

REPRESENTATIONS FOR THE DRAZIN INVERSE OF BOUNDED OPERATORS ON BANACH SPACE*

DRAGANA S. CVETKOVIĆ-ILIƆ AND YIMIN WEI‡

Abstract. In this paper a representation is given for the Drazin inverse of a 2×2 operator matrix, extending to Banach spaces results of Hartwig, Li and Wei [SIAM J. Matrix Anal. Appl., 27 (2006) pp. 757–771]. Also, formulae are derived for the Drazin inverse of an operator matrix M under some new conditions.

Key words. Operator matrix, Drazin inverse, D-invertibility, GD-invertibility.

AMS subject classifications. 47A52, 47A62, 15A24.

1. Introduction. Throughout this paper \mathcal{X} and \mathcal{Y} are Banach spaces over the same field. We denote the set of all bounded linear operators from \mathcal{X} into \mathcal{Y} by $\mathcal{B}(\mathcal{X}, \mathcal{Y})$ and by $\mathcal{B}(\mathcal{X})$ when $\mathcal{X} = \mathcal{Y}$. For $A \in \mathcal{B}(\mathcal{X}, \mathcal{Y})$, let $\mathcal{R}(A)$, $\mathcal{N}(A)$, $\sigma(A)$ and r(A) be the range, the null space, the spectrum and the spectral radius of A, respectively. By $I_{\mathcal{X}}$ we denote the identity operator on \mathcal{X} .

In 1958, Drazin [16] introduced a pseudoinverse in associative rings and semigroups that now carries his name. When \mathcal{A} is an algebra and $a \in \mathcal{A}$, then $b \in \mathcal{A}$ is the Drazin inverse of a if

(1.1)
$$ab = ba, b = bab \text{ and } a(1 - ba) \in \mathcal{A}^{nil},$$

where \mathcal{A}^{nil} is the set of all nilpotent elements of algebra \mathcal{A} .

Caradus [5], King [23] and Lay [25] investigated the Drazin inverse in the setting of bounded linear operators on complex Banach spaces. Caradus [5] proved that a bounded linear operator T on a complex Banach space has the Drazin inverse if and

 $^{^*}$ Received by the editors September 6, 2009. Accepted for publication October 13, 2009. Handling Editor: Bit-Shun Tam.

[†]Department of Mathematics, Faculty of Sciences and Mathematics, University of Niš, P.O. Box 224, Višegradska 33, 18000 Niš, Serbia (dragana@pmf.ni.ac.rs). Supported by Grant No. 144003 of the Ministry of Science, Technology and Development, Republic of Serbia.

[‡]Institute of Mathematics, School of Mathematical Science, Fudan University, Shanghai, 200433, P. R. of China and Key Laboratory of Nonlinear Science (Fudan University), Education of Ministry (ymwei@fudan.edu.cn). Supported by the National Natural Science Foundation of China under grant 10871051, Shanghai Municipal Education Commission (Dawn Project) and Shanghai Municipal Science and Technology Committee under grant 09DZ2272900 and KLMM0901.

D. Cvetković-Ilić and Y. Wei

only if 0 is a pole of the resolvent $(\lambda I - T)^{-1}$ of T. The order of the pole is equal to the Drazin index of T which we shall denote by $\operatorname{ind}(A)$ or i_A . In this case we say that A is D-invertible. If $\operatorname{ind}(A) = k$, then Drazin inverse of A denoted by A^D satisfies

$$(1.2) A^{k+1}A^D = A^k, \ A^DAA^D = A^D, \ AA^D = A^DA,$$

and k is the smallest integer such that (1.2) is satisfied. If $\operatorname{ind}(A) \leq 1$, then A^D is known as the group inverse of A, denoted by A^{\sharp} . A is invertible if and only if $\operatorname{ind}(A) = 0$ and in this case $A^D = A^{-1}$.

Harte [20] and Koliha [24] observed that in Banach algebra it is more natural to replace the nilpotent element in (1.1) by a quasinilpotent element. In the case when a(1-ba) in (1.1) is allowed to be quasinilpotent, we call b the generalized Drazin inverse (g-Drazin inverse) of a and say that a is GD-invertible. g-Drazin inverse was introduced in the paper of Koliha [24] and it has many applications in a number of areas. Harte [20] associated with each quasipolar operator T an operator T^{\times} , which is an equivalent to the generalized Drazin inverse. Nashed and Zhao [29] investigated the Drazin inverse for closed linear operators and applied it to singular evolution equations and partial differential operators. Drazin [17] investigated extremal definitions of generalized inverses that give a generalization of the original Drazin inverse.

Finding an explicit representation for the Drazin inverse of a general 2×2 block matrix, posed by Campbell in [4], appears to be difficult. This problem was investigated in many papers (see [21], [27], [14], [22], [33], [26], [8], [12]). In this paper we give a representation for the Drazin inverse of a 2×2 bounded operator matrix. We show that the results given by Hartwig, Li and Wei [22] are preserved when passing from matrices to bounded linear operators on a Banach space. Also, we derive formulae for the Drazin inverse of an operator matrix M under some new conditions.

