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SPECTRAL PROPERTIES OF CERTAIN SEQUENCES OF PRODUCTS
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Abstract. The aim of this paper is to analyze the asymptotic behavior of the eigenvalues and eigenvectors of particular

sequences of products involving two square real matrices A and B, namely of the form BkA, as k → ∞. This analysis represents

a detailed deepening of a particular case within a general theory on finite families F = {A1, . . . , Am} of real square matrices

already available in the literature. The Bachmann–Landau symbols and related results are largely used and are presented in a

systematic way in the final Appendix.
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1. Introduction. It is well known that, given a finite family F = {A1, . . . , Am} of n× n real matrices

and the associated multiplicative semigroup Σ(F) (i.e., the set of all the possible finite products P =

Ak1i1 . . . A
ks
is

), generally the eigenvalues and the structure of the eigenspaces of a given P ∈ Σ(F) are not

easily correlatable to the eigenvalues and eigenspaces of its factors. Recently, in [4], we have considered

the particular case in which all of the products P are asymptotically rank-one matrices (i.e., the eigenvalue

of maximum modulus is unique and simple) and, under some additional technical assumptions, we have

proved that the set of the leading eigenvectors of all the products P ∈ Σ(F) determines a so-called leading

multicone, which is a particular symmetric subset of Rn (see also [3]), invariant under the action of F .

In this paper, we make a first study of the precise behavior of all the eigenvalues and eigenvectors of

specific sequences of products Pk ∈ Σ(F) as k → ∞. We consider one of the simplest cases, in which the

products involve only two elements of F and have the form Pk = BkA. However, it is worth noting that the

results on sequences of this particular form can be extended in a straightforward way to more general cases

of product sequences such as, for example, Pk = (Ak1i1 . . . A
ks
is

)kA
ks+1

is+1
. . . Akrir , where i1, . . . , ir ∈ {1, . . . ,m}

and k1, . . . , kr ≥ 1 are fixed.

An important field of applications of what above is, for example, the investigation of the asymptotic

behavior of the solutions to discrete-time linear switched systems such as:

x(k + 1) = Aσ(k) x(k), σ : N −→ {1, . . . ,m},

where x(0) ∈ Rn, Aσ(k) ∈ F , and σ denotes the switching law. For an introduction to this subject, see, for

example, the monograph by Blanchini and Miani [2] and the paper by De Iuliis et al. [5].

In our statements and proofs, we make large use of the Bachmann–Landau symbols and related results.

Unfortunately, not all of them are easy to find in the literature. Therefore, we needed to give some proofs ex

novo and, so, we decided to collect systematically the whole necessary theory in a final appendix (Section 6).
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We think that it constitutes an interesting part of the paper in itself even if, at a first sight, it could seem

to be not very consistent with the main scope of our work.

The paper is organized as follows.

In Section 2, we recall some basic definitions and notions regarding the symmetric polynomials and the

term-orderings of monomials.

In Section 3, we consider such polynomials evaluated on a set of complex functions T1, . . . , Tn, defined

on a given domain D ⊆ R, to form the elementary symmetric functions. Then, making use of the results

on the Bachman–Landau symbols reported in Section 6, we analyze the order of the elementary symmetric

functions near an accumulation point of D, under specific assumptions on the mutual ordering of the Ti’s.

In Section 4, we specialize the general results obtained in Section 3 to the particular case of the domain

D = N with accumulation point k0 = +∞. In this framework, we consider the eigenvalues µi(k) of the

matrix BkA, proving that they grow as λki , where the λi’s are the eigenvalues of B (see Proposition 4.7).

Consequentely, if we initially label them in such a way that |µ1(k)| ≥ · · · ≥ |µn(k)|, it turns out that

|µi| ∈ ω(µi+1) (see Corollary 4.8).

In Section 5, we apply the previous results on the asymptotic behavior of the eigenvalues of the matrices

BkA as k →∞, to the corresponding eigenvectors. In this way, we are able to prove that they converge to

vectors – explicitly computed – depending on the eigenvectors of B and on suitable submatrices of A (see

Theorem 5.5).

2. Elementary symmetric polynomials. We start by recalling some basic notions and results.

In the sequel, if z ∈ C, then |z| will denote its module. Moreover, if v ∈ Rn, then we set ‖ v ‖ to be its

Euclidean norm and vers(v) := v/ ‖ v ‖.

Definition 2.1. Let K be a field and K[X1, . . . , Xn] be the ring of polynomials in a set of variables

X1, . . . , Xn. Each element can be written as:

(2.1) P (X1, . . . , Xn) =
∑
finite

αr1···rn X
r1
1 · · ·Xrn

n , where αr1···rn ∈ K, ri ≥ 0.

We say that each αr1···rn X
r1
1 · · ·Xrn

n is a monomial of P and that Xr1
1 · · ·Xrn

n is a term.

Note that a term is just a monomial with coefficient 1 and that a monomial can be zero, while a term

cannot.

Let us recall the well known lexicographic order among all the terms:

(2.2) Xr1
1 · · ·Xrn

n > Xs1
1 · · ·Xsn

n ⇐⇒ r1 > s1 or ∃ i | r1 = s1, . . . , ri = si, ri+1 > si+1.

As immediate consequence of (2.2), we have an ordering among the variables:

(2.3) X1 > X2 > · · · > Xn.

Obviously, (2.2) induces a term-ordering on the terms of a given polynomial. So its maximum term is

uniquely defined.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 377-403, August 2022.

379 Spectral properties of certain sequences of products of two real matrices

Notation 2.2. We denote the monomials (respectively, terms) also by:

αRXR := αr1···rn X
r1
1 · · ·Xrn

n (respectively by XR := Xr1
1 · · ·Xrn

n ),

where R stands for the multi-index (r1 · · · rn) ∈ Nn.

With this notation, (2.2) induces an order on the (nonzero) monomials belonging to any given polynomial.

Namely, if we take P (X) =
∑
R∈I αRXR, where I ⊂ Nn is a finite set, for all I, J ∈ I it is natural to set

αIXI > αJXJ ⇐⇒ XI > XJ ,

where the second inequality is given by (2.2). So, the maximum monomial of P (X) is defined.

Definition 2.3. We say that the integer d is the degree of a nonzero monomial (respectively, term)

αr1···rn X
r1
1 · · ·Xrn

n if d = r1 + · · · + rn. Moreover, the degree of a polynomial (2.1) is the maximum degree

of its monomials. Finally, a polynomial is said homogeneous if all its monomials have the same degree.

In the sequel, we will often consider square-free terms: for them we can use a simpler notation and

denote them by:

Xi1 · · ·Xid , where 1 ≤ i1 < · · · < id ≤ n.

It is clear that the set of square-free terms is finite, and here the lexicographic order can be expressed also

as follows. If Xi1 · · ·Xid and Xj1 · · ·Xjc are two square-free terms, then

(2.4) Xi1 · · ·Xid > Xj1 · · ·Xjc ⇐⇒ i1 < j1 or ∃ k | i1 = j1, . . . , ik = jk and ik+1 < jk+1.

Definition 2.4. The elementary symmetric polynomials σd in X1, . . . , Xn are defined, for each d =

1, . . . , n, as the sums of all the possible square-free terms of degree d in X1, . . . , Xn, that is,

σ0 := 1

σ1 := X1 +X2 + · · ·+Xn

σ2 := X1X2 +X1X3 + · · ·+Xn−1Xn

. . .

σd :=
∑

1≤i1<···<id≤n

Xi1 · · ·Xid

. . .

σn := X1 · · ·Xn.

Clearly, each σd is homogeneous of degree d. Moreover, as seen before, the maximum term of σd is

uniquely defined and turns out to be X1 · · ·Xd. It is also clear that the maximum term of σd −X1 · · ·Xd is

given by X1 · · ·Xd−1Xd+1.

The elementary symmetric polynomials are particular symmetric polynomials (i.e., the elements of

K[X1, . . . , Xn] invariant under all the permutations of the variables). It is known that they generate (as

K–algebra) all the symmetric polynomials.

In the sequel, we are going to use some slightly more general polynomials: substantially, we consider finite

sums of square-free monomials, not necessarily terms. These are still homogeneous but no more symmetric

and, so, it is worthwhile to give them a specific name.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 377-403, August 2022.

M. Brundu and M. Zennaro 380

Definition 2.5. A quasi-elementary symmetric polynomial of degree d in X1, . . . , Xn is

qd(X1, . . . , Xn) =
∑

1≤i1<···<id≤n

αi1···id Xi1 · · ·Xid , where αi1···id ∈ K, α1···d 6= 0.

Clearly, these polynomials specialize to the elementary symmetric polynomial σd as far as all the coeffi-

cients are equal to 1.

Remark 2.6. Accordingly to the previous definitions and remarks, the maximum monomial of the

polynomial qd(X1, . . . , Xn) is α1···dX1 · · ·Xd.

3. Elementary symmetric functions and asymptotic properties. From now on, the role of the

field K as the field of coefficients of K[X1, . . . , Xn] will be played by the field R of real numbers.

Throughout this section, D ⊆ R denotes a domain and x0 ∈ R ∪ {±∞} an accumulation point of D.

