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REPRESENTATIONS FOR THE DRAZIN INVERSE OF BOUNDED
OPERATORS ON BANACH SPACE∗
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Abstract. In this paper a representation is given for the Drazin inverse of a 2 × 2 operator

matrix, extending to Banach spaces results of Hartwig, Li and Wei [SIAM J. Matrix Anal. Appl.,

27 (2006) pp. 757–771]. Also, formulae are derived for the Drazin inverse of an operator matrix M

under some new conditions.
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1. Introduction. Throughout this paper X and Y are Banach spaces over the
same field. We denote the set of all bounded linear operators from X into Y by B(X ,Y)
and by B(X ) when X = Y. For A ∈ B(X ,Y), let R(A), N (A), σ(A) and r(A) be the
range, the null space, the spectrum and the spectral radius of A, respectively. By IX
we denote the identity operator on X .

In 1958, Drazin [16] introduced a pseudoinverse in associative rings and semi-
groups that now carries his name. When A is an algebra and a ∈ A, then b ∈ A is
the Drazin inverse of a if

ab = ba, b = bab and a(1 − ba) ∈ Anil,(1.1)

where Anil is the set of all nilpotent elements of algebra A.

Caradus [5], King [23] and Lay [25] investigated the Drazin inverse in the setting
of bounded linear operators on complex Banach spaces. Caradus [5] proved that a
bounded linear operator T on a complex Banach space has the Drazin inverse if and
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only if 0 is a pole of the resolvent (λI − T )−1 of T . The order of the pole is equal to
the Drazin index of T which we shall denote by ind(A) or iA. In this case we say that
A is D-invertible. If ind(A) = k, then Drazin inverse of A denoted by AD satisfies

Ak+1AD = Ak, ADAAD = AD, AAD = ADA,(1.2)

and k is the smallest integer such that (1.2) is satisfied. If ind(A) ≤ 1, then AD

is known as the group inverse of A, denoted by A�. A is invertible if and only if
ind(A) = 0 and in this case AD = A−1.

Harte [20] and Koliha [24] observed that in Banach algebra it is more natural to
replace the nilpotent element in (1.1) by a quasinilpotent element. In the case when
a(1 − ba) in (1.1) is allowed to be quasinilpotent, we call b the generalized Drazin
inverse (g-Drazin inverse) of a and say that a is GD-invertible. g-Drazin inverse was
introduced in the paper of Koliha [24] and it has many applications in a number of
areas. Harte [20] associated with each quasipolar operator T an operator T×, which is
an equivalent to the generalized Drazin inverse. Nashed and Zhao [29] investigated the
Drazin inverse for closed linear operators and applied it to singular evolution equations
and partial differential operators. Drazin [17] investigated extremal definitions of
generalized inverses that give a generalization of the original Drazin inverse.

Finding an explicit representation for the Drazin inverse of a general 2× 2 block
matrix, posed by Campbell in [4], appears to be difficult. This problem was investi-
gated in many papers (see [21], [27], [14], [22], [33], [26], [8], [12]). In this paper we
give a representation for the Drazin inverse of a 2 × 2 bounded operator matrix. We
show that the results given by Hartwig, Li and Wei [22] are preserved when passing
from matrices to bounded linear operators on a Banach space. Also, we derive for-
mulae for the Drazin inverse of an operator matrix M under some new conditions.

If 0 /∈ accσ(A), then the function z �→ f(z) can be defined as f(z) = 0 in a
neighborhood of 0 and f(z) = 1/z in a neighborhood of σ(A)\{0}. Function z �→ f(z)
is regular in a neighborhood of σ(A) and the generalized Drazin inverse of A is defined
using the functional calculus as Ad = f(A). An operator A ∈ B(X) is GD-invertible,
if 0 /∈ accσ(A) and in this case the spectral idempotent P of A corresponding to {0} is
given by P = I−AAd (see the well-known Koliha’s paper [24]). If A is GD-invertible,
then the resolvent function z �→ (zI − A)−1 is defined in a punctured neighborhood
of {0} and the generalized Drazin inverse of A is the operator Ad such that

AdAAd = Ad, AAd = AdA and A(I − AAd) is quasinilpotent.

