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SPECTRAL UPPER BOUND ON THE QUANTUM K-INDEPENDENCE NUMBER

OF A GRAPH∗

PAWEL WOCJAN† , CLIVE ELPHICK‡ , AND AIDA ABIAD§

Abstract. A well-known upper bound for the independence number α(G) of a graph G, due to Cvetković, is that

α(G) ≤ n0 + min{n+, n−},

where (n+, n0, n−) is the inertia of G. We prove that this bound is also an upper bound for the quantum independence number

αq(G), where αq(G) ≥ α(G) and for some graphs αq(G)� α(G). We identify numerous graphs for which α(G) = αq(G), thus

increasing the number of graphs for which αq is known. We also demonstrate that there are graphs for which the above bound

is not exact with any Hermitian weight matrix, for α(G) and αq(G). Finally, we show this result in the more general context

of spectral bounds for the quantum k-independence number, where the k-independence number is the maximum size of a set

of vertices at pairwise distance greater than k.
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1. Introduction and motivation. Elphick and Wocjan [9] proved that many spectral lower bounds

for the chromatic number, χ(G), are also lower bounds for the quantum chromatic number, χq(G). This was

achieved using the linear algebra tools of pinching and twirling and a combinatorial definition of χq(G) due

to Manc̆inska and Roberson [17]. In a different paper, Manc̆inska and Roberson [18] defined the quantum

independence number αq(G), using quantum homomorphisms, where αq(G) ≥ α(G). Analogously to χq(G),

the quantum independence number αq(G) is the maximum integer t for which two players sharing an entangled

quantum state can convince an interrogator that the graph G has an independent set of size t. There exist

graphs G for which there is an exponential separation between the independence number α(G) and αq(G)

[18].

The subject of quantum graph parameters has been extensively studied in the past decade, due to its

connections to a number of subjects, including quantum information theory, operator theory, combinatorics

and optimisation. The motivation for studying quantum graph parameters is described, for example, by

Cameron et al. [6] and in [18] and [9, 10]. We add to this subject by defining an extension of the usual quan-

tum independence number of a graph, called the quantum k-independence number, which is also motivated

by its classical counterpart, the k-independence number of a graph. The k-independence number of a graph,

αk(G), is the maximum size of a set of vertices at pairwise distance greater than k. Upper bounds on this

graph parameter appeared in [13, 12, 4, 3, 20, 1]. Note that α1(G) = α(G). The quantum k-independence

number can be regarded as a generalisation of the (classical) k-independence number. As set out in Defini-

tion 2.1, αkq(G) is defined using d-dimensional orthogonal projectors, and αk(G) corresponds to d = 1. It

is also worth mentioning that in quantum information theory, (αkq(G)− αk(G)) can be seen and used as a

measure of the benefit of entanglement.
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The inertial bound on the independence number of a graph, α(G) ≤ n0 + min{n+, n−}, is a well-known

upper bound on the independence number of a graph due to Cvetković [7]. In this article, we show that it

also upper bounds the quantum independence number αq(G) of a graph. As a consequence of our result,

we obtain that α(G) ≤ αq(G) ≤ inertialbound, and this allows us to determine the quantum independence

number for all graphs for which α(G) equals the inertial bound, substantially increasing the number of graphs

for which we can determine the value of αq(G) (recall that it is not known whether quantum counterparts of

α(G) or χ(G) are computable functions [18]). Moreover, we show that the result mentioned above follows as

a special case of a more general upper bound on the quantum k-independence number (where one considers

vertices at pairwise distance greater than k). As a consequence of this more general result (the inertial

bound is also valid to upper bound the quantum k-independence number), for k > 1 one can use the linear

optimization methods proposed in [1, 2], which depend on finding the best polynomials of degree k, to

optimize our inertial bound and find exact values for αkq for the graphs for which the inertial bound is tight

(for some examples, see [1, Tables 2 and 4]).