If $0 \notin \operatorname{acc}\sigma(A)$, then the function $z \mapsto f(z)$ can be defined as f(z) = 0 in a neighborhood of 0 and f(z) = 1/z in a neighborhood of $\sigma(A) \setminus \{0\}$. Function $z \mapsto f(z)$ is regular in a neighborhood of $\sigma(A)$ and the generalized Drazin inverse of A is defined using the functional calculus as $A^d = f(A)$. An operator $A \in \mathcal{B}(X)$ is GD-invertible, if $0 \notin \operatorname{acc}\sigma(A)$ and in this case the spectral idempotent P of A corresponding to $\{0\}$ is given by $P = I - AA^d$ (see the well-known Koliha's paper [24]). If A is GD-invertible, then the resolvent function $z \mapsto (zI - A)^{-1}$ is defined in a punctured neighborhood of $\{0\}$ and the generalized Drazin inverse of A is the operator A^d such that

$$A^d A A^d = A^d$$
, $A A^d = A^d A$ and $A(I - A A^d)$ is quasinilpotent.

It is well-known that if $A \in \mathcal{B}(\mathcal{X})$ is GD-invertible, then using the following

decomposition

$$\mathcal{X} = \mathcal{N}(P) \oplus \mathcal{R}(P),$$

we have that

$$A = \left[\begin{array}{cc} A_1 & 0 \\ 0 & A_2 \end{array} \right] : \left[\begin{array}{c} \mathcal{N}(P) \\ \mathcal{R}(P) \end{array} \right] \to \left[\begin{array}{c} \mathcal{N}(P) \\ \mathcal{R}(P) \end{array} \right],$$

where $A_1: \mathcal{N}(P) \to \mathcal{N}(P)$ is invertible and $A_2: \mathcal{R}(P) \to \mathcal{R}(P)$ is quasinilpotent operator.

In this case, the generalized Drazin inverse of A has the following matrix decomposition:

$$A^{d} = \left[\begin{array}{cc} A_{1}^{-1} & 0 \\ 0 & 0 \end{array} \right] : \left[\begin{array}{c} \mathcal{N}(P) \\ \mathcal{R}(P) \end{array} \right] \to \left[\begin{array}{c} \mathcal{N}(P) \\ \mathcal{R}(P) \end{array} \right].$$

For other important properties of Drazin inverses see ([1], [2], [3], [5], [7], [8], [9], [10], [13], [15], [19], [21], [26], [27], [30], [31], [32], [33], [34]).

2. Main results. Firstly, we will state a very useful result concerning the additive properties of Drazin inverses which is the main result proved in [6] with $a^{\pi} = 1 - aa^{d}$.

Theorem 2.1. Let a, b be GD-invertible elements of algebra A such that

$$a^{\pi}b = b$$
, $ab^{\pi} = a$, $b^{\pi}aba^{\pi} = 0$.

Then a + b is GD-invertible and

$$(a+b)^{\mathsf{d}} = \left(b^{\mathsf{d}} + \sum_{n=0}^{\infty} (b^{\mathsf{d}})^{n+2} a(a+b)^{n}\right) a^{\pi} + b^{\pi} a^{d}$$

$$+ \sum_{n=0}^{\infty} b^{\pi} (a+b)^{n} b(a^{\mathsf{d}})^{n+2} - \sum_{n=0}^{\infty} (b^{\mathsf{d}})^{n+2} a(a+b)^{n} ba^{\mathsf{d}}$$

$$- \sum_{n=0}^{\infty} b^{\mathsf{d}} a(a+b)^{n} b(a^{\mathsf{d}})^{n+2} - \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} (b^{\mathsf{d}})^{k+2} a(a+b)^{n+k+1} b(a^{\mathsf{d}})^{n+2}.$$

Next we extend [22, Lemma 2.4] to the linear operator.

LEMMA 2.2. Let $M \in \mathcal{B}(\mathcal{X})$, $G \in \mathcal{B}(\mathcal{X}, \mathcal{Y})$ and $H \in \mathcal{B}(\mathcal{Y}, \mathcal{X})$ be operators such that $HG = I_{\mathcal{X}}$. If M is GD-invertible operator, then the operator GMH is GD-invertible and

$$(2.1) (GMH)^d = GM^dH.$$

D. Cvetković-Ilić and Y. Wei

Proof. It is evident that

$$(GM^{d}H)(GMH)(GM^{d}H) = GM^{d}MM^{d}H = GM^{d}H$$

and

$$(GM^{d}H)(GMH) = GM^{d}MH = GMM^{d}H = (GMH)(GM^{d}H).$$

To prove that $GMH(I - (GMH)(GM^dH))$ is a quasinilpotent, note that

$$GMH\Big(I-(GMH)(GM^dH)\Big)=GM(I-MM^d)H.$$

Since $M(I - MM^d)$ is quasinilpotent, we have

$$\begin{split} r\Big(GMH(I-(GMH)(GM^dH))\Big) &= r\Big(GM(I-MM^d)H\Big) \\ &= \lim_{n \to \infty} \left\| \left(GM(I-MM^d)H\right)^n \right\|^{\frac{1}{n}} \\ &= \lim_{n \to \infty} \left\| G\left(M(I-MM^d)\right)^n H \right\|^{\frac{1}{n}} \\ &\leq \lim_{n \to \infty} \left\| G \right\|^{\frac{1}{n}} \cdot \left\| \left(M(I-MM^d)\right)^n \right\|^{\frac{1}{n}} \cdot \left\| H \right\|^{\frac{1}{n}} = 0. \end{split}$$

Hence, (2.1) is valid. \square

From now on, we will assume that \mathcal{X} and \mathcal{Y} are Banach spaces and $\mathcal{Z} = \mathcal{X} \oplus \mathcal{Y}$. For $A \in \mathcal{B}(\mathcal{X}), \ B \in \mathcal{B}(\mathcal{Y}, \mathcal{X}), \ C \in \mathcal{B}(\mathcal{X}, \mathcal{Y})$ and $D \in \mathcal{B}(\mathcal{Y})$, consider the operator $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \mathcal{B}(\mathcal{Z})$.