It is well-known that if A ∈ B(X ) is GD-invertible, then using the following
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decomposition

X = N (P ) ⊕R(P ),

we have that

A =
[

A1 0
0 A2

]
:
[ N (P )

R(P )

]
→
[ N (P )

R(P )

]
,

where A1 : N (P ) → N (P ) is invertible and A2 : R(P ) → R(P ) is quasinilpotent
operator.

In this case, the generalized Drazin inverse of A has the following matrix decom-
position:

Ad =
[

A−1
1 0
0 0

]
:
[ N (P )

R(P )

]
→
[ N (P )

R(P )

]
.

For other important properties of Drazin inverses see ([1], [2], [3], [5], [7], [8], [9],
[10], [13], [15], [19], [21], [26], [27], [30], [31], [32], [33], [34]).

2. Main results. Firstly, we will state a very useful result concerning the
additive properties of Drazin inverses which is the main result proved in [6] with
aπ = 1 − aad.

Theorem 2.1. Let a, b be GD-invertible elements of algebra A such that

aπb = b, abπ = a, bπabaπ = 0.

Then a + b is GD-invertible and

(a + b)d =

(
bd +

∞∑
n=0

(bd)n+2a(a + b)n

)
aπ + bπad

+
∞∑

n=0

bπ(a + b)nb(ad)n+2 −
∞∑

n=0

(bd)n+2a(a + b)nbad

−
∞∑

n=0

bda(a + b)nb(ad)n+2 −
∞∑

n=0

∞∑
k=0

(bd)k+2a(a + b)n+k+1b(ad)n+2.

Next we extend [22, Lemma 2.4] to the linear operator.

Lemma 2.2. Let M ∈ B(X ), G ∈ B(X ,Y) and H ∈ B(Y,X ) be operators such
that HG = IX . If M is GD-invertible operator, then the operator GMH is GD-
invertible and

(GMH)d = GMdH.(2.1)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 613-627, October 2009



ELA

616 D. Cvetković-Ilić and Y. Wei

Proof. It is evident that

(GMdH)(GMH)(GMdH) = GMdMMdH = GMdH

and

(GMdH)(GMH) = GMdMH = GMMdH = (GMH)(GMdH).

To prove that GMH
(
I − (GMH)(GMdH)

)
is a quasinilpotent, note that

GMH
(
I − (GMH)(GMdH)

)
= GM(I − MMd)H.

Since M(I − MMd) is quasinilpotent, we have

r
(
GMH(I − (GMH)(GMdH))

)
= r
(
GM(I − MMd)H

)
= lim

n→∞

∥∥∥(GM(I − MMd)H
)n∥∥∥ 1

n

= lim
n→∞

∥∥∥G (M(I − MMd)
)n

H
∥∥∥ 1

n

≤ lim
n→∞ ‖G‖ 1

n ·
∥∥∥(M(I − MMd)

)n∥∥∥ 1
n · ‖H‖ 1

n = 0.

Hence, (2.1) is valid.

From now on, we will assume that X and Y are Banach spaces and Z = X ⊕ Y.
For A ∈ B(X ), B ∈ B(Y,X ), C ∈ B(X ,Y) and D ∈ B(Y), consider the operator

M =
[

A B

C D

]
∈ B(Z).

Theorem 2.3. If A and D are GD-invertible operators such that

BC = 0 and DC = 0,

then M is GD-invertible and

Md =
[

Ad X

C(Ad)2 Y + Dd

]
,

where

X = X(A, B, D) =
∞∑

n=0

(Ad)n+2BDnDπ +
∞∑

n=0

AπAnB(Dd)n+2 − AdBDd(2.2)

and Y = CXDd + CAdX.
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Proof. We rewrite M = P + Q, where P =
[

A B

0 D

]
and Q =

[
0 0
C 0

]
. By

[14, Theorem 5.1], P d is GD-invertible and

P d =
[

Ad X

0 Dd

]
,

where X = X(A, B, D) is defined by (2.2). Also, Q is GD-invertible and Qd = 0.
Now, we have that the condition P πQ = Q is equivalent to

−(AX + BDd)C = 0,

DπC = C
(2.3)

whereas the condition PQP π = 0 is equivalent to

BCAπ = 0, DCAπ = 0,

−BC(AX + BDd) = 0,

−DC(AX + BDd) = 0.