2. Definitions and notation. Throughout this paper, G = (V,E) will denote a graph (undirected,

simple and loop-less) on vertex set V with n vertices, edge set E and adjacency matrix A with eigenvalues

λ1 ≥ · · · ≥ λn.

The quantum independence number αq(G) was originally defined using quantum homomorphisms and

can also be defined using nonlocal games. In this work, we require a combinatorial definition of αq(G), such

as the one which appears in [15] (see Definition 2.8). This is generalised to the quantum k-independence

number αkq(G) as follows. The special case k = 1 corresponds to the quantum independence number αq(G).

Recall that for matrices X,Y ∈ Cd×d, their trace inner product (also called Hilbert-Schmidt inner

product) is defined as

〈X,Y 〉tr = tr(X†Y ) .

Definition 2.1. The quantum k-independence number of a graph G = (V,E), denoted by αkq(G), is the

maximum integer t for which there exists a collection of orthogonal projectors {P (u,i) ∈ Cd×d : u ∈ V (G), i ∈
[t]} for some dimension d satisfying the following conditions:∑

u∈V
P (u,i) = Id for all i ∈ [t],(2.1)

〈P (u,i), P (u,j)〉tr = 0 for all i 6= j ∈ [t], for all u ∈ V (G),(2.2)

〈P (u,i), P (v,j)〉tr = 0 for all i 6= j ∈ [t], for all u, v ∈ V (G)

with dist(u, v) ≤ k.(2.3)

We can simplify the proof of our upper bound for αkq(G) by defining a k-projective packing number of

a graph, denoted by αkp(G). We will then prove that αkq(G) ≤ αkp(G), and that our spectral bound is an

upper bound for αkp(G).

Definition 2.2. A d-dimensional k-projective packing of a graph G = (V,E) is a collection of orthogonal

projectors {P (u) ∈ Cd×d : u ∈ V (G)} such that

(2.4) 〈P (u), P (v)〉tr = 0,
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for all pairs of distinct vertices1 u, v ∈ V (G) at distance at most k. The value of the projective packing is

defined as

1

d

∑
u∈V

r(u),

where r(u) denotes the rank of the projector P (u). The k-projective packing number αkp(G) of a graph G is

defined as the supremum taken over all d of the values over all projective packings of the graph G. If k = 1,

then αkp(G) = αp(G), which is the projective packing number of G.

In order to prove our main result, we need the following two lemmas.

Lemma 2.3. αkq(G) ≤ αkp(G).

Proof. Let G[k] denote the graph formed by making all pairs of vertices of G at distance at most k

adjacent. By definition it is clear that αkq(G) = αq(G[k]) and αkp(G) = αp(G[k]). Using that αq(G[k]) ≤
αp(G[k]) [19], it holds that αkq(G) ≤ αkp(G).

We will use the following result to reformulate the conditions on the orthogonal projectors of a k-

projective packing as conditions on their eigenvectors. We omit the proof of this basic result.

Lemma 2.4. Let P,Q ∈ Cd×d be two arbitrary orthogonal projectors of rank r and s, respectively. Let

P =
∑
k∈[r]

|ψk〉〈ψk| and Q =
∑
`∈[s]

|φ`〉〈φ`|,

denote their spectral resolutions, respectively. Then, the following two conditions are equivalent:

〈P,Q〉tr = 0,(2.5)

〈ψk|φ`〉 = 0 for all k ∈ [r], ` ∈ [s] .(2.6)

3. Spectral bound for αkq(G) and αq(G). Let A denote the adjacency matrix of G. Take pk(x) ∈
Rk[x], then pk(A) denotes a polynomial function of A of degree at most k. Let

W (pk) = max
u∈V
{pk(A)uu} ,

w(pk) = min
u∈V
{pk(A)uu} .

If pk(A) = Ak, then W (pk) is the number of closed walks of length k containing a given vertex v maximized

over all vertices v, and w(pk) is the number of closed walks of length k containing a given vertex v minimized

over all vertices v.