We shall make large use of the Bachmann–Landau notation in order to appropriately handle the orders

of real and complex functions defined on D for x −→ x0. For instance, Fx0(D) will denote the set of the

complex functions defined on D\{x0} (see Notation 6.36). For a detailed treatment of this subject in relation

to the use we make in this paper, the reader is referred to the Appendix in Section 6.

Let

Ti : D −→ C, i = 1, . . . , n,

be an ordered set of n complex functions of one real variable x satisfying, eventually (near x0),

(3.5) |T1(x)| ≥ |T2(x)| ≥ · · · ≥ |Tn(x)|.

We can consider the evaluation of any polynomial P (X1, . . . , Xn) ∈ R[X1, . . . , Xn] at the n-tuple of functions

(T1(x), . . . , Tn(x)) obtaining a complex function of the real variable x defined on the domain D as well.

Therefore, we can consider the order (near x0) of such a function and compare it with the order of any of

its evaluated monomials, that is, of a function of the type T r11 (x) · · ·T rnn (x).

In this section, we are going to consider two particular cases of polynomials evaluated on a set of given

functions: the elementary symmetric ones and the quasi-elementary ones.

Definition 3.1. The elementary symmetric functions in T1(x), . . . , Tn(x) are the elementary symmetric

polynomials σd(X1, . . . , Xn) evaluated in such set of functions, that is, for any degree d = 0, . . . , n, we set

Symd(x) := σd(T1(x), . . . , Tn(x)) =
∑

1≤i1<···<id≤n

Ti1(x) · · ·Tid(x).

It is obvious that the orders of Symd(x) and of its maximum (evaluated) monomial are equal to each

other for d = n (see Definition 2.4). But, for a general d, this is no more true: it is necessary to make

further assumptions. This will be done in the forthcoming Theorem 3.6. Its proof is quite tricky: essentially,

we are going to apply Proposition 6.39 to a particular pair of functions f and g, where g is an elementary

symmetric function and f is its maximum monomial and repeat the argument on the remaining parts.

We need first some technical results, which will be stated in a general form (i.e., concerning quasi-

elementary polynomials), and in this version they will be useful also in the next section.
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Notation 3.2. Consider, for each d ∈ {1, . . . , n}, a quasi-elementary polynomial of degree d with real

coefficients (see Definition 2.5):

qd(X1, . . . , Xn) =
∑

1≤i1<···<id≤n

αi1···id Xi1 · · ·Xid , where αi1···id ∈ R, α1···d 6= 0,

and denote the difference between qd and its maximum monomial by:

q̃d(X1, . . . , Xn) := qd(X1, . . . , Xn)− α1···dX1 · · ·Xd.

The evaluations of the above polynomials on (T1(x), . . . , Tn(x)) will be denoted, respectively, by:

Qd(x) := qd(T1(x), . . . , Tn(x)), Q̃d(x) := q̃d(T1(x), . . . , Tn(x)),

which are both elements of Fx0
(D), as well.

Lemma 3.3. Keeping the notation above and assuming that (T1(x), . . . , Tn(x)) satisfies (3.5), for any

d ∈ {1, . . . , n}, the following property is verified:

(3.6) |T1 · · ·Td| ∈ Ω(|Qd|), i.e., |Qd| ∈ O(|T1 · · ·Td|).

Moreover, for any d ∈ {2, . . . , n− 1}, if α1···d−1,d+1 6= 0, then

(3.7) |T1 · · ·Td−1Td+1| ∈ Ω(|Q̃d|)

and, hence,

(3.8) |Q̃d| ∈ O(|T1 · · ·Td−1Td+1|) ⊆ O(|T1 · · ·Td|).

Proof. It easily follows from (3.5), Lemma 6.37 and Proposition 6.39-(i).

In general, it is not true that Qd(x) and its maximum (evaluated) monomial have the same order, even

if we assume strict inequalities |Ti(x)| > |Ti+1(x)| in (3.5). Nevertheless, this happens under two sets of

assumptions: either if the order of Ti is strictly bigger than the order of Ti+1 or if qd = σd and it satisfies

precise requirements, as we will see in the forthcoming Theorem 3.6. In the first case, we have the following

result.

Proposition 3.4. With the notation above, assume in addition that the given functions T1(x), . . . , Tn(x)

verify

|T1| ∈ ω(|T2|), |T2| ∈ ω(|T3|), . . . , |Tn−1| ∈ ω(|Tn|).

Then, for any d = 1, . . . , n, we have

Θ(|Qd|) = Θ(|T1 · · ·Td|).

Proof. For d = n the thesis is obvious since, in this case, Qd = Qn = α1···nT1 · · ·Tn. Thus, let d ≤ n−1.

To compare the orders of T1 · · ·Td and Ti1 · · ·Tid , where (i1, . . . , id) 6= (1, . . . , d), observe that i1 ≥ 1, i2 ≥
2, . . . , id ≥ d and two cases may occur: either i1 > 1, i2 > 2, . . . , id > d or there exists k ∈ {1, 2, . . . , d− 1}
such that i1 = 1, i2 = 2, . . . , ik = k, ik+1 > k + 1, . . . , id > d.

Therefore, since the assumption also implies that |Ti| ∈ ω(0), i = 1, . . . , n− 1, we may repeatedly apply

Proposition 6.32-(v) and conclude that

|T1 · · ·Td| ∈ ω(|Ti1 · · ·Tid |).
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Now we recall that

|Q̃d| = |Qd − α1···dT1 · · ·Td| ≤
∑

(i1,...,id)6=(1,...,d)

|αi1···id | · |Ti1 · · ·Tid |.

Thus, Proposition 6.26-(v) yields

|T1 · · ·Td| ∈ ω(|Q̃d|),

and, consequently, Lemma 6.38-(i) concludes the proof.

In the second case (qd = σd), before the main result of this section, let us prove a preliminary technical

fact.

Lemma 3.5. Let T1(x), . . . , Tn(x) ∈ F = Fx0(D) satisfy (3.5) eventually and let d be any integer in

{1, . . . , n}. If |T1 . . . Td| 6∈ O(|Symd|), then on a suitable subdomain D′ ⊆ D it holds that

(3.9) Θ(|T1 . . . Td|) = Θ(|Symd − T1 . . . Td|) ⊆ ω(|Symd|).

Proof. Let us apply (3.8) of Lemma 3.3 to the particular case qd = σd, that is, Qd(x) = Symd(x),

obtaining

(3.10) |Symd − T1 . . . Td| ∈ O(|T1 · · ·Td|).

By assumption |T1 . . . Td| 6∈ O(|Symd|). This condition, together with (3.10), allows us to apply Proposi-

tion 6.39-(ii) to the functions f = T1 . . . Td and g = Symd−T1 . . . Td, obtaining (3.9) on a suitable subdomain

D′ ⊆ D.

Theorem 3.6. Let T1(x), . . . , Tn(x) ∈ F = Fx0(D) satisfy (3.5) eventually and assume that

(3.11) |Symi| ∈ ω(0), for all i = 1, . . . , n.

Moreover, let s be any integer such that 1 ≤ s ≤ n− 1.

If, for any i = 1, . . . , s, we have

(Hi) |SymrSymr−i
i−1| ∈ O(|Symi|r−i+1), for all r = i+ 1, . . . , n,

then, for all j = 0, . . . , s, the following facts hold:

(Kj) Θ(|Symj |) = Θ(|T1 · · ·Tj |).

Proof. Let us prove (Kj) by finite induction on j = 0, 1, . . . , s. To this aim, observe that the condition

(K0) 1 ∈ Θ(|Sym0|) = Θ(1),

is obviously true.

(Kj−1) =⇒ (Kj) for j ≥ 1

By using (3.6) of Lemma 3.3 for d = j and in the particular case qj = σj , that is, Qj(x) = Symj(x), we

get

|T1 . . . Tj | ∈ Ω(|Symj |).
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Hence, our goal reduces to |T1 . . . Tj | ∈ O(|Symj |). Assume, by contradiction, that |T1 . . . Tj | 6∈ O(|Symj |).
Then, by Lemma 3.5, we have that the relation (3.9) holds in the case d = j on a suitable subdomain Dj ⊆ D:

(3.12) Θ(|T1 . . . Tj |) = Θ(|Symj − T1 . . . Tj |) ⊆ ω(|Symj |).

Claim. The above fact implies that there exists a finite sequence of subdomains Dr with

D ⊇ Dj ⊇ · · · ⊇ Dr−1 ⊇ Dr ⊇ · · · ⊇ Dn

such that, for each r ∈ {j, j + 1, . . . , n},

(ZAr) Θ(|Tj |) = Θ(|Tj+1|) = · · · = Θ(|Tr|) ⊆ ω
( |Symj |
|Symj−1|

)
on Dr′ , r′ := max{j; r − 1},

and

(ZBr) Θ(|T1 . . . Tr|) = Θ(|Symr − T1 . . . Tr|) ⊆ ω(|Symr|) on Dr.

Let us show the claim by finite induction on r = j, . . . , n.