Theorem 2.3. If A and D are GD-invertible operators such that

$$BC = 0$$
 and $DC = 0$,

then M is GD-invertible and

$$M^d = \left[\begin{array}{cc} A^d & X \\ C(A^d)^2 & Y + D^d \end{array} \right],$$

where

$$(2.2) \ X = X(A,B,D) = \sum_{n=0}^{\infty} (A^d)^{n+2} B D^n D^{\pi} + \sum_{n=0}^{\infty} A^{\pi} A^n B (D^d)^{n+2} - A^d B D^d$$

and
$$Y = CXD^d + CA^dX$$
.

Proof. We rewrite M=P+Q, where $P=\begin{bmatrix}A&B\\0&D\end{bmatrix}$ and $Q=\begin{bmatrix}0&0\\C&0\end{bmatrix}$. By [14, Theorem 5.1], P^d is GD-invertible and

$$P^d = \left[\begin{array}{cc} A^d & X \\ 0 & D^d \end{array} \right],$$

where X = X(A, B, D) is defined by (2.2). Also, Q is GD-invertible and $Q^d = 0$. Now, we have that the condition $P^{\pi}Q = Q$ is equivalent to

$$-(AX + BD^d)C = 0,$$

$$D^{\pi}C = C$$
(2.3)

whereas the condition $PQP^{\pi} = 0$ is equivalent to

$$BCA^{\pi} = 0, DCA^{\pi} = 0,$$

 $-BC(AX + BD^{d}) = 0,$
 $-DC(AX + BD^{d}) = 0.$ (2.4)

Since, BC = 0 and DC = 0, from (2.3) and (2.4) we get that $P^{\pi}Q = Q$ and $PQP^{\pi} = 0$, so by Theorem 2.1, we have that M is GD-invertible and

$$\begin{split} M^{d} &= P^{d} + \sum_{n=0}^{\infty} M^{n} Q(P^{d})^{n+2} \\ &= \begin{bmatrix} A^{d} & X \\ 0 & D^{d} \end{bmatrix} + \sum_{n=0}^{\infty} \begin{bmatrix} A & B \\ C & D \end{bmatrix}^{n} \begin{bmatrix} 0 & 0 \\ C(A^{d})^{n+2} & \sum_{i=1}^{n+2} C(A^{d})^{i-1} X(D^{d})^{n+2-i} \end{bmatrix} \\ &= \begin{bmatrix} A^{d} & X \\ 0 & D^{d} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ C(A^{d})^{2} & \sum_{i=1}^{2} C(A^{d})^{i-1} X(D^{d})^{2-i} \end{bmatrix} \\ &= \begin{bmatrix} A^{d} & X \\ C(A^{d})^{2} & Y + D^{d} \end{bmatrix}, \end{split}$$

for $Y = CXD^d + CA^dX$. \square

Remark 1. Theorem 2.3 is a strengthening of [14, Theorem 5.3], since it shows that one of the conditions of Theorem 2.3 (BD = 0) is actually redundant.

THEOREM 2.4. If A and D are GD-invertible operators such that

(2.5)
$$C(I - AA^d)B = 0, \quad A(I - AA^d)B = 0$$

D. Cvetković-Ilić and Y. Wei

and $S = D - CA^{d}B$ is nonsingular, then M is GD-invertible and

$$(2.6) \quad M^{d} = \left(I + \begin{bmatrix} 0 & (I - AA^{d})B \\ 0 & 0 \end{bmatrix} R \right) R \left(I + \sum_{i=0}^{\infty} R^{i+1} \begin{bmatrix} 0 & 0 \\ C(I - AA^{d})A^{i} & 0 \end{bmatrix} \right),$$

where

(2.7)
$$R = \begin{bmatrix} A^d + A^d B S^{-1} C A^d & -A^d B S^{-1} \\ -S^{-1} C A^d & S^{-1} \end{bmatrix}.$$

Proof. In [18] it is proved that $\sigma(A) \cup \sigma(M) = \sigma(A) \cup \sigma(D)$, so we conclude that $0 \notin \text{acc}\sigma(M)$, i.e., M is GD-invertible.

Using that $\mathcal{X} = \mathcal{N}(P) \oplus \mathcal{R}(P)$, for $P = I - AA^d$, we have

$$M = \begin{bmatrix} A_1 & 0 & B_1 \\ 0 & A_2 & B_2 \\ C_1 & C_2 & D \end{bmatrix} : \begin{bmatrix} \mathcal{N}(P) \\ \mathcal{R}(P) \\ Y \end{bmatrix} \to \begin{bmatrix} \mathcal{N}(P) \\ \mathcal{R}(P) \\ Y \end{bmatrix},$$

where
$$B = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} : Y \to \begin{bmatrix} \mathcal{N}(P) \\ \mathcal{R}(P) \end{bmatrix}$$
 and $C = \begin{bmatrix} C_1 & C_2 \end{bmatrix} : \begin{bmatrix} \mathcal{N}(P) \\ \mathcal{R}(P) \end{bmatrix} \to Y$.