(2.4)

Since, BC = 0 and DC = 0, from (2.3) and (2.4) we get that P πQ = Q and
PQP π = 0, so by Theorem 2.1, we have that M is GD-invertible and

Md = P d +
∞∑

n=0

MnQ(P d)n+2

=
[

Ad X

0 Dd

]
+

∞∑
n=0

[
A B

C D

]n

 0 0

C(Ad)n+2
n+2∑
i=1

C(Ad)i−1X(Dd)n+2−i




=
[

Ad X

0 Dd

]
+


 0 0

C(Ad)2
2∑

i=1

C(Ad)i−1X(Dd)2−i




=
[

Ad X

C(Ad)2 Y + Dd

]
,

for Y = CXDd + CAdX .

Remark 1. Theorem 2.3 is a strengthening of [14, Theorem 5.3], since it shows
that one of the conditions of Theorem 2.3 (BD = 0) is actually redundant.

Theorem 2.4. If A and D are GD-invertible operators such that

C(I − AAd)B = 0, A(I − AAd)B = 0(2.5)
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and S = D − CAdB is nonsingular, then M is GD-invertible and

Md =

 
I +

"
0 (I − AAd)B

0 0

#
R

!
R

 
I +

∞X
i=0

Ri+1

"
0 0

C(I − AAd)Ai 0

#!
,(2.6)

where

R =
[

Ad + AdBS−1CAd −AdBS−1

−S−1CAd S−1

]
.(2.7)

Proof. In [18] it is proved that σ(A) ∪ σ(M) = σ(A) ∪ σ(D), so we conclude that
0 /∈ accσ(M), i.e., M is GD-invertible.

Using that X = N (P ) ⊕R(P ), for P = I − AAd, we have

M =


 A1 0 B1

0 A2 B2

C1 C2 D


 :


 N (P )

R(P )
Y


→


 N (P )

R(P )
Y


 ,

where B =
[

B1

B2

]
: Y →

[ N (P )
R(P )

]
and C =

[
C1 C2

]
:
[ N (P )

R(P )

]
→ Y .

Now, we have

M1 = I2


 A1 0 B1

0 A2 B2

C1 C2 D


 I1

=


 A1 B1 0

C1 D C2

0 B2 A2


 :


 N (P )

Y

R(P )


→


 N (P )

Y

R(P )


 ,

where

I2 =


 I 0 0

0 0 I

0 I 0


 :


 N (P )

R(P )
Y


→


 N (P )

Y

R(P )


 ,

I1 =


 I 0 0

0 0 I

0 I 0


 :


 N (P )

Y

R(P )


→


 N (P )

R(P )
Y


 .

Since I1 = I−1
2 , using Lemma 2.2, we have that Md = I1M

d
1 I2, so we proceed

towards finding the Drazin inverse of M1.
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In order to get an explicit formula for Md
1 , we partition M1 as a 2×2 block-matrix,

i.e.,

M1 =
[

A3 B3

C3 D3

]

where

A3 =
[

A1 B1

C1 D

]
, B3 =

[
0

C2

]
, C3 =

[
0 B2

]
, D3 = A2.

From (2.5), we get C2B2 = 0 and A2B2 = 0, so B3C3 = 0 and D3C3 = 0. Also, by
σ(A3)∪σ(A1) = σ(A1)∪σ(D), it follows that A3 is GD-invertible. Applying Theorem
2.3 we get that

Md
1 =




Ad
3

∞∑
i=0

(Ad
3)

i+2B3D
i
3

C3(Ad
3)

2
∞∑

i=0

C3(Ad
3)

i+3B3D
i
3




=
[

I

C3A
d
3

]
Ad

3

[
I

∞∑
i=0

(Ad
3)

i+1B3D
i
3

]
.