Abiad et al. [3] proved the following result.

Theorem 3.1 ([3]). Let λ1 ≥ ... ≥ λn denote the eigenvalues of the adjacency matrix A of a graph G,

and let pk ∈ Rk[x]. Then,

αk(G) ≤ min {|i : pk(λi) ≥ w(pk)| , |i : pk(λi) ≤W (pk)|} .

1It’s important to require that u 6= v.
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If we let k = 1 and pk(A) = A, this reduces to the well-known inertia bound due to Cvetković [7]:

Theorem 3.2 ([7]). The independence number of a graph is bounded from above by

α(G) ≤ n0(A) + min{n+(A), n−(A)},

where (n0, n−, n+) are the numbers of zero, negative and positive eigenvalues of A.

Our principal result is as follows.

Theorem 3.3. Let λ1 ≥ . . . ≥ λn denote the eigenvalues of the adjacency matrix A of a graph G, and

let pk ∈ Rk[x]. Then

αkq(G) ≤ αkp(G) ≤ min {|i : pk(λi) ≥ w(pk)| , |i : pk(λi) ≤W (pk)|} .

Proof. The inequality αkq(G) ≤ αkp(G) was addressed in Lemma 2.3.

We now prove the upper bound on αkp(G). Using Lemma 2.4 we obtain an equivalent formulation of a

k-projective packing in terms of vectors instead of projectors. Define the orthonormal vectors

|Ψ(u,i)〉 = |u〉 ⊗ |ψ(u,i)〉,

where the spectral resolutions of the projectors P (u) are given by

P (u) =

r(u)∑
i=1

|ψ(u,i)〉〈ψ(u,i)|.

Due to the block structure of the vectors |Ψ(u)〉 and the matrix pk(A)⊗ Id, we have

〈Ψ(u,i)|(pk(A)⊗ I)|Ψ(v,j)〉 = pk(A)uv · 〈ψ(u,i)|ψ(v,j)〉.(3.7)

We now examine the values that occur on the right-hand side for all possible combinations of (u, i) and

(v, j). First, consider two arbitrary vertices u, v ∈ V (G) at distance strictly greater than k from each other.

Then, we have (pk(A))uv = 0 since pk(A) is a linear combination of the powers A0, . . . , Ak. Second, consider

two different vertices u, v ∈ V (G) at distance less or equal to k from each other. The term (pk(A))uv can be

non-zero in this case, but due to the orthogonality condition we have 〈ψ(u,i)|ψ(v,j)〉 = 0 for all i ∈ [r(u)] and

j ∈ [r(v)]. Finally, we consider the case u = v. In this case, the right-hand side is equal to d(u) · δij , where

d(u) = (pk(A))uu.

Now let S denote the matrix whose columns are |Ψ(u,i)〉 for u ∈ V and i ∈ [r(u)], i.e.,

S =
∑

u∈V (G)

∑
i∈[r(u)]

|Ψ(u,i)〉〈(u, i)|,

and r denote its rank, which is equal to
∑

u r
(u).

Using the analysis of the different cases above, we obtain

S†(pk(A)⊗ Id)S =
∑

u∈V (G)

∑
i∈[r(u)]

∑
v∈V (G)

∑
j∈[r(v)]

〈Ψ(u,i)|(pk(A)⊗ I)|Ψ(v,j)〉 · |(u, i)〉〈(v, j)|

= diag
(
d(u) : u ∈ V, i ∈ [r(u)]

)
.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 331-338, May 2022.

335 Spectral upper bound on the quantum k-independence number of a graph

We use D to denote the above diagonal matrix. Let w(pk) denote the minimum of d(u) for u ∈ V . Using

interlacing (see for instance [14]), it now follows that there must be at least r eigenvalues of pk(A)⊗ Id that

are larger than the smallest eigenvalue of D. The latter is equal to w(pk) by definition. Equivalently, there

must be at least r/d eigenvalues of pk(A) that are at least w(pk).