(ZAj) and (ZBj)

Both easily follow from (3.12) on Dj . In fact, (ZBj) coincides with (3.12). Concerning (ZAj), note

instead that we are assuming (Kj−1), that is, |T1T2 . . . Tj−1| ∈ Θ(|Symj−1|) and, hence, |T1T2 . . . Tj−1| ∈ ω(0)

by (3.11). Therefore, by Proposition 6.24 and again by (3.12), we obtain

|Tj | =
|T1T2 . . . Tj |
|T1T2 . . . Tj−1|

∈ ω(|Symj |)Θ(|Sym−1j−1|) = ω(|Symj Sym−1j−1|) on Dj ,

where the last equality is yielded by Proposition 6.32-(v).

(ZAh) and (ZBh), j ≤ h ≤ r − 1 =⇒ (ZAr) and (ZBr)

Given (ZAr−1), in order to prove (ZAr), it is enough to verify that Θ(|Tr−1|) = Θ(|Tr|). By Lemma 3.3,

relation (3.7) for d = r − 1, we have

|T1 · · ·Tr−2Tr| ∈ Ω(|Symr−1 − T1 · · ·Tr−1|),

and, thus, the assumption (ZBr−1) implies

|T1 · · ·Tr−2Tr| ∈ Ω(|T1 . . . Tr−1|).

On the other hand, hypothesis (3.5) implies |Tr| ∈ O(|Tr−1|) and, consequently, Proposition 6.32-(i) also

yields the opposite relation:

|T1 · · ·Tr−2Tr| ∈ O(|T1 . . . Tr−1|).

In conclusion, we obtain

Θ(|T1 · · ·Tr−2Tr|) = Θ(|T1 . . . Tr−1|).

Now observe that, if r = j+ 1, then (Kj−1) and (3.11) yield |T1 · · ·Tr−2| ∈ ω(0). Moreover, if r ≥ j+ 2,

the same inclusion is guaranteed by (ZBr−2) on the subdomain Dr−2 and hence, thanks to Proposition 6.15
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and Corollary 6.16, also on its subdomain Dr−1. So we can apply the Cancellation Law (see Corollary 6.35)

to the above equality and obtain Θ(|Tr|) = Θ(|Tr−1|), as required. Therefore, (ZAr) holds.

In order to show that (ZBr) is true, we first observe that

(3.13)

Θ(|T1 . . . Tr|) = Θ(|T1 . . . Tj |)Θ(|Tj+1|) · · ·Θ(|Tr|) ⊆

⊆ ω(|Symj |) ω

(
|Symr−j

j |
|Symr−j

j−1|

)
= ω

(
|Symr−j+1

j |
|Symr−j

j−1|

)

holds on Dr−1, where the first equality follows from Proposition 6.32-(iii), the inclusion from (3.12) and

(ZAr), and the last equality from Proposition 6.32-(v). On the other hand, from the assumptions (3.11) and

(Hj) and by Lemma 6.25-(ii), for all r = j + 1, . . . , n we obtain

|Symr| ∈ O

(
|Symr−j+1

j |
|Symr−j

j−1|

)
, i.e.,

|Symr−j+1
j |

|Symr−j
j−1|

∈ Ω (|Symr|) ,

on the original domain D. Again by Proposition 6.15 and Corollary 6.16, this fact and relation (3.13) give

immediately

|T1 . . . Tr| ∈ ω (|Symr|) on Dr−1.

In particular, this implies that |T1 . . . Tr| 6∈ O(|Symr|). Then, again by Lemma 3.5, we have that the relation

(3.9) holds with d = r on a suitable subdomain Dr ⊆ Dr−1, which is precisely (ZBr) .

Hence, the claim is proved. In particular, this means that (ZBn), that is,

Θ(|T1 . . . Tn|) ⊆ ω(|Symn|),

holds on a suitable subdomain Dn. Since Symn = T1 . . . Tn by definition, we get a contradiction and the

proof of (Kj) is complete.

4. Preliminary results on the eigenvalues of BkA. In this section, we use the results of Section 3

to study products of elements of Rn,n (the space of square matrices n× n with real entries) from the point

of view of their eigenvalues and eigenvectors. By GL(n,R) we denote the general linear group, that is, the

subset of Rn,n consisting of invertible matrices.

Recall that, if M ∈ Rn,n and µ1, . . . , µn ∈ C are its eigenvalues, then the characteristic polynomial of

M , defined to be pM (z) := det(zIn −M), can be expressed as:

(4.14)

pM (z) = (z − µ1) · · · (z − µn) =

= zn − (µ1 + · · ·+ µn)zn−1 + · · ·+ (−1)nµ1µ2 · · ·µn =

=

n∑
j=0

(−1)j σj (µ1, . . . , µn) zn−j ,

where σj denotes as usual the j-th elementary symmetric polynomial in n variables.

Definition 4.1. If M ∈ Rn,n then, for each j = 1, . . . , n and any j-tuple 1 ≤ i1 < i2 < · · · < ij ≤ n,

we denote by Mi1...ij the submatrix of M obtained by intersecting the rows i1, . . . , ij with the columns of the

same indices i1, . . . , ij. We say that det(Mi1...ij ) is a principal minor of M .
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It is clear that the j × j left-upper block of M is nothing, but M1...j . Let us recall an elementary fact

in which this notation is used (the proof can be found, for instance, in Jacobson [7]).

Proposition 4.2. The characteristic polynomial of a matrix M ∈ Rn,n has the form:

(4.15) pM (z) = zn − α1z
n−1 + · · ·+ (−1)nαn =

n∑
j=0

(−1)j αj z
n−j ,

where α0 = 1, α1 is the trace of the matrix M , αn = det(M) and, in general,

αj =
∑

i1<···<ij

det(Mi1...ij ).

Comparing (4.14) and (4.15), we immediately obtain the following result.

Corollary 4.3. If M ∈ Rn,n and µ1, . . . , µn ∈ C are its eigenvalues then, for all j = 0, . . . , n,

σj (µ1, . . . , µn) =
∑

i1<···<ij

det(Mi1...ij ).

Notation 4.4. From now on, we label the eigenvalues of M in such a way that

|µ1| ≥ · · · ≥ |µn|.

In the sequel, we will deal with the following situation. We consider two matrices A,B ∈ Rn,n, where

B = Diag(λ1, . . . , λn) and, for a positive integer k, we put

M := BkA.

Setting A = (ast) and M = (mst), it is clear that mst = λksast. Hence, for any j = 1, . . . , n and for any

j-tuple i1 < i2 < · · · < ij , we have

det(Mi1...ij ) = λki1 · · ·λ
k
ij det(Ai1...ij ).

Therefore, Corollary 4.3 immediately gives the following fact.

Corollary 4.5. Let A,B ∈ Rn,n, where B = Diag(λ1, . . . , λn). Let k be a positive integer, M := BkA

and µ
(k)
1 , . . . , µ

(k)
n be its eigenvalues. Then, for any j = 1, . . . , n, we have

σj

(
µ
(k)
1 , . . . , µ(k)

n

)
=

∑
i1<···<ij

λki1 · · ·λ
k
ij det(Ai1...ij ).

Observe that the previous equality concerns polynomials either in the µ
(k)
i ’s or in the λij ’s. In order to

emphasize that they are both functions of the integer k, we slightly modify the notation:

µi(k) := µ
(k)
i and Λi(k) := λki , for i = 1, . . . , n.

In particular, accordingly to Notation 4.4, we assume

(4.16) |µ1(k)| ≥ · · · ≥ |µn(k)|, for all k ≥ 1.

From now on, we assume the following condition on the matrix A:

(4.17) det(A1...j) 6= 0, for all j = 1, . . . , n.
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Remark 4.6. In the left-hand side of the equality in Corollary 4.5, we find the j-th elementary symmetric

polynomial evaluated in the µi(k)’s. So, keeping the notation of Definition 3.1, we write

(4.18) Symj(k) = σj(µ1(k), . . . , µn(k)).

On the right side, we have instead a quasi-symmetric polynomial of degree j in the Λi’s so that the

equality in Corollary 4.5 may be rewritten as:

(4.19) Symj(k) =
∑

i1<···<ij

det(Ai1...ij ) Λi1(k) · · ·Λij (k).

In this framework, the domain D of these functions is the set N of natural numbers and, obviously, the

accumulation point is k0 = +∞. Therefore, the symbols Θ, ω, etc., stand for Θ+∞, ω+∞, etc., respectively.

Proposition 4.7. Assume in addition that A,B ∈ GL(n,R), (4.17) holds and

(4.20) |λ1| > · · · > |λn| > 0.

Then the following facts hold:

(i) |Symj | ∈ Θ(|Λ1 · · ·Λj |) for all j = 1, . . . , n;

(ii) for all j = 1, . . . , n− 1 we have

(H̃j) |SymrSymr−j
j−1| ∈ o(|Symj |r−j+1) for all r = j + 1, . . . , n;

(iii) |µj | ∈ Θ(|Λj |) for all j = 1, . . . , n.

Proof. (i) The assumption (4.20) implies |Λi| ∈ ω(|Λi+1|) for all i = 1, . . . , n. This fact, together

with condition (4.17), says that Symj , as expressed in (4.19), satisfies the assumptions of Proposition 3.4.

Therefore,

(4.21) |Symj | ∈ Θ(|Λ1 · · ·Λj |), for all j = 1, . . . , n.