Now, we have

$$M_{1} = I_{2} \begin{bmatrix} A_{1} & 0 & B_{1} \\ 0 & A_{2} & B_{2} \\ C_{1} & C_{2} & D \end{bmatrix} I_{1}$$

$$= \begin{bmatrix} A_{1} & B_{1} & 0 \\ C_{1} & D & C_{2} \\ 0 & B_{2} & A_{2} \end{bmatrix} : \begin{bmatrix} \mathcal{N}(P) \\ Y \\ \mathcal{R}(P) \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{N}(P) \\ Y \\ \mathcal{R}(P) \end{bmatrix},$$

where

$$I_{2} = \begin{bmatrix} I & 0 & 0 \\ 0 & 0 & I \\ 0 & I & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{N}(P) \\ \mathcal{R}(P) \\ Y \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{N}(P) \\ Y \\ \mathcal{R}(P) \end{bmatrix},$$

$$I_{1} = \begin{bmatrix} I & 0 & 0 \\ 0 & 0 & I \\ 0 & I & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{N}(P) \\ Y \\ \mathcal{R}(P) \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{N}(P) \\ \mathcal{R}(P) \\ Y \end{bmatrix}.$$

Since $I_1 = I_2^{-1}$, using Lemma 2.2, we have that $M^d = I_1 M_1^d I_2$, so we proceed towards finding the Drazin inverse of M_1 .

In order to get an explicit formula for M_1^d , we partition M_1 as a 2×2 block-matrix, i.e.,

$$M_1 = \left[\begin{array}{cc} A_3 & B_3 \\ C_3 & D_3 \end{array} \right]$$

where

$$A_3 = \begin{bmatrix} A_1 & B_1 \\ C_1 & D \end{bmatrix}, B_3 = \begin{bmatrix} 0 \\ C_2 \end{bmatrix}, C_3 = \begin{bmatrix} 0 & B_2 \end{bmatrix}, D_3 = A_2.$$

From (2.5), we get $C_2B_2 = 0$ and $A_2B_2 = 0$, so $B_3C_3 = 0$ and $D_3C_3 = 0$. Also, by $\sigma(A_3) \cup \sigma(A_1) = \sigma(A_1) \cup \sigma(D)$, it follows that A_3 is GD-invertible. Applying Theorem 2.3 we get that

$$M_1^d = \begin{bmatrix} A_3^d & \sum\limits_{i=0}^{\infty} (A_3^d)^{i+2} B_3 D_3^i \\ C_3 (A_3^d)^2 & \sum\limits_{i=0}^{\infty} C_3 (A_3^d)^{i+3} B_3 D_3^i \end{bmatrix}$$
$$= \begin{bmatrix} I \\ C_3 A_3^d \end{bmatrix} A_3^d \begin{bmatrix} I & \sum\limits_{i=0}^{\infty} (A_3^d)^{i+1} B_3 D_3^i \end{bmatrix}.$$

For the operator matrix A_3 we have that its upper left block, the operator A_1 is nonsingular and its Schur complement

$$S(A_3) = D - C_1 A_1^{-1} B_1 = D - C A^d B$$

is nonsingular, which implies that the operator A_3 is nonsingular and

$$A_3^{-1} = \left[\begin{array}{cc} A_1^{-1} + A_1^{-1} B_1 S^{-1} C_1 A_1^{-1} & A_1^{-1} B_1 S^{-1} \\ S^{-1} C_1 A_1^{-1} & S^{-1} \end{array} \right].$$

Now,

$$M^{d} = I_{1}M_{1}^{d}I_{2}$$

$$= \left(I_{3} + \begin{bmatrix} 0 \\ I \\ 0 \end{bmatrix}C_{3}A_{3}^{d}\right)A_{3}^{d}\left(I_{4} + \sum_{i=0}^{\infty}(A_{3}^{d})^{i+1}B_{3}D_{3}^{i}\begin{bmatrix} 0 & I & 0 \end{bmatrix}\right)$$

where

$$I_{3} = \begin{bmatrix} I & 0 \\ 0 & 0 \\ 0 & I \end{bmatrix} : \begin{bmatrix} \mathcal{N}(P) \\ Y \end{bmatrix} \to \begin{bmatrix} \mathcal{N}(P) \\ \mathcal{R}(P) \\ Y \end{bmatrix},$$

$$I_{4} = \begin{bmatrix} I & 0 & 0 \\ 0 & 0 & I \end{bmatrix} : \begin{bmatrix} \mathcal{N}(P) \\ \mathcal{R}(P) \\ Y \end{bmatrix} \to \begin{bmatrix} \mathcal{N}(P) \\ Y \end{bmatrix}.$$

D. Cvetković-Ilić and Y. Wei

It is obvious that $I_4I_3 = I_{\mathcal{N}(P)\oplus Y}$. Let us denote by $R = I_3A_3^dI_4$,

$$I_{5} = \begin{bmatrix} 0 \\ I \\ 0 \end{bmatrix} : \mathcal{R}(P) \to \begin{bmatrix} \mathcal{N}(P) \\ \mathcal{R}(P) \\ Y \end{bmatrix},$$

$$I_{6} = \begin{bmatrix} 0 & I & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{N}(P) \\ \mathcal{R}(P) \\ Y \end{bmatrix} \to \mathcal{R}(P).$$

Obviously, R is given by (2.7). Now,

$$M^{d} = \left(I_{\mathcal{Z}} + I_{5}C_{3}A_{3}^{d}I_{4}\right)R\left(I_{\mathcal{Z}} + I_{3}\sum_{i=0}^{\infty}(A_{3}^{d})^{i+1}B_{3}D_{3}^{i}I_{6}\right).$$