This yields the first upper bound

αkp(G) ≤ |{j : pk(λj) ≥ w(pk)}| .

Let W (pk) denote the maximum of (pk(A))uu for u ∈ V . The second upper bound

αkp(G) ≤ |{j : pk(λj) ≤W (pk)}| ,

is proved analogously.

Remark 3.4. We say that a hermitian matrix W = (wuv) is a weighted adjacency matrix of G if the

following holds:

∀u, v ∈ V (G) : auv = 0 ⇒ wuv = 0.(3.8)

Observe that a weighted adjacency matrix W can always be obtained by considering the Hadamard (entry-

wise) product of A and an arbitrary Hermitian matrix H, that is, W = H �A.

The proof of Theorem 3.3 also holds for any weighted adjacency matrix (even allowing nonzero diagonals).

The reason that the proof generalizes is as follows. Let u, v ∈ V (G) be two vertices at distance strictly larger

than k. Then, (W `)uv = 0 for all 0 ≤ ` ≤ k.

In this work, we restrict to polynomials in the adjacency matrix of G (or polynomials in a weighted

adjacency matrix of G), since we are interested in practically computing bounds for specific graphs.

Letting p1(A) = A in Theorem 3.3, we immediately obtain that:

Corollary 3.5.

α(G) ≤ αq(G) ≤ αp(G) ≤ n0(A) + min{n+(A), n−(A)}.

Abiad et al. [4] proved that, when we restrict to the case of pk(A) = Ak, the spectral bound from Theorem

3.3 is tight for αk(G) for a certain infinite family of graphs (see Section 3.1 in [4]). Since the quantum k-

independence number is sandwiched between the classical k-independence number and our spectral bound,

we can say that for that family of graphs the above bound for αkq is also tight and the classical and quantum

parameters αk and αkq coincide.

4. Alternative upper bounds for αq(G). It is known (see for example Section 6.18 of [22]) that:

α(G) ≤ αq(G) ≤ bϑ′(G)c ≤ ϑ′(G) ≤ ϑ(G) ≤ ϑ+(G) ≤ dϑ+(G)e ≤ χq(G) ≤ χ(G) ,

where ϑ′, ϑ, and ϑ+ are the Schrijver, Lovász and Szegedy theta functions.
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Hoffman, in an unpublished paper, proved that for ∆-regular2 graphs:

α(G) ≤ n|λn|
∆ + |λn|

,

where λn is the smallest eigenvalue of the adjacency matrix A. This result is typically proved using interlacing

of a quotient matrix associated with a vertex partition into the independent set and the remaining vertices

and is known as the Hoffman bound or ratio bound.

Lovász [16, Theorem 9] proved that for ∆-regular graphs:

ϑ(G) ≤ n|λn|
∆ + |λn|

.

It is therefore immediate that the Hoffman bound is an upper bound for αq(G) for regular graphs.

Van Dam and Haemers [8] proved that for any graph

α(G) ≤ n(µ1 − δ)
µ1

,

where δ is the minimum degree of G and µ1 is the largest eigenvalue of the Laplacian matrix of G. This

bound equals the Hoffman bound for regular graphs.

Bachoc et al. subsequently proved (see section 5 in [5]), in the context of simplicial complexes, that for

any graph:

ϑ(G) ≤ n(µ1 − δ)
µ1

.

It is therefore immediate that the van Dam and Haemers bound is an upper bound for αq(G).

5. Implications for αq(G) and for α(G). It follows from Theorem 3.3 that any graph with α(G) =

n0 + min (n+, n−) has αq = α. This is the case for numerous graphs, including odd cycle, perfect, folded

cube, Kneser, Andrasfai, Petersen, Desargues, Grotzsch, Heawood, Clebsch and Higman-Sims graphs. Fur-

thermore, if the inertia bound is tight with an appropriately chosen weight matrix, then again αq = α.