(ii) Now let 1 ≤ j ≤ n− 1. Using (4.21), it is clear that (H̃j) is equivalent to

|Λ1 · · ·Λr(Λ1 · · ·Λj−1)r−j | ∈ o(|Λ1 · · ·Λj |r−j+1), for all r = j + 1, . . . , n,

or, in other words, to

(4.22) |Λ1 · · ·Λj |r−j+1 ∈ ω(|Λ1 · · ·Λr(Λ1 · · ·Λj−1)r−j |), for all r = j + 1, . . . , n.

We start by noting that

|Λ1 · · ·Λj |r−j+1 ∈ Θ(|Λ1 · · ·Λj−1|r−j+1)Θ(|Λj |r−j+1).

On the other hand, as observed before, |Λi| ∈ ω(|Λj |) for all i, j ∈ {1, . . . , n} with i < j and, in particular,

|Λi| ∈ ω(0) by Proposition 6.5-(i). Consequently,

Θ(|Λj |r−j+1) ⊆ Θ(|Λj |)ω(|Λj+1|) · · ·ω(|Λr|) ⊆ ω(|Λj · · ·Λr|),

where the first inclusion follows from Corollary 6.10 and the second one from Proposition 6.32-(v).
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The two relations above give immediately

|Λ1 · · ·Λj |r−j+1 ∈ Θ(|Λ1 · · ·Λj−1|r−j+1)ω(|Λj · · ·Λr|) = ω(|Λ1 · · ·Λj−1|r−j+1|Λj · · ·Λr|),

where the equality follows again from Proposition 6.32-(v). Therefore, (4.22) is proved.

(iii) We want to apply Theorem 3.6 to the function (4.18) in the case s = n − 1. In order to do this,

observe that (4.16) guarantees the assumption (3.5) and that (H̃j) is a stronger form than (Hj). Moreover,

|Symi| ∈ ω(0) for all i = 1, . . . , n by (4.21) and (4.20). So we get

|µ1 . . . µj | ∈ Θ(|Symj |), for all j = 0, 1, . . . , n− 1.

Taking (4.21) and the obvious equality |µ1 . . . µn| = |Symn| into account, we then obtain

|µ1 . . . µj | ∈ Θ(|Λ1 · · ·Λj |)

for all j = 0, 1, . . . , n or, equivalently from Proposition 6.32-(iii),

(4.23) Θ(|µ1|) · · ·Θ(|µj |) = Θ(|µ1 · · ·µj |) = Θ(|Λ1 · · ·Λj |) = Θ(|Λ1|) · · ·Θ(|Λj |).

We have to show that Θ(|µj |) = Θ(|Λj |) for all j = 1, . . . , n.

Let us prove it by induction on j. Clearly, for j = 1, it is immediate consequence of (4.23).

Assume then that Θ(|µt|) = Θ(|Λt|) for all t ≤ j − 1. Hence, since |Λi| ∈ ω(0) for all i, we can apply

Corollary 6.35 (Cancellation Law) to (4.23). In this way, we obtain Θ(|µj |) = Θ(|Λj |) as required.

For an illustration of property (iii) of Proposition 4.7, we refer the reader to the forthcoming Example 5.6.

Corollary 4.8. Let the assumptions (4.20) and (4.17) hold. Then

|µ1| ∈ ω(|µ2|), |µ2| ∈ ω(|µ3|) , . . . , |µn−1| ∈ ω(|µn|).

Proof. Along the proof of Proposition 4.7, we already noted that |Λi| ∈ ω(|Λi+1|) for all i. Hence,

Proposition 4.7-(iii) implies that |µi| ∈ ω(|µi+1|) for all i = 1, . . . , n− 1.

5. Main result. Now we apply the asymptotic results on the eigenvalues of {BkA}k≥1 given in the

previous section to study the corresponding eigenvectors, obtaining in this way the main result of this paper.

Let E = (v1, . . . , vn) be the canonical basis of Rn.

From now on, each linear endomorphism of Rn will be identified with the n× n real matrix associated

with it with respect to E .

Notation 5.1. Define the following subspaces of Rn:

Vj := 〈v1, . . . , vj〉, j = 1, . . . , n,

V j := 〈vj+1, . . . , vn〉, j = 1, . . . , n− 1; V n := {0}.

We also denote by pj (respectively pj) the canonical projection of Rn on the first (respectively second)

summand:

pj : Rn = Vj ⊕ V j −→ Vj , pj : Rn = Vj ⊕ V j −→ V j .
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In the sequel, we have to deal with n × n matrices, so it is useful to use, instead of pj and pj , these maps

composed with the canonical embeddings ej (respectively ej) of Vj (respectively V j) in Rn. Hence, set

Pj := ejpj , P j := ejpj , j = 1, . . . , n.

Notation 5.2. For all integers h, k > 1, we denote by Ik the identity matrix of order k and by Oh×k
the null h× k matrix. If h = k, we simply write Ok.

Finally, if V is any vector space, by id(V ) and 0V we mean, respectively, the identity and the null endomor-

phism of V .

Remark 5.3. With the above notation, we have that

(5.24)
ker(Pj) = V j , Pj(x) = x ⇐⇒ x ∈ Vj ,
ker(P j) = Vj , P j(x) = x ⇐⇒ x ∈ V j

and

(5.25) Pj + P j = id(Rn).

Finally, observe that, if j = n, then pn = id(Rn) = Pn, while pn is zero everywhere and Pn = 0Rn .

The above observations are trivial as soon as we identify all the above endomorphisms with the corre-

sponding matrices referred to the basis E . Namely, the n× n matrices Pj and P j are

Pj =

 Ij Oj×(n−j)

O(n−j)×j On−j

 , P j =

 Oj Oj×(n−j)

O(n−j)×j In−j

 .
In this framework, consider an invertible matrix A ∈ GL(n,R). The natural way to associate an

endomorphism of Vj to A is to consider

Vj
ej−→ Rn A−→ Rn

pj−→ Vj ,

that is, pjAej . It is immediate to see that the matrix representing pjAej (with respect to the basis E)

consists of the upper left j × j block of A. So, using Definition 4.1,

pjAej = A1...j , for all j = 1, . . . , n.

Conversely, if we take an invertible matrix M ∈ GL(j,R), that is, a linear endomorphism of Vj , the natural

way to extend it to the whole Rn is

Rn
pj−→ Vj

M−→ Vj
ej−→ Rn,

and the resulting matrix is ejMpj .

The composition of the two operations (restriction and extension) applied to a matrix A ∈ GL(n,R)

clearly gives the endomorphism of Rn:

Ãj := ej(pjAej)pj = PjAPj .
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Since Ãj = ejA1...jpj , it turns out to be the upper left j × j block of A surrounded by zeroes, that is,

Ãj =

 A1...j Oj×(n−j)

O(n−j)×j On−j

 .
If A1...j is invertible, we set Ã+

j to be the n × n pseudoinverse matrix obtained surrounding by zeroes the

matrix A−11...j , that is,

Ã+
j :=

 A−11...j Oj×(n−j)

O(n−j)×j On−j

 .
Finally, note that the following equalities hold:

(5.26) Ã+
j Ãj = Pj = ÃjÃ

+
j , for all j = 1, . . . , n.

Now consider a matrix B ∈ GL(n,R) having n distinct real eigenvalues λ1, . . . , λn. Up to a suitable

linear transformation, we can assume that the corresponding normalized eigenvectors of B are the elements

v1, . . . , vn of the canonical basis E of Rn. Therefore, the linear endomorphism of Rn associated with B with

respect to E has a diagonal form and, without loss of generality, we assume that

B = Diag(λ1, . . . , λn).

Keeping Notation 5.1 into account, the following properties come from straightforward computations.

Lemma 5.4. For all j = 1, . . . , n, the subspaces Vj and V j of Rn are invariant under the map B. More

precisely,

B(Vj) = Vj , B(V j) = V j .

Moreover, for all k ∈ N:

PjB
k = PjB

kPj = BkPj ,(5.27)

P jB
k = P jB

kP j = BkP j ,(5.28)

PjB
kP j = 0 = P jB

kPj .(5.29)

Finally, we are in a position to state the main result of this paper.

Theorem 5.5. Let A,B ∈ GL(n,R) and assume that B has λ1, . . . , λn as (real) eigenvalues and that

(4.17) and (4.20) hold. Moreover, let v1, . . . , vn be the normalized eigenvectors of B (i.e., the canonical basis

of Rn).

As usual, for each positive integer k, let µ1(k), . . . , µn(k) be the eigenvalues (possibly complex) of BkA,

where

|µ1(k)| ≥ · · · ≥ |µn(k)|.

Then we have:

(i) there exists an integer k such that, for all k ≥ k, the eigenvalues µ1(k), . . . , µn(k) are distinct;
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(ii) for all k ≥ k, denote by u
(k)
1 , . . . , u

(k)
n the normalized eigenvectors of the matrix BkA such that

vers(Ã+
j vj)

Tu
(k)
j ≥ 0 (if equality occurs, either of the two options may be selected). Then the

sequence {u(k)j }k is convergent for each j = 1, . . . , n and

lim
k→∞

u
(k)
j = vers(Ã+

j vj).

Proof. (i) It immediately follows from Corollary 4.8.

(ii) Let k ≥ k, so that all the eigenvalues of BkA are distinct by part (i) and, hence, so are the corresponding

eigenvectors are well.