For the operator matrix A3 we have that its upper left block, the operator A1 is
nonsingular and its Schur complement

S(A3) = D − C1A
−1
1 B1 = D − CAdB

is nonsingular, which implies that the operator A3 is nonsingular and

A−1
3 =

[
A−1

1 + A−1
1 B1S

−1C1A
−1
1 A−1

1 B1S
−1

S−1C1A
−1
1 S−1

]
.

Now,

Md = I1M
d
1 I2

=


I3 +


 0

I

0


C3A

d
3


Ad

3

(
I4 +

∞∑
i=0

(Ad
3)

i+1B3D
i
3

[
0 I 0

])

where

I3 =


 I 0

0 0
0 I


 :
[ N (P )

Y

]
→

 N (P )

R(P )
Y


 ,

I4 =
[

I 0 0
0 0 I

]
:


 N (P )

R(P )
Y


→

[ N (P )
Y

]
.
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It is obvious that I4I3 = IN (P )⊕Y . Let us denote by R = I3A
d
3I4,

I5 =


 0

I

0


 : R(P ) →


 N (P )

R(P )
Y


 ,

I6 =
[

0 I 0
]
:


 N (P )

R(P )
Y


→ R(P ).

Obviously, R is given by (2.7). Now,

Md =
(
IZ + I5C3A

d
3I4

)
R

(
IZ + I3

∞∑
i=0

(Ad
3)

i+1B3D
i
3I6

)
.

By computation, we get that

I5C3A
d
3I4 =

[
0 (I − AAd)B
0 0

]
R,

I3(Ad
3)

i+1B3D
i
3I6 = I3(Ad

3)
iI4(I3A

d
3B3I6)(I5D

i
3I6)

= RiR

[
0 0

C(I − AAd) 0

] [
(I − AAd)Ai 0

0 0

]

= Ri+1

[
0 0

C(I − AAd)Ai 0

]
,

so, (2.6) is valid.

Remark 2. Theorem 2.3 generalizes [22, Theorem 3.1] to the bounded linear
operator.

Taking conjugate operator of M in Theorem 2.4, we derived the following corol-
lary:

Corollary 2.5. If A and D are GD-invertible operators such that

C(I − AAd)B = 0, C(I − AAd)A = 0

and S = D − CAdB is nonsingular, then M is GD-invertible and

Md =
(

I +
[

0
∑∞

i=0 Ai(I − AAd)B
0 0

]
Ri+1

)
R

(
I + R

[
0 0

C(I − AAd) 0

])
,

where R is defined by (2.7).

If an additional condition C(I −AAd)A = 0 is satisfied in Theorem 2.4, we get a
simpler formula for Md:
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Corollary 2.6. If A and D are GD-invertible operators such that

C(I − AAd)B = 0, A(I − AAd)B = 0, C(I − AAd)A = 0

and S = D − CAdB is nonsingular, then M is GD-invertible and

Md =
(

I +
[

0 (I − AAd)B
0 0

]
R

)
R

(
I + R

[
0 0

C(I − AAd) 0

])
,

where R is defined by (2.7).

In the paper of Miao [28] a representation of the Drazin inverse of block-matrices
M is given under the conditions:

C(I − AAD) = 0, (I − AAD)B = 0 and S = D − CADB = 0.

Hartwig et al. [22] generalized this result in Theorem 4.1 and gave a representation
of the Drazin inverse of block-matrix M under the conditions:

C(I − AAD)B = 0, A(I − AAD)B = 0 and S = D − CADB = 0.

In the following theorem we generalized Theorem 4.1 from [22] to the linear bounded
operator.