By computation, we get that

$$I_{5}C_{3}A_{3}^{d}I_{4} = \begin{bmatrix} 0 & (I - AA^{d})B \\ 0 & 0 \end{bmatrix} R,$$

$$I_{3}(A_{3}^{d})^{i+1}B_{3}D_{3}^{i}I_{6} = I_{3}(A_{3}^{d})^{i}I_{4}(I_{3}A_{3}^{d}B_{3}I_{6})(I_{5}D_{3}^{i}I_{6})$$

$$= R^{i}R \begin{bmatrix} 0 & 0 \\ C(I - AA^{d}) & 0 \end{bmatrix} \begin{bmatrix} (I - AA^{d})A^{i} & 0 \\ 0 & 0 \end{bmatrix}$$

$$= R^{i+1} \begin{bmatrix} 0 & 0 \\ C(I - AA^{d})A^{i} & 0 \end{bmatrix},$$

so, (2.6) is valid. \square

Remark 2. Theorem 2.3 generalizes [22, Theorem 3.1] to the bounded linear operator.

Taking conjugate operator of M in Theorem 2.4, we derived the following corollary:

COROLLARY 2.5. If A and D are GD-invertible operators such that

$$C(I - AA^d)B = 0$$
, $C(I - AA^d)A = 0$

and $S = D - CA^{d}B$ is nonsingular, then M is GD-invertible and

$$M^{d} = \left(I + \begin{bmatrix} 0 & \sum_{i=0}^{\infty} A^{i} (I - AA^{d})B \\ 0 & 0 \end{bmatrix} R^{i+1} \right) R \left(I + R \begin{bmatrix} 0 & 0 \\ C(I - AA^{d}) & 0 \end{bmatrix} \right),$$

where R is defined by (2.7).

If an additional condition $C(I - AA^d)A = 0$ is satisfied in Theorem 2.4, we get a simpler formula for M^d :

COROLLARY 2.6. If A and D are GD-invertible operators such that

$$C(I - AA^{d})B = 0$$
, $A(I - AA^{d})B = 0$, $C(I - AA^{d})A = 0$

and $S = D - CA^dB$ is nonsingular, then M is GD-invertible and

$$M^{d} = \left(I + \begin{bmatrix} 0 & (I - AA^{d})B \\ 0 & 0 \end{bmatrix} R\right) R\left(I + R \begin{bmatrix} 0 & 0 \\ C(I - AA^{d}) & 0 \end{bmatrix}\right),$$

where R is defined by (2.7).

In the paper of Miao [28] a representation of the Drazin inverse of block-matrices M is given under the conditions:

$$C(I - AA^{D}) = 0$$
, $(I - AA^{D})B = 0$ and $S = D - CA^{D}B = 0$.

Hartwig et al. [22] generalized this result in Theorem 4.1 and gave a representation of the Drazin inverse of block-matrix M under the conditions:

$$C(I - AA^{D})B = 0$$
, $A(I - AA^{D})B = 0$ and $S = D - CA^{D}B = 0$.

In the following theorem we generalized Theorem 4.1 from [22] to the linear bounded operator.

THEOREM 2.7. If A and D are GD-invertible operators such that

$$C(I - AA^{d})B = 0$$
, $A(I - AA^{d})B = 0$, $S = D - CA^{d}B = 0$

and the operator AW is GD-invertible, then M is GD-invertible and

(2.8)
$$M^d = \left(I + \begin{bmatrix} 0 & (I - AA^d)B \\ 0 & 0 \end{bmatrix} R_1\right) R_1 \left(I + \sum_{i=0}^{\infty} R_1^{i+1} \begin{bmatrix} 0 & 0 \\ C(I - AA^d)A^i & 0 \end{bmatrix}\right),$$

where

(2.9)
$$R_1 = \begin{bmatrix} I \\ CA^d \end{bmatrix} A^{d,w} \begin{bmatrix} I & A^dB \end{bmatrix},$$

and $A^{d,w} = [(AW)^d]^2 A$ is the weighted Drazin inverse [11] of A with weight operator $W = AA^d + A^dBCA^d$.

Proof. Using the notations and method from the proof of Theorem 2.4, we have that

$$M_1^d = \begin{bmatrix} A_3^d & \sum\limits_{i=0}^{\infty} (A_3^d)^{i+2} B_3 D_3^i \\ C_3 (A_3^d)^2 & \sum\limits_{i=0}^{\infty} C_3 (A_3^d)^{i+3} B_3 D_3^i \end{bmatrix}$$
$$= \begin{bmatrix} I \\ C_3 A_3^d \end{bmatrix} A_3^d \begin{bmatrix} I & \sum\limits_{i=0}^{\infty} (A_3^d)^{i+1} B_3 D_3^i \end{bmatrix}.$$

D. Cvetković-Ilić and Y. Wei

Now, prove that the generalized Drazin inverse of A_3 is given by

$$F = \left[\begin{array}{c} I \\ C_1 A_1^{-1} \end{array} \right] ((A_1 H)^2)^d A_1 \left[\begin{array}{cc} I & A_1^{-1} B_1 \end{array} \right],$$

where $H = I + A_1^{-1}B_1C_1A_1^{-1}$. Remark that from the fact that AW is GD-invertible, it follows that A_1H is GD-invertible. By computation we check that

$$A_3F = FA_3$$
 and $FA_3F = F$.