Now choose an index j ∈ {1, . . . , n}. Note that, being ‖u(k)j ‖ = 1, there exists a converging subsequence

of {u(k)j }k. So we consider any of such converging subsequences which, for the sake of simplicity, we still

denote by {u(k)j }k. We also denote by uj its limit, which is a normalized vector.

We split the proof into three parts.

Part 1: we prove that P juj = 0 and Pjuj = uj .

If j = n, the equalities Pnun = 0 and Pnun = un are trivial.

Thus, we are left to consider j ∈ {1, . . . , n− 1}. Possibly by scaling both the matrices A and B by λ−1j ,

we can assume that λj = 1; so |λi| > 1 for all i ≤ j − 1 and |λi| < 1 for all i ≥ j + 1 . Therefore, we have

(5.30) lim
k→∞

BkP j = 0 and lim
k→∞

B−kPj = B−∞j ,

where we denote by B−∞j the matrix (referred to the basis E) which is null everywhere but the element (j, j)

which is 1. In particular, for every x = (x1, . . . , xn) ∈ Rn, observe that

(5.31) lim
k→∞

B−kPjx = B−∞j x = xjvj = (0, . . . , 0, xj , 0, . . . , 0)T .

Moreover, from (5.30), it immediately follows that

(5.32) lim
k→∞

Ã+
j B
−kPj = Ã+

j B
−∞
j .

Finally recall that, by assumption,

(5.33) µj(k)u
(k)
j = BkAu

(k)
j .

Since we are assuming λj = 1, by Proposition 4.7, it holds that |µj | ∈ Θ(Λj) = Θ(1). In particular,

|µj | ∈ Ω(1) so that the function µj(k) is eventually lower bounded away from zero, that is, there exists a

real number D > 0 and k̃ ≥ k such that

(5.34) D ≤ |µj(k)|, for k ≥ k̃.

In order to show that P juj = 0, we project the vectors in (5.33) on V j via P j and we obtain

µj(k)P ju
(k)
j = P jB

kAu
(k)
j = BkP jAu

(k)
j ,

where the last equality follows from (5.28). Since {Au(k)j } is bounded, taking the limit of the equality above

and using (5.30), we finally obtain

lim
k→∞

µj(k)P ju
(k)
j = lim

k→∞
BkP jAu

(k)
j = 0.
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Using (5.34), we get limk→∞ P ju
(k)
j = 0 and, since uj = limk→∞ u

(k)
j , also P juj = 0. Consequently, (5.25)

yields Pjuj = uj .

Part 2: we prove that vers(Ã+
j vj) is the limit of all the converging subsequences considered in Part 1.

From Pjuj = uj , using (5.24) we obtain that uj ∈ Vj .
In order to complete the argument, we project the vectors in (5.33) on Vj via Pj and obtain

µj(k)Pju
(k)
j = PjB

kAu
(k)
j .

Therefore, taking (5.25) into account and applying (5.27), we get

µj(k)Pju
(k)
j = PjB

kA(Pj + P j)u
(k)
j = BkPjA(Pj + P j)u

(k)
j

= BkÃju
(k)
j +BkPjAP ju

(k)
j ,

where the last equality follows from PjAPj = Ãj . Composing both sides with the operator Ã+
j B
−k and

taking (5.26) into account, we finally obtain

(5.35) µj(k)Ã+
j B
−kPju

(k)
j = Pju

(k)
j + Ã+

j PjAP ju
(k)
j .

Taking the limit of the equality above and using the equalities P juj = 0 and Pjuj = uj , we have that the

right-hand side converges to uj , clearly nonzero. Therefore, also the left-hand side does the same.

Note that, by (5.32), the sequence Ã+
j B
−kPju

(k)
j converges to Ã+

j B
−∞
j uj . Thus, also the sequence

{µj(k)}k converges to a nonzero limit and we can set

µ∞j := lim
k→∞

µj(k) 6= 0.

Therefore, the limit of (5.35) is

µ∞j Ã
+
j B
−∞
j uj = uj .

So, taking (5.31) into account, we have B−∞j uj = αvj , where α = (uj)j . In this way, we finally obtain

µ∞j αÃ
+
j vj = uj ,

and, since vers(Ã+
j vj)

Tu
(k)
j ≥ 0 by assumption and since ‖uj‖ = 1, we get uj = vers(Ã+

j vj), as required.

Part 3: Conclusion.

In the previous part, we have proved that any converging subsequence of {u(k)j }k has a limit equal to the

normalized vector uj = vers(Ã+
j vj). Now assume by contradiction that the whole sequence is not converging

to this limit. Then there exists a subsequence, {ũ(k)j }k say, and a constant K > 0 such that ‖ũ(k)j −uj‖ > K

eventually. Clearly, also the elements of such subsequence are normalized and, consequently, by using again

the previous arguments, we obtain the existence of a subsequence of {ũ(k)j }k that converges to uj , making

the absurde.

Example 5.6. We consider the pair of 2× 2-matrices

A =

 − 2
9

5
9

− 5
2

11
2

 , B =

 3 0

0 1
3

 ,
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already introduced in Example 3 of [4], which satisfy conditions (4.17) and (4.20). In fact,

det(A1) = −2

9
, det(A12) = det(A) =

1

6
,

and

λ1 = 3, λ2 =
1

3
.

It turns out that

Ã+
1 =

 − 9
2 0

0 0

 , Ã+
2 = A−1 =

 33 − 10
3

15 − 4
3

 , v1 =

 1

0

 , v2 =

 0

1

 ,
which imply

u1 = vers(Ã+
1 v1) =

 1

0

 , u2 = vers(Ã+
2 v2) =


5√
29

2√
29

 =

 0.928476690885259...

0.371390676354103...

 .
In order to illustrate the validity of property (iii) of Proposition 4.7, we compute

|µ1(1)/λ1| = 0.333333333333333..., |µ2(1)/λ2| = 0.333333333333333...,

|µ1(2)/λ21| = 0.139579470420236..., |µ2(2)/λ22| = 1.194062895960829...,

|µ1(3)/λ31| = 0.213607341785639..., |µ2(3)/λ32| = 0.780247838269162...,

|µ1(4)/λ41| = 0.221269131148016..., |µ2(4)/λ42| = 0.753230537861045...,

|µ1(5)/λ51| = 0.222116371870562..., |µ2(5)/λ52| = 0.750357415183206...,

whose behavior suggests that |µ1(k)/λk1 | and |µ2(k)/λk2 | have a limit as k →∞.

Moreover, the validity of (ii) of Theorem 5.5 is supported by the computed eigenvectors:

u
(1)
1 =

 0.707106781186547...

0.707106781186547...

 , u
(1)
2 =

 0.894427190999915...

0.447213595499957...

 ,

u
(2)
1 =

 0.989115991126860...

0.147137881244529...

 , u
(2)
2 =

 0.936801009986018...

0.349862641173897...

 ,

u
(3)
1 =

 0.999879791491405...

0.015504920738377...

 , u
(3)
2 =

 0.929092626659850...

0.369847118531833...

 ,

u
(4)
1 =

 0.999998528423443...

0.001715561408985...

 , u
(4)
2 =

 0.928542842067220...

0.371225255667942...

 ,
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u
(5)
1 =

 0.999999981849039...

0.000190530629530...

 , u
(5)
2 =

 0.928484013966713...

0.371372368127006...

 ,
which clearly seem to converge to u1 and u2, respectively, as k →∞.

6. Appendix on Bachmann–Landau symbols. The topic considered in this note has been widely

studied in the literature, starting from the works by Bachmann [1] and Landau [9]. We also mention Hardy [6]

and the important successive contribution by Knuth [8].

However, there are some slight differences among the various treatments, both in the notation and in

the basic definitions themselves. Therefore, although most of the properties and results are simple to prove

and extensively used, here we collect them in a systematic way and give the proofs that are less immediate.

We first establish the notation and the definitions we are intended to use.

Notation 6.1. Let D be a subset of R and let x0 ∈ R ∪ {±∞} be an accumulation point of D. We

denote by F+
x0

(D), or simply F+, the set of the real nonnegative functions:

F+ := {f : D \ {x0} −→ R+},

defined on D \ {x0}, where R+ is the set of the nonnegative real numbers.

Definition 6.2. If f, g ∈ F+, we say that f(x) ≤ g(x) (<, ≥, >, =, respectively) eventually (near x0) if

there exists a neighborhood U of x0 such that f(x) ≤ g(x) (<, ≥, >, =, respectively) for all x ∈ U∩(D\{x0}).

Definition 6.3. For all f ∈ F+, we define the following subsets of F+:

(a) Θx0(f), or simply Θ(f), is the set

Θ(f) := {g ∈ F+ | there exist c1, c2 > 0 such that c1f(x) ≤ g(x) ≤ c2f(x) eventually};

(b) Ox0
(f), or simply O(f), is the set

O(f) := {g ∈ F+ | there exists c > 0 such that g(x) ≤ cf(x) eventually};

(c) ox0
(f), or simply o(f), is the set

o(f) := {g ∈ F+ | for all c > 0 it holds that g(x) < cf(x) eventually};

(d) Ωx0
(f), or simply Ω(f), is the set

Ω(f) := {g ∈ F+ | there exists c > 0 such that g(x) ≥ cf(x) eventually};

(e) ωx0
(f), or simply ω(f), is the set

ω(f) := {g ∈ F+ | for all c > 0 it holds that g(x) > cf(x) eventually}.