Theorem 2.7. If A and D are GD-invertible operators such that

C(I − AAd)B = 0, A(I − AAd)B = 0, S = D − CAdB = 0

and the operator AW is GD-invertible, then M is GD-invertible and

Md =

 
I +

"
0 (I − AAd)B

0 0

#
R1

!
R1

 
I +

∞X
i=0

Ri+1
1

"
0 0

C(I − AAd)Ai 0

#!
,(2.8)

where

R1 =
[

I

CAd

]
Ad,w

[
I AdB

]
,(2.9)

and Ad,w = [(AW )d]2A is the weighted Drazin inverse [11] of A with weight operator
W = AAd + AdBCAd.

Proof. Using the notations and method from the proof of Theorem 2.4, we have
that

Md
1 =




Ad
3

∞∑
i=0

(Ad
3)

i+2B3D
i
3

C3(Ad
3)2

∞∑
i=0

C3(Ad
3)i+3B3D

i
3




=
[

I

C3A
d
3

]
Ad

3

[
I

∞∑
i=0

(Ad
3)

i+1B3D
i
3

]
.
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Now, prove that the generalized Drazin inverse of A3 is given by

F =
[

I

C1A
−1
1

]
((A1H)2)dA1

[
I A−1

1 B1

]
,

where H = I + A−1
1 B1C1A

−1
1 . Remark that from the fact that AW is GD-invertible,

it follows that A1H is GD-invertible. By computation we check that

A3F = FA3 and FA3F = F.

To prove that the operator A3(I −FA3) is a quasinilpotent, we will use the fact that
for bounded operators A and B on Banach spaces, r(AB) = r(BA). First note that

A3 =
[

I

C1A
−1
1

]
A1

[
I A−1

1 B1

]
and H =

[
I A−1

1 B1

] [ I

C1A
−1
1

]
.

Since

A3(I − FA3) =
[

I

C1A
−1
1

](
I − (A1H)(A1H)d

)
A1

[
I A−1

1 B1

]
,

it follows that

r
(
A3(I − FA3)

)
= r
((

I − (A1H)(A1H)d
)
A1H

)
= 0,

so A3(I − FA3) is a quasinilpotent. Hence, Ad
3 = F .

Now, for R1 = I3A
d
3I4, we get that (2.8) holds. By computation we obtain

that R1 = I3A
d
3I4 =

[
I

CAd

]
Ad,w

[
I AdB

]
, where W =

[
H 0
0 0

]
= AAd +

AdBCAd.

We obtain the following corollary by taking conjugate operator:

Corollary 2.8. If A and D are GD-invertible operators such that

C(I − AAd)B = 0, C(I − AAd)A = 0, S = D − CAdB = 0

and the operator AW is GD-invertible, then M is GD-invertible and

Md =

(
I +

∞∑
i=0

[
0 Ai(I − AAd)B
0 0

]
Ri+1

1

)
R1

(
I + R1

[
0 0

C(I − AAd) 0

])
,

where R1 is given by (2.9) in Theorem 2.7.

If the condition C(I − AAd)A = 0 is added to Theorem 2.7, we have a simpler
formula for Md.
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Corollary 2.9. If A and D are GD-invertible operators such that

C(I − AAd)B = 0, C(I − AAd)B = 0, A(I − AAd)B = 0, S = D − CAdB = 0

and the operator AW is GD-invertible, then M is GD-invertible and

Md =
(

I +
[

0 (I − AAd)B
0 0

]
R1

)
R1

(
I + R1

[
0 0

C(I − AAd) 0

])
,

where R1 is given by (2.9) in Theorem 2.7.

The next theorem presents new conditions under which we give a representation
of Md in terms of the block-operators of M .

Theorem 2.10. If A and D are GD-invertible operators and

AAdB = 0 and C(I − AAd) = 0,(2.10)

then M is GD-invertible and

Md = Rd

(
I +

[
0 0

CAd 0

])
+ Rπ

∞∑
i=0

Ri

[
0 0

C(Ad)i+2 0

]
+
[

Ad 0
0 0

]

where

R =
[

(I − AAd)A B

0 D

]
and Rd =


 0

∞∑
i=0

(I − AAd)AiB(Dd)i+2

0 Dd


 .