To prove that the operator $A_3(I - FA_3)$ is a quasinilpotent, we will use the fact that for bounded operators A and B on Banach spaces, r(AB) = r(BA). First note that

$$A_3 = \left[\begin{array}{c} I \\ C_1 A_1^{-1} \end{array} \right] A_1 \left[\begin{array}{cc} I & A_1^{-1} B_1 \end{array} \right] \quad \text{and} \quad H = \left[\begin{array}{cc} I & A_1^{-1} B_1 \end{array} \right] \left[\begin{array}{c} I \\ C_1 A_1^{-1} \end{array} \right].$$

Since

$$A_3(I - FA_3) = \begin{bmatrix} I \\ C_1 A_1^{-1} \end{bmatrix} (I - (A_1 H)(A_1 H)^d) A_1 \begin{bmatrix} I & A_1^{-1} B_1 \end{bmatrix},$$

it follows that

$$r(A_3(I - FA_3)) = r((I - (A_1H)(A_1H)^d)A_1H) = 0,$$

so $A_3(I - FA_3)$ is a quasinilpotent. Hence, $A_3^d = F$.

Now, for $R_1=I_3A_3^dI_4$, we get that (2.8) holds. By computation we obtain that $R_1=I_3A_3^dI_4=\left[\begin{array}{c}I\\CA^d\end{array}\right]A^{d,w}\left[\begin{array}{c}I&A^dB\end{array}\right]$, where $W=\left[\begin{array}{c}H&0\\0&0\end{array}\right]=AA^d+A^dBCA^d$. \square

We obtain the following corollary by taking conjugate operator:

COROLLARY 2.8. If A and D are GD-invertible operators such that

$$C(I - AA^{d})B = 0$$
, $C(I - AA^{d})A = 0$, $S = D - CA^{d}B = 0$

and the operator AW is GD-invertible, then M is GD-invertible and

$$M^{d} = \left(I + \sum_{i=0}^{\infty} \begin{bmatrix} 0 & A^{i}(I - AA^{d})B \\ 0 & 0 \end{bmatrix} R_{1}^{i+1} \right) R_{1} \left(I + R_{1} \begin{bmatrix} 0 & 0 \\ C(I - AA^{d}) & 0 \end{bmatrix} \right),$$

where R_1 is given by (2.9) in Theorem 2.7.

If the condition $C(I - AA^d)A = 0$ is added to Theorem 2.7, we have a simpler formula for M^d .

COROLLARY 2.9. If A and D are GD-invertible operators such that

$$C(I - AA^d)B = 0$$
, $C(I - AA^d)B = 0$, $A(I - AA^d)B = 0$, $S = D - CA^dB = 0$

and the operator AW is GD-invertible, then M is GD-invertible and

$$M^{d} = \left(I + \begin{bmatrix} 0 & (I - AA^{d})B \\ 0 & 0 \end{bmatrix} R_{1}\right) R_{1} \left(I + R_{1} \begin{bmatrix} 0 & 0 \\ C(I - AA^{d}) & 0 \end{bmatrix}\right),$$

where R_1 is given by (2.9) in Theorem 2.7.

The next theorem presents new conditions under which we give a representation of M^d in terms of the block-operators of M.

Theorem 2.10. If A and D are GD-invertible operators and

(2.10)
$$AA^{d}B = 0 \quad and \quad C(I - AA^{d}) = 0,$$

then M is GD-invertible and

$$M^d = R^d \left(I + \begin{bmatrix} 0 & 0 \\ CA^d & 0 \end{bmatrix} \right) + R^{\pi} \sum_{i=0}^{\infty} R^i \begin{bmatrix} 0 & 0 \\ C(A^d)^{i+2} & 0 \end{bmatrix} + \begin{bmatrix} A^d & 0 \\ 0 & 0 \end{bmatrix}$$

where

$$R = \left[\begin{array}{cc} (I - AA^d)A & B \\ 0 & D \end{array} \right] \quad \text{and} \quad R^d = \left[\begin{array}{cc} 0 & \sum\limits_{i=0}^{\infty} (I - AA^d)A^iB(D^d)^{i+2} \\ 0 & D^d \end{array} \right].$$

Proof. As in the proof of the Theorem 2.4, we conclude that M is GD-invertible. Using that $\mathcal{X} = \mathcal{N}(P) \oplus \mathcal{R}(P)$, for $P = I - AA^d$, we have

$$M = \begin{bmatrix} A_1 & 0 & B_1 \\ 0 & A_2 & B_2 \\ C_1 & C_2 & D \end{bmatrix} : \begin{bmatrix} \mathcal{N}(P) \\ \mathcal{R}(P) \\ Y \end{bmatrix} \to \begin{bmatrix} \mathcal{N}(P) \\ \mathcal{R}(P) \\ Y \end{bmatrix},$$

where
$$B = \left[\begin{array}{c} B_1 \\ B_2 \end{array} \right] : Y \to \left[\begin{array}{c} \mathcal{N}(P) \\ \mathcal{R}(P) \end{array} \right]$$
 and $C = \left[\begin{array}{cc} C_1 & C_2 \end{array} \right] : \left[\begin{array}{c} \mathcal{N}(P) \\ \mathcal{R}(P) \end{array} \right] \to Y$.