The symbols Θ, O, Ω, o, and ω are called Bachmann–Landau symbols.

Remark 6.4. Denoting by “0” the everywhere zero function, it holds that Ω(0) = F+, while Θ(0) =

O(0) is the set of the eventually zero functions. Furthermore, o(0) = ∅, while ω(0) = {f ∈ F+ | f(x) >

0 eventually} is the set of the eventually positive functions.
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The following results regarding the set ω(0) of the eventually positive functions are immediate to be

checked.

Proposition 6.5. For all f ∈ F+ it holds that:

(i) ω(f) ⊆ ω(0);

(ii) o(f) 6= ∅ ⇐⇒ f ∈ ω(0).

Remark 6.6. It is easy to see that the Θ symbol determines an equivalence relation on F+, that is, for

all f, g ∈ F+ it holds that

f ∈ Θ(g) ⇐⇒ g ∈ Θ(f) ⇐⇒ Θ(f) = Θ(g).

Definition 6.7. Given f ∈ F+, the equivalence class Θ(f) is said to be the order of f for x −→ x0 on

the domain D.

Moreover, if f, g ∈ F+ are such that Θ(f) = Θ(g), then we say that they have the same order.

The next list of properties of the Bachmann–Landau symbols is an easy consequence of Definition 6.3.

Proposition 6.8. For all f, g ∈ F+ it holds that:

(i) O(f) ∩ Ω(f) = Θ(f), Θ(f) ( Ω(f) and, if f 6∈ Θ(0), then Θ(f) ( O(f);

(ii) Θ(f) = Θ(g) ⇐⇒ O(f) = O(g) ⇐⇒ Ω(f) = Ω(g);

(iii) O(f) ⊆ O(g) ⇐⇒ Ω(f) ⊇ Ω(g);

(iv) g ∈ O(f) ⇐⇒ Θ(g) ⊆ O(f) ⇐⇒ Θ(f) ⊆ Ω(g) ⇐⇒ f ∈ Ω(g);

(v) g ∈ o(f) ⇐⇒ f ∈ ω(g);

(vi) g ∈ o(f) ⇐⇒ Θ(g) ⊆ o(f) ⇐⇒ O(g) ⊆ o(f);

(vii) g ∈ ω(f) ⇐⇒ Θ(g) ⊆ ω(f) ⇐⇒ Ω(g) ⊆ ω(f);

(viii) Θ(f) = Θ(g) =⇒ {o(f) = o(g) and ω(f) = ω(g)};
(ix) o(f) ( O(f) and, dually, ω(f) ( Ω(f);

(x) O(f) ∩ ω(f) = ∅ and, dually, o(f) ∩ Ω(f) = ∅.

Notation 6.9. By writing BL(f), we mean any Bachmann–Landau symbol of a function f ∈ F+.

The next result is an obvious corollary to Remark 6.6 and Proposition 6.8-(iv,vi,vii).

Corollary 6.10. For all f, g ∈ F+ and for all symbols BL it holds that

g ∈ BL(f) ⇐⇒ Θ(g) ⊆ BL(f).

Remark 6.11. It is easy to see that the O and o symbols determine a partial order and a strict partial

order relation, respectively, with the latter stronger than the former, on the quotient set of the equivalence

relation determined by the Θ symbol. In fact, for all f, g, h ∈ F+ it holds that:

(i) {Θ(f) ⊆ O(g) and Θ(g) ⊆ O(h)} =⇒ Θ(f) ⊆ O(h);

(ii) o(f) ∩Θ(f) = ∅;
(iii) {Θ(f) ⊆ o(g) and Θ(g) ⊆ o(h)} =⇒ Θ(f) ⊆ o(h);

(iv) {Θ(f) ⊆ O(g) and Θ(g) ⊆ o(h)} =⇒ Θ(f) ⊆ o(h);

(v) {Θ(f) ⊆ o(g) and Θ(g) ⊆ O(h)} =⇒ Θ(f) ⊆ o(h).

Moreover, the dual symbols Ω and ω determine order relations, in some sense “opposite”, such that:

(vi) {Θ(f) ⊆ Ω(g) and Θ(g) ⊆ Ω(h)} =⇒ Θ(f) ⊆ Ω(h);
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(vii) ω(f) ∩Θ(f) = ∅;
(viii) {Θ(f) ⊆ ω(g) and Θ(g) ⊆ ω(h)} =⇒ Θ(f) ⊆ ω(h);

(ix) {Θ(f) ⊆ Ω(g) and Θ(g) ⊆ ω(h)} =⇒ Θ(f) ⊆ ω(h);

(x) {Θ(f) ⊆ ω(g) and Θ(g) ⊆ Ω(h)} =⇒ Θ(f) ⊆ ω(h).

Notation 6.12. In the sequel, by D′ we mean a subdomain of D having the same accumulation point

x0 and, for any function f ∈ F+, we still denote its restriction f|D′ by f .

The following result is obvious by Definition 6.2.

Proposition 6.13. Let f, g ∈ F+, and g ∈ BL(f). Then g ∈ BL(f) on D′ for all subdomains D′ ⊆ D.

Lemma 6.14. Let f, h ∈ F+, D′ ⊆ D, and h ∈ BL(f) on the subdomain D′. Moreover, if BL = o, we

also assume that f ∈ ω(0). Then there exists h̃ ∈ F+ such that h̃|D′ = h|D′ and h̃ ∈ BL(f) on the whole

domain D.

Proof. First note that BL(f) 6= ∅ on the whole domain D also in the case BL = o, since we assume

f ∈ ω(0) and thanks to Proposition 6.5-(ii). Therefore, in any case, we can consider k ∈ F+ such that

k ∈ BL(f) and extend h|D′ to the whole domain D by setting

h̃(x) :=

{
h(x) if x ∈ D′

k(x) if x /∈ D′.

Now, it is immediate to check that h̃ ∈ BL(f) on D, concluding the proof.

We can conclude with the following result.

Proposition 6.15. Let f, g ∈ F+, and BL1(f) ⊆ BL2(g), where BL1 and BL2 are two, possibly equal

to each other, Bachmann–Landau symbols. Moreover, if BL1 = o, we also assume that f ∈ ω(0). Then it

also holds that BL1(f) ⊆ BL2(g) on D′ for all D′ ⊆ D.

Proof. First note that, like in Lemma 6.14, our assumptions imply that BL1(f) 6= ∅ on the whole domain

D (and, consequently, on any D′ ⊆ D by Proposition 6.13) also in the case BL1 = o. Then, for a given

subdomain D′, we consider h ∈ F+ such that h ∈ BL1(f) on D′ (note that the values attained by h outside

D′ do not matter).

By Lemma 6.14, there exists h̃ ∈ F+ such that h̃|D′ = h|D′ and h̃ ∈ BL1(f) ⊆ BL2(g) on the whole

domain D. Now Proposition 6.13 allows us to conclude that h̃ ∈ BL2(g) on D′, that is, h ∈ BL2(g) on D′,
as well. Therefore, the arbitrariness of h concludes the proof.

The next corollary is straightforward.

Corollary 6.16. Let f, g ∈ F+, and BL(f) = BL(g). Moreover, if BL = o, we also assume that

f, g ∈ ω(0). Then BL(f) = BL(g) on D′ for all D′ ⊆ D.

Although Proposition 6.8-(x) tells us that the sets O(f) and ω(f) are disjoint (and, analogously, the

sets Ω(f) and o(f)), they do not form a partition of F+. Nevertheless, now we shall prove that they do this

in a “weak sense”.

Proposition 6.17. Let f, g ∈ F+. Then the following statements hold:

(i) g 6∈ O(f) ⇐⇒ g ∈ ω(f) on a suitable D′ ⊆ D;
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(ii) g 6∈ Ω(f) ⇐⇒ g ∈ o(f) on a suitable D′ ⊆ D;

(iii) g 6∈ o(f) ⇐⇒ g ∈ Ω(f) on a suitable D′ ⊆ D;

(iv) g 6∈ ω(f) ⇐⇒ g ∈ O(f) on a suitable D′ ⊆ D.

Proof. (i) If g 6∈ O(f) then, for each c > 0 and for each neighborhood Ix0
, there exists a point xc ∈ Ix0

such that g(xc) > cf(xc). In particular, one can find a sequence (xn)n, xn −→ x0, such that g(xn) >

Mnf(xn), where the Mn’s are chosen in such a way that Mn −→ +∞ and (Mn)n is a strictly increasing

sequence. Therefore, g ∈ ω(f) on D′ := (xn)n.

Conversely, if g ∈ ω(f) on D′, then by Proposition 6.8-(x) it holds that g 6∈ O(f) on D′. Therefore, by

Proposition 6.13, g 6∈ O(f) on D either.

(ii) It follows from the previous point (i) and Proposition 6.8-(iv,v).

(iii) If g 6∈ o(f), then there exists c > 0 such that, for each neighborhood Ix0
, there exists a point xI ∈ Ix0

such that g(xI) ≥ cf(xI). Hence, there exists a sequence (xn)n, xn −→ x0, such that g(xn) ≥ cf(xn).

