse. J. Operator Theory, 41:55-68, 1999.
[31] V. Rakočević and Y. Wei. The representation and approximation of the W-weighted Drazin inverse of linear operators in Hilbert space. Appl. Math. Comput., 141:455-470, 2003.
[32] V. Rakočević and Yimin Wei. The W-weighted Drazin inverse. Linear Algebra Appl., 350:25-39, 2002.
[33] Y. Wei. Expressions for the Drazin inverse of a 2×2 block matrix. Linear Multilinear Algebra, 45:131-146, 1998.
[34] Y. Wei. Representation and perturbation of the Drazin inverse in Banach space. Chinese J. Contemporary Mathematics, 21:39-46, 2000.

[^0]: * Received by the editors September 6, 2009. Accepted for publication October 13, 2009. Handling Editor: Bit-Shun Tam
 ${ }^{\dagger}$ Department of Mathematics, Faculty of Sciences and Mathematics, University of Niš, P.O. Box 224, Višegradska 33, 18000 Niš, Serbia (dragana@pmf.ni.ac.rs). Supported by Grant No. 144003 of the Ministry of Science, Technology and Development, Republic of Serbia.
 ${ }^{\ddagger}$ Institute of Mathematics, School of Mathematical Science, Fudan University, Shanghai, 200433, P. R. of China and Key Laboratory of Nonlinear Science (Fudan University), Education of Ministry (ymwei@fudan.edu.cn). Supported by the National Natural Science Foundation of China under grant 10871051, Shanghai Municipal Education Commission (Dawn Project) and Shanghai Municipal Science and Technology Committee under grant 09DZ2272900 and KLMM0901.