Now,

$$M_{1} = J_{2}MJ_{1}$$

$$= \begin{bmatrix} A_{2} & B_{2} & 0 \\ C_{2} & D & C_{1} \\ 0 & B_{1} & A_{1} \end{bmatrix} : \begin{bmatrix} \mathcal{R}(P) \\ Y \\ \mathcal{N}(P) \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{R}(P) \\ Y \\ \mathcal{N}(P) \end{bmatrix},$$

D. Cvetković-Ilić and Y. Wei

where
$$J_2 = \begin{bmatrix} 0 & I & 0 \\ 0 & 0 & I \\ I & 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{N}(P) \\ \mathcal{R}(P) \\ Y \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{R}(P) \\ Y \\ \mathcal{N}(P) \end{bmatrix}$$
 and $J_1 = \begin{bmatrix} 0 & 0 & I \\ I & 0 & 0 \\ 0 & I & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(P) \\ Y \\ \mathcal{N}(P) \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{N}(P) \\ \mathcal{R}(P) \\ Y \end{bmatrix}$.

Using Lemma 2.2, we deduce that $M^d = J_1 M_1^d J_2$. In order to compute M^d it suffices to find the Drazin inverse of M_1 . To derive an explicit formula for M_1^d , we partition M_1 as a 2×2 block-matrix, i.e.,

$$M_1 = \left[\begin{array}{cc} A_3 & B_3 \\ C_3 & D_3 \end{array} \right]$$

where

$$A_3 = \begin{bmatrix} A_2 & B_2 \\ C_2 & D \end{bmatrix}, B_3 = \begin{bmatrix} 0 \\ C_1 \end{bmatrix}, C_3 = \begin{bmatrix} 0 & B_1 \end{bmatrix}, D_3 = A_1.$$

Since

$$B_3C_3 = 0 \Leftrightarrow C_1B_1 = 0 \Leftrightarrow CAA^dB = 0$$

and

$$D_3C_3 = 0 \Leftrightarrow A_1B_1 = 0 \Leftrightarrow AA^dB = 0.$$

by (2.10) we have $B_3C_3 = 0$, $D_3C_3 = 0$ and $B_1 = 0$.

Similarly as in the proof of the Theorem 2.4, we conclude that A_3 is GD-invertible operator. Now, by Theorem 2.3,

$$\begin{split} M_1^d &= \left[\begin{array}{cc} A_3^d & \sum\limits_{i=0}^{\infty} A_3^{\pi} A_3^i B_3 (A_1^{-1})^{i+2} - A_3^d B_3 A_1^{-1} \\ 0 & (A_1)^{-1} \end{array} \right] \\ &= \left[\begin{array}{c} I \\ 0 \end{array} \right] A_3^d \left[\begin{array}{cc} I & -B_3 A_1^{-1} \end{array} \right] + \left[\begin{array}{c} I \\ 0 \end{array} \right] A_3^{\pi} \left[\begin{array}{cc} 0 & \sum\limits_{i=0}^{\infty} A_3^i B_3 (A_1^{-1})^{i+2} \end{array} \right] + \left[\begin{array}{cc} 0 & 0 \\ 0 & A_1^{-1} \end{array} \right]. \end{split}$$

By the second condition of (2.10), we obtain that $C_2 = 0$, as for the operator A_3 we have that

$$B_2C_2 = 0$$
 and $DC_2 = 0$.

Applying Theorem 2.3 to A_3 , we get

$$A_3^d = \begin{bmatrix} 0 & \sum_{i=0}^{\infty} A_2^i B_2(D^d)^{i+2} \\ 0 & D^d \end{bmatrix}.$$

Now,

$$\begin{split} M^d &= J_1 M_1^d J_2 \\ &= J_3 A_3^d \left(J_4 + B_3 A_1^{-1} J_5\right) + J_3 A_3^\pi \left(\sum_{i=0}^\infty A_3^i B_3 (A_1^{-1})^{i+2} J_5\right) + \left[\begin{array}{cc} A^d & 0 \\ 0 & 0 \end{array}\right] \\ &= R^d \left(I + J_3 B_3 A_1^{-1} J_5\right) + R^\pi J_3 \sum_{i=0}^\infty A_3^i B_3 (A_1^{-1})^{i+2} J_5 + \left[\begin{array}{cc} A^d & 0 \\ 0 & 0 \end{array}\right], \end{split}$$

where
$$R = J_3 A_3 J_4$$
, $J_3 = \begin{bmatrix} 0 & 0 \\ I & 0 \\ 0 & I \end{bmatrix}$, $J_4 = \begin{bmatrix} 0 & I & 0 \\ 0 & 0 & I \end{bmatrix}$ and $J_5 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$.

It is evident that $J_4J_3=I.$ By computation, we get that

$$J_3 B_3 A_1^{-1} J_5 = \begin{bmatrix} 0 & 0 \\ C A^d & 0 \end{bmatrix},$$

$$J_3 A_3^i B_3 (A_1^{-1})^{i+2} J_5 = R^i \begin{bmatrix} 0 & 0 \\ C (A^d)^{i+2} & 0 \end{bmatrix}.$$

Also, from the definition of R, we have that

$$R = \left[\begin{array}{cc} (I - AA^d)A & B \\ 0 & D \end{array} \right]$$

and by [14, Theorem 5.1]

$$R^d = \begin{bmatrix} 0 & \sum_{i=0}^{\infty} (I - AA^d)A^iB(D^d)^{i+2} \\ 0 & D^d \end{bmatrix} . \square$$

3. Concluding remarks. The whole paper would appear to be valid in general Banach algebras, not just algebras of operators. Whenever $P = P^2 \in G$, for a Banach algebra G, there is an induced block structure

$$G = \left[\begin{array}{cc} A & M \\ N & B \end{array} \right]$$

in which A and B are Banach algebras and M and N are bimodules over A and B.