Therefore, we get g ∈ Ω(f) on D′ := (xn)n.

Conversely, if g ∈ Ω(f) on D′, then by Proposition 6.8-(x) it holds that g 6∈ o(f) on D′. Therefore, by

Proposition 6.13, g 6∈ o(f) on D either.

(iv) It follows from the previous point (iii) and Proposition 6.8-(iv,v).

Corollary 6.18. Let f, g ∈ F+. Then it holds that:

(i) if g ∈ O(f) \ o(f), then g ∈ Θ(f) on a suitable D′ ⊆ D;

(ii) if g ∈ Ω(f) \ ω(f), then g ∈ Θ(f) on a suitable D′ ⊆ D.

The next three results suitably extend Proposition 6.8-(ii, iii) to the o and ω symbols.

Proposition 6.19. Let f, g ∈ F+. Then it holds that:

(i) ω(f) ⊇ ω(g) =⇒ o(f) ⊆ o(g);

(ii) if f ∈ ω(0), then o(f) ⊆ o(g) ⇐⇒ ω(f) ⊇ ω(g);

(iii) if f, g ∈ ω(0), then o(f) = o(g) ⇐⇒ ω(f) = ω(g).

Proof. (i) If f 6∈ ω(0), then o(f) = ∅ by Proposition 6.5-(ii) and, hence, the statement is clearly true.

Thus, we assume that f ∈ ω(0) and consider h ∈ o(f). If h 6∈ o(g), then h ∈ Ω(g) on a suitable D′ ⊆ D by

Proposition 6.17-(iii) and, consequently, g ∈ O(h) on D′. Therefore, Remark 6.11-(iv) and Proposition 6.13

yield g ∈ o(f) on D′ and so, by Proposition 6.8-(v), f ∈ ω(g) on D′. Finally, Proposition 6.15 assures that

ω(g) ⊆ ω(f) also on D′, leading us to the the absurd inclusion f ∈ ω(f) on D′ (see Remark 6.11-(vii)).

Thus, we can conclude that, necessarily, h ∈ o(g).

(ii) We need to prove the opposite implication to (i). To this purpose, we consider h ∈ ω(g) and, assuming

that h 6∈ ω(f), by using the dual version of the previous arguments, we arrive at g ∈ o(f) on a suitable

D′ ⊆ D. Since f ∈ ω(0), this time Proposition 6.15 assures that o(f) ⊆ o(g) also on D′, leading us to the the

absurd inclusion g ∈ o(g) on D′ (see Remark 6.11-(ii)). Thus, we can conclude that, necessarily, h ∈ ω(f).

(iii) Since also g ∈ ω(0), we can interchange the roles of f and g in (ii) and get the desired result.

Proposition 6.20. Let f, g ∈ F+. Then

Θ(f) = Θ(g) ⇐⇒ ω(f) = ω(g).
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Proof. Clearly, it is sufficient to prove the opposite implication to Proposition 6.8-(viii). Thus, we

assume that ω(f) = ω(g). If f 6∈ Θ(g), then necessarily either f 6∈ O(g) or f 6∈ Ω(g). In the first case, by

Proposition 6.17-(i), there exists a suitable D′ ⊆ D where f ∈ ω(g). In the second case, by Proposition 6.17-

(ii), there exists a suitable D′′ ⊆ D where f ∈ o(g) and this means that g ∈ ω(f) on D′′ (see Proposition 6.8-

(v)). On the other hand, Corollary 6.16 assures that ω(g) = ω(f) also on D′ and D′′, yielding the absurd

inclusion f ∈ ω(f) in the first case and g ∈ ω(g) in the second case (see Remark 6.11-(vii)). Thus, we can

conclude that it must be f ∈ Θ(g) and, consequently, Θ(f) = Θ(g).

Corollary 6.21. Let f, g ∈ ω(0). Then

Θ(f) = Θ(g) ⇐⇒ o(f) = o(g).

Proof. The result is immediately obtained by combining Proposition 6.20 and Proposition 6.19-(iii).

Remark 6.22. Observe that the hypothesis f ∈ ω(0) in Proposition 6.19-(ii) is essential. In fact, if

f 6∈ ω(0), Proposition 6.5-(ii) implies that o(f) = ∅ ⊆ o(0) = ∅. On the other hand, if f 6∈ Θ(0) either, then

Proposition 6.20 yields ω(f) 6= ω(0) and, consequently, Proposition 6.5-(i) implies ω(f) 6⊇ ω(0).

Observe that in the points (c) and (e) of Definition 6.3, we impose the strict inequalities. This allows

us to introduce the following notion.

Definition 6.23. If f ∈ ω(0), we define

f−1(x) :=

{
(f(x))

−1
if f(x) 6= 0

0 if f(x) = 0

and, since Θ(f) ⊆ ω(0), we also define

(Θ(f))−1 := {h−1 |h ∈ Θ(f)}.

Observe that defining f−1(x) := 0 whenever f(x) = 0 allows us to conclude that (f−1)−1(x) = f(x) for

all x ∈ D, although, in principle, this is an inconsistent definition. Anyway, this fact has no consequences at

all on the order of f−1 as both f and f−1 are eventually positive and their values are insignificant outside

a neighborhood of the accumulation point x0 of D.

Proposition 6.24. Let f ∈ ω(0). Then

Θ(f−1) = (Θ(f))−1.

Proof. Note first that f−1 ∈ ω(0) as well. Hence, Θ(f−1) ⊆ ω(0) by Proposition 6.8-(vii). On the other

hand, by definition, it is also clear that (Θ(f))−1 ⊆ ω(0).

Now observe that h ∈ Θ(f−1) if and only if there exist c1, c2 > 0 such that

c1f
−1(x) ≤ h(x) ≤ c2f−1(x)

eventually. But this is equivalent to
f(x)

c2
≤ 1

h(x)
≤ f(x)

c1

eventually, which, in turn, is equivalent to h−1 ∈ Θ(f), that is, h ∈ (Θ(f))−1.
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The following result is easy to prove.

Lemma 6.25. Let f ∈ ω(0), h ∈ Θ(f) and g ∈ F+. Then the following facts hold for all symbols BL:

(i) k ∈ BL(g) =⇒ hk ∈ BL(fg);

(ii) k ∈ BL(fg) =⇒ h−1k ∈ BL(g).

Concerning the “sum” of Bachmann–Landau symbols (intended in the natural sense), for any BL it is

straightforward to see that

(6.36) BL(f) +BL(g) ⊆ BL(f + g).

To always give a meaning to the left-hand side of (6.36), in the case BL = o, we assume that f, g ∈ ω(0),

so that o(f) 6= ∅ and o(g) 6= ∅ (see Proposition 6.5-(ii)).

Indeed, also the opposite inclusions hold, as is illustrated by the next Proposition 6.26.

Proposition 6.26. If f, g ∈ F+, then the following statements hold:

(i) O(f + g) = O(f) +O(g);

(ii) Ω(f + g) = Ω(f) + Ω(g) = Θ(f) + Ω(g) = Ω(f) + Θ(g);

(iii) Θ(f + g) = Θ(f) + Θ(g);

(iv) if f, g ∈ ω(0), then o(f + g) = o(f) + o(g);

(v) ω(f + g) = ω(f) + ω(g).

Proof. Observe that, in all cases, it is sufficient to prove the opposite inclusions to (6.36).

(i) Let h ∈ O(f + g). So there exists c > 0 such that h(x) ≤ c(f(x) + g(x)) eventually. If we define

F (x) := max{0, h(x) − cg(x)} and G(x) := h(x) − F (x), we clearly have that F ∈ O(f), G ∈ O(g) and

h(x) = F (x) +G(x) for all x, concluding the proof.

(ii) Except for exchanging the roles of f and g and taking Proposition 6.8-(i) into account, we only need to

show that Ω(f + g) ⊆ Θ(f) + Ω(g). Therefore, let us consider h ∈ Ω(f + g). So there exists c > 0 such that

h(x) ≥ c(f(x) + g(x)) eventually. If we define F (x) := cf(x) and G(x) := h(x)− cf(x), we clearly have that

F ∈ Θ(f), G ∈ Ω(g) and h(x) = F (x) +G(x) for all x. Hence, h ∈ Θ(f) + Ω(g), as required.

(iii) Consider h ∈ Θ(f + g). So there exist two constants c1, c2 > 0 such that

c1 (f(x) + g(x)) ≤ h(x) ≤ c2 (f(x) + g(x)),

eventually. If we define

F (x) :=

{
c1f(x) if f(x) ≤ g(x)

h(x)− c1g(x) if f(x) > g(x)
and G(x) :=

{
h(x)− c1f(x) if f(x) ≤ g(x)

c1g(x) if f(x) > g(x)

we obviously get h(x) = F (x) +G(x) for all x. In order to show that F ∈ Θ(f) and G ∈ Θ(g), it is enough

to observe that, eventually, we have

c1f(x) ≤ F (x) = h(x)− c1g(x) ≤ (2c2 − c1)f(x)

whenever f(x) > g(x) and

c1g(x) ≤ G(x) = h(x)− c1f(x) ≤ (2c2 − c1)g(x)
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whenever f(x) ≤ g(x). This proves that h ∈ Θ(f) + Θ(g).