Proof. As in the proof of the Theorem 2.4, we conclude that M is GD-invertible.
Using that X = N (P ) ⊕R(P ), for P = I − AAd, we have

M =


 A1 0 B1

0 A2 B2

C1 C2 D


 :


 N (P )

R(P )
Y


→


 N (P )

R(P )
Y


 ,

where B =
[

B1

B2

]
: Y →

[ N (P )
R(P )

]
and C =

[
C1 C2

]
:
[ N (P )

R(P )

]
→ Y .

Now,

M1 = J2MJ1

=


 A2 B2 0

C2 D C1

0 B1 A1


 :


 R(P )

Y

N (P )


→


 R(P )

Y

N (P )


 ,
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where J2 =


 0 I 0

0 0 I

I 0 0


 :


 N (P )

R(P )
Y


 →


 R(P )

Y

N (P )


 and J1 =


 0 0 I

I 0 0
0 I 0


 :


 R(P )

Y

N (P )


→


 N (P )

R(P )
Y


.

Using Lemma 2.2, we deduce that Md = J1M
d
1 J2. In order to compute Md it

suffices to find the Drazin inverse of M1. To derive an explicit formula for Md
1 , we

partition M1 as a 2 × 2 block-matrix, i.e.,

M1 =
[

A3 B3

C3 D3

]

where

A3 =
[

A2 B2

C2 D

]
, B3 =

[
0

C1

]
, C3 =

[
0 B1

]
, D3 = A1.

Since

B3C3 = 0 ⇔ C1B1 = 0 ⇔ CAAdB = 0

and

D3C3 = 0 ⇔ A1B1 = 0 ⇔ AAdB = 0.

by (2.10) we have B3C3 = 0 , D3C3 = 0 and B1 = 0.

Similarly as in the proof of the Theorem 2.4, we conclude that A3 is GD-invertible
operator. Now, by Theorem 2.3,

Md
1 =


 Ad

3

∞∑
i=0

Aπ
3 Ai

3B3(A−1
1 )i+2 − Ad

3B3A
−1
1

0 (A1)−1




=
[

I

0

]
Ad

3

[
I −B3A

−1
1

]
+
[

I

0

]
Aπ

3

[
0

∞∑
i=0

Ai
3B3(A−1

1 )i+2

]
+
[

0 0
0 A−1

1

]
.

By the second condition of (2.10), we obtain that C2 = 0, as for the operator A3 we
have that

B2C2 = 0 and DC2 = 0.

Applying Theorem 2.3 to A3, we get

Ad
3 =


 0

∞∑
i=0

Ai
2B2(Dd)i+2

0 Dd


 .
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Now,

Md = J1M
d
1 J2

= J3A
d
3

(
J4 + B3A

−1
1 J5

)
+ J3A

π
3

( ∞∑
i=0

Ai
3B3(A−1

1 )i+2J5

)
+
[

Ad 0
0 0

]

= Rd
(
I + J3B3A

−1
1 J5

)
+ RπJ3

∞∑
i=0

Ai
3B3(A−1

1 )i+2J5 +
[

Ad 0
0 0

]
,

where R = J3A3J4, J3 =


 0 0

I 0
0 I


, J4 =

[
0 I 0
0 0 I

]
and J5 =

[
1 0 0

]
.

It is evident that J4J3 = I. By computation, we get that

J3B3A
−1
1 J5 =

[
0 0

CAd 0

]
,

J3A
i
3B3(A−1

1 )i+2J5 = Ri

[
0 0

C(Ad)i+2 0

]
.

Also, from the definition of R, we have that

R =
[

(I − AAd)A B

0 D

]

and by [14, Theorem 5.1]

Rd =


 0

∞∑
i=0

(I − AAd)AiB(Dd)i+2

0 Dd


 .

3. Concluding remarks. The whole paper would appear to be valid in general
Banach algebras, not just algebras of operators. Whenever P = P 2 ∈ G, for a Banach
algebra G, there is an induced block structure

G =
[

A M

N B

]

in which A and B are Banach algebras and M and N are bimodules over A and B.
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[30] V. Rakočević. Continuity of the Drazin inverse. J. Operator Theory, 41:55–68, 1999.
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