D. Cvetković-Ilić and Y. Wei

REFERENCES

- [1] A. Ben-Israel and T.N.E. Greville. Generalized Inverses: Theory and Applications, Second Edition. Springer, New York, 2003.
- [2] R. Bru, J. Climent, and M. Neumann. On the index of block upper triangular matrices. SIAM J. Matrix Anal. Appl., 16:436-447, 1995.
- [3] S. L. Campbell and C. D. Meyer Jr. Generalized Inverses of Linear Transformations. Dover Publications, Inc., New York, 1991.
- [4] S. Campbell. The Drazin inverse and systems of second order linear differential equations. Linear Multilinear Algebra, 14: 195–198, 1983.
- [5] S.R. Caradus. Generalized Inverses and Operator Theory. Queen's Paper in Pure and Applied Mathematics, Queen's University, Kingston, Ontario, 1978.
- [6] N. Castro González, and J.J. Koliha. New additive results for the g-Drazin inverse. Proc. Roy. Soc. Edinburgh Sect. A, 134:1085-1097, 2004.
- [7] N. Castro González and E. Dopazo. Representations of the Drazin inverse for a class of block matrices. *Linear Algebra Appl.*, 400:253–269, 2005.
- [8] N. Castro-González, E. Dopazo, and J. Robles. Formulas for the Drazin inverse of special block matrices. Appl. Math. Comput., 174:252–270, 2006.
- [9] N. Castro González, J.J. Koliha, and V. Rakočević. Continuity and general perturbation of the Drazin inverse of for closed linear operators. Abstr. Appl. Anal., 7:335–347, 2002.
- [10] N. Castro González and J.Y. Vélez-Cerrada. On the perturbation of the group generalized inverse for a class of bounded operators in Banach spaces. J. Math. Anal. Appl., 341:1213– 1223, 2008.
- [11] R. Cline and T. N. E. Greville. A Drazin inverse for rectangular matrices. Linear Algebra Appl., 29: 53–62, 1980.
- [12] D. S. Cvetković-Ilić, J. Chen, and Z. Xu. Explicit representations of the Drazin inverse of block matrix and modified matrix. *Linear Multilinear Algebra*, 57(4):355-364, 2009.
- [13] X. Chen and R.E. Hartwig. The group inverse of a triangular matrix. Linear Algebra Appl., 237/238:97–108, 1996.
- [14] D. S. Djordjević and P. S. Stanimirović. On the generalized Drazin inverse and generalized resolvent. Czechoslovak Math. J., 51:617–634, 2001.
- [15] D. Cvetković-Ilić, D. Djordjević, and Y. Wei. Additive results for the generalized Drazin inverse in a Banach algebra. *Linear Algebra Appl.*, 418:53–61, 2006.
- [16] M.P. Drazin. Pseudoinverse in associative rings and semigroups. Amer. Math. Monthly , $65:506-514,\ 1958.$
- [17] M.P. Drazin. Extremal definitions of generalized inverses. Linear Algebra Appl., 165:185–196, 1992
- [18] K. H. Förster and B. Nagy. Transfer functions and spectral projections. Publ. Math. Debrecen, 52:367–376, 1998.
- [19] R. E. Harte. Invertibility and Singularity for Bounded Linear Operators. Marcel Dekker, New York, 1988.
- [20] R. E. Harte. Spectral projections. Irish. Math. Soc. Newsletter, 11:10–15, 1984.
- [21] R.E. Hartwig and J.M. Shoaf. Group inverse and Drazin inverse of bidiagonal and triangular Toeplitz matrices. Austral. J. Math., 24A:10–34, 1977.
- [22] R. Hartwig, X. Li and Y. Wei. Representations for the Drazin inverse of 2 × 2 block matrix. SIAM J. Matrix Anal. Appl., 27:757–771, 2006.
- [23] C. F. King. A note of Drazin inverses. Pacific. J. Math., 70:383-390, 1977.
- [24] J.J. Koliha. A generalized Drazin inverse. Glasqow Math. J., 38:367-381, 1996.
- [25] D.C. Lay. Spectral properties of generalized inverses of linear operators. SIAM J. Appl. Math., 29:103–109, 1975.
- [26] X. Li and Y. Wei. A note on the representations for the Drazin inverse of 2×2 block matrices.

 $Linear\ Algebra\ Appl.,\ 423:332-338,\ 2007.$

- [27] C.D. Meyer and N.J. Rose. The index and the Drazin inverse of block triangular matrices. SIAM J. Appl. Math., 33:1–7, 1977.
- [28] J. Miao. Result of the Drazin inverse of block matrices. J. Shanghai Normal University, 18:25–31, 1989.
- [29] M.Z. Nashed and Y. Zhao. The Drazin inverse for singular evolution equations and partial differential equations. World Sci. Ser. Appl. Anal., 1:441–456, 1992.
- [30] V. Rakočević. Continuity of the Drazin inverse. J. Operator Theory, 41:55-68, 1999.
- [31] V. Rakočević and Y. Wei. The representation and approximation of the W-weighted Drazin inverse of linear operators in Hilbert space. Appl. Math. Comput., 141:455–470, 2003.
- [32] V. Rakočević and Yimin Wei. The W-weighted Drazin inverse. Linear Algebra Appl., 350:25–39, 2002.
- [33] Y. Wei. Expressions for the Drazin inverse of a 2×2 block matrix. Linear Multilinear Algebra, 45:131-146, 1998.
- [34] Y. Wei. Representation and perturbation of the Drazin inverse in Banach space. Chinese J. Contemporary Mathematics, 21:39–46, 2000.