This is the case for all bipartite graphs. There are also many graphs, including Chvatal, Hoffman-Singleton,

Flower Snark, Dodecahedron, Frucht, Octahedron, Thomsen, Pappus, Gray, Coxeter and Folkman for which

α = bϑc, so again αq = α. For all such graphs, there are no benefits from quantum entanglement for

independence. The Clebsch graph demonstrates that the inertia bound is not an upper bound for bϑ′(G)c.

Elzinga and Gregory [11] asked whether there exists a real symmetric weight matrix W for every graph

G such that:

(5.9) α(G) = n0(W ) + min (n+(W ), n−(W ))?

They demonstrated experimentally that this is true for all graphs with up to 10 vertices, and for vertex

transitive graphs with up to 12 vertices. Sinkovic [24] subsequently proved that there is no real symmetric

2We use the unconventional symbol ∆ instead of d for the degree of regular graphs because d is the dimension of the Hilbert

space used in the definition of the quantum independence number.
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weight matrix for which (5.9) is tight for Paley 17. This leaves open, however, whether there is always a

Hermitian weight matrix for which (5.9) is exact.

It follows from Theorem 3.3 that every graph with α < αq is a counter-example to (5.9) for real symmetric

and Hermitian weight matrices. This leads to the question of whether (5.9) is true for αq or αp. It follows

from Theorem 3.3 that the answer is no, because for some graphs, such as the line graph of the cartesian

product of K3 with itself, the projective packing number is non-integral [23].

There are also numerous regular graphs for which the Hoffman bound on α(G) is exact, but the un-

weighted inertia bound is not. Examples include the Shrikhande, Tesseract, Hoffman and Cuboctahedral

graphs. There are also many regular graphs where the floor of the Hoffman bound is exact, but the un-

weighted inertia bound is not. Examples include some circulant, cubic and quartic graphs. For all of these

graphs, αq = α.

Appendix A in [4] demonstrates, however, that it is hard to find well-known graphs for which there is

equality in Theorem 3.3 when k ≥ 2 and pk(A) = Ak.

It would be interesting to find the graph with the smallest number of vertices that has α(G) < αq(G).

Such a graph must have at least 11 vertices (given the experimental results due to Elzinga and Gregory).

The smallest such graph that we know of is due to Piovesan (see Figure 3.1 in [21]), which has 24 vertices,

with χ = α = 5, χq = 4 and αq ≥ 6.

6. Conclusion. To conclude, we illustrate the differences between classical and quantum graph param-

eters, by summarising results in [18] for orthogonality graphs. The orthogonality graph Ω(n) has vertex set

the set of ±1-vectors of length n, with two vertices adjacent if they are orthogonal. With n a multiple of 4,

χq(Ω(n)) = n but χ(Ω(n)) is exponential in n. Similarly, αq(Ω(n)�Kn) = 2n but α(Ω(n)�Kn) ≤ n(2− ε)n,

for some ε > 0, where � denotes the Cartesian product [18].

Therefore, the spectral bounds in this paper and in [9] for quantum graph parameters demonstrate the

weaknesses of such bounds for classical graph parameters for some families of graphs.

Acknowledgments. We would like to thank David Roberson for helpful comments on an earlier version

of this paper, in particular in regard to the projective packing number. We would also like to thank David

Anekstein for testing various ideas for this paper experimentally. Aida Abiad would like to thank the

organizers of the workshop ‘Analytical and combinatorial aspects of quantum information theory’, and in

particular, Gabriel Coutinho and Laura Manc̆inska, for helpful discussions on the definition of the quantum

k-independence number. The research of Aida Abiad has been partially supported by Research Foundation

Flanders (FWO) Award 1285921N. The research of Pawel Wocjan has been partially supported by National

Science Foundation Award 1525943.

REFERENCES

[1] A. Abiad, G. Coutinho, M.A. Fiol, B.D. Nogueira, and S. Zeijlemaker. Optimization of eigenvalue bounds for the inde-

pendence and chromatic number of graph powers. Discrete Math., 345(3), 2022.
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