(iv) Let h ∈ o(f + g). Since f, g ∈ ω(0), we have that f + g ∈ ω(0) as well. Therefore, (f + g)−1h ∈ o(1)

by Lemma 6.25-(ii) and, in turn, F := (f + g)−1hf ∈ o(f) and G := (f + g)−1hg ∈ o(g) by Lemma 6.25-(i).

Moreover, h(x) = F (x) +G(x) eventually, implying that h ∈ o(f) + o(g).

(v) Since ω(f + g) ⊆ ω(f) ∩ ω(g), if h ∈ ω(f + g), then h = 1
2h+ 1

2h ∈ ω(f) + ω(g).

The following corollary to Proposition 6.26-(ii), which regards the symbol Ω, is straightforward.

Corollary 6.27. For all f ∈ F+, it holds that

Θ(f) + Ω(f) = Ω(f).

As for the other symbols, the situation is illustrated by the next proposition, whose proof is once again

rather easy.

Proposition 6.28. For all f ∈ F+ the following properties hold:

(i) Θ(f) +O(f) = Θ(f);

(ii) if f ∈ ω(0), then Θ(f) + o(f) = Θ(f) and O(f) + o(f) = O(f);

(iii) Θ(f) + ω(f) = Ω(f) + ω(f) = ω(f).

Regarding the symbol ω, as a complement to Propositions 6.26-(v) and 6.28-(iii), we have the following

result.

Proposition 6.29. For all f, g ∈ F+, it holds that

ω(f + g) ⊆ Θ(f) + ω(g) and, simmetrically, ω(f + g) ⊆ ω(f) + Θ(g).

Proof. Except for exchanging the roles of f and g, we only need to show the former inclusion. Therefore,

let us consider h ∈ ω(f + g). So for all c > 0, we have that h(x) > c(f(x) + g(x)) eventually. If we define

F (x) := f(x) and G(x) := h(x) − f(x), we clearly have that h(x) = F (x) + G(x) for all x, F ∈ Θ(f) and,

for all c > 1, G(x) > (c− 1)f(x) + cg(x) > cg(x) eventually, that is, G ∈ ω(g). Hence, we can conclude that

h ∈ Θ(f) + ω(g), as required.

Remark 6.30. In general, the opposite inclusions are not true. To see this, we assume that f ∈ ω(g)

and consider h ∈ ω(g) ∩ o(f) (we choose, for instance, g ∈ ω(0) and h =
√
fg). Then Proposition 6.28-(ii)

yields f +h ∈ Θ(f) and, consequently, Proposition 6.8-(x) implies that f +h 6∈ ω(f). Since ω(f +g) ⊆ ω(f),

we conclude that Θ(f) + ω(g) 6⊆ ω(f + g).

Concerning the “product” of Bachmann–Landau symbols (intended in the natural sense), for any BL it

is straightforward to see that

(6.37) BL(f) BL(g) ⊆ BL(fg).

Once again, to always give a meaning to the left-hand side of (6.37); in the case BL = o, we assume

that f, g ∈ ω(0) so that o(f) 6= ∅ and o(g) 6= ∅.

In this framework, Lemma 6.25 may be equivalently restated as follows.

Lemma 6.31. Let f ∈ ω(0) and g ∈ F+. Then the following facts hold for all symbols BL:
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(i) Θ(f)BL(g) ⊆ BL(fg);

(ii) Θ(f−1)BL(fg) ⊆ BL(g).

Indeed, also the opposite inclusions to (6.37) and to Lemma 6.31-(i) hold, as will be illustrated by the

next Proposition 6.32.

Proposition 6.32. If f, g ∈ F+, then the following equalities hold:

(i) O(fg) = O(f)O(g) = Θ(f)O(g) = O(f)Θ(g);

(ii) Ω(fg) = Ω(f)Ω(g) and, if f ∈ ω(0), then Ω(fg) = Θ(f)Ω(g);

(iii) Θ(fg) = Θ(f)Θ(g);

(iv) if f, g ∈ ω(0), then o(fg) = o(f)o(g) = Θ(f)o(g) = o(f)Θ(g);

(v) ω(fg) = ω(f)ω(g) and, if f ∈ ω(0), then ω(fg) = Θ(f)ω(g).

Proof. Observe that, in all cases, it is sufficient to prove the opposite inclusions to (6.37). To this

purpose, for given f, g, h ∈ F+, we define the functions:

F (x) :=


f(x) if f(x) 6= 0
h(x)
g(x) if f(x) = 0, g(x) 6= 0√
h(x) if f(x) = g(x) = 0

and G(x) :=


h(x)
f(x) if f(x) 6= 0

g(x) if f(x) = 0, g(x) 6= 0√
h(x) if f(x) = g(x) = 0

which are such that h(x) = F (x)G(x) for all x.

(i) Except for exchanging the roles of f and g and taking Proposition 6.8-(i) into account, we only need to

show that O(fg) ⊆ Θ(f)O(g). To this purpose, let us consider h ∈ O(fg), that is, for some c > 0 we have

h(x) ≤ cf(x)g(x) eventually. Therefore, f(x)g(x) = 0 implies h(x) = 0 eventually and hence, on the one

hand, F (x) = f(x) eventually (so that F ∈ Θ(f)) and, on the other hand, G(x) ≤ max{c, 1}g(x) eventually

(so that G ∈ O(g)). Hence, h ∈ Θ(f)O(g), as required.

(ii) Consider h ∈ Ω(fg). In this case, we clearly have that F ∈ Ω(f) and G ∈ Ω(g). Thus, h ∈ Ω(f)Ω(g), as

required.

Furthermore, if f ∈ ω(0), it turns out that F (x) = f(x) eventually so that F ∈ Θ(f).

(iii) Consider h ∈ Θ(fg). Like in case (i), we clearly have again that F (x) = f(x) eventually so that

F ∈ Θ(f). Moreover, this time it turns out that G ∈ Θ(g). Thus, h ∈ Θ(f)Θ(g), as required.

(iv) Since f, g ∈ ω(0), it holds that o(f) 6= ∅, o(g) 6= ∅ and o(fg) 6= ∅ (see Proposition 6.5-(ii)). Then we

consider h ∈ o(fg), which easily implies
√
h ∈ o(

√
fg). Therefore, by Lemma 6.25, we immediately get

Φ :=
√
g−1fh ∈ o(f) and Γ :=

√
f−1gh ∈ o(g).

Clearly, it holds that h(x) = Φ(x)Γ(x) eventually and, therefore, h ∈ o(f)o(g), as required.

To complete this case, except for exchanging the roles of f and g, we are left to show that o(fg) =

Θ(f)o(g). The inclusion Θ(f)o(g) ⊆ o(fg) is granted by Lemma 6.31-(i). In order to prove the opposite

one, we consider h ∈ o(fg) and, once again, the functions F and G defined above. Since f ∈ ω(0), as usual

we have that F ∈ Θ(f). Moreover, this time it immediately turns out that G ∈ o(g). Thus, h ∈ Θ(f)o(g),

as required.
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(v) Consider h ∈ ω(fg) and another function u ∈ ω(1) such that u(x) > 0 for all x. If we define

Φ(x) :=



√
f(x)
√
h(x)√

g(x)
if f(x) 6= 0, g(x) 6= 0

h(x)
g(x)u(x) if f(x) = 0, g(x) 6= 0

f(x)u(x) if f(x) 6= 0, g(x) = 0√
h(x) if f(x) = g(x) = 0

,

and

Γ(x) :=



√
g(x)
√
h(x)√

f(x)
if f(x) 6= 0, g(x) 6= 0

g(x)u(x) if f(x) = 0, g(x) 6= 0
h(x)

f(x)u(x) if f(x) 6= 0, g(x) = 0√
h(x) if f(x) = g(x) = 0

,

we clearly have that Φ ∈ ω(f), Γ ∈ ω(g) and h(x) = Φ(x)Γ(x) for all x. Thus, h ∈ ω(f)ω(g), as required.

To complete this case, we need to assume that f ∈ ω(0) and show that ω(fg) = Θ(f)ω(g). Again,

the inclusion Θ(f)ω(g) ⊆ ω(fg) is granted by Lemma 6.31-(i), whereas the opposite one is obtained by

considering h ∈ ω(fg) and the functions F and G defined above. Since f ∈ ω(0), as usual we have that

F ∈ Θ(f). Moreover, this time it immediately turns out that G ∈ ω(g). Thus, h ∈ Θ(f)ω(g), as required.

Remark 6.33. Observe that, once again, the hypothesis f ∈ ω(0) in Proposition 6.32 is essential. In fact,

if f 6∈ ω(0), the situation is quite different. Namely, it holds that Θ(f)ω(g)∩ω(fg) = ∅, Θ(f)o(g)∩o(fg) = ∅
and Θ(f)Ω(g) ( Ω(fg) for all g ∈ F+.

Clearly, Proposition 6.32 can be immediately resumed as follows.

Corollary 6.34. Let f, g ∈ ω(0). Then, for any symbol BL, it holds that

BL(f)BL(g) = BL(fg) = Θ(f)BL(g).

Corollary 6.35 (Cancellation Law). Let f, g ∈ ω(0) such that Θ(f) = Θ(g) and let h, k ∈ F+. Then,

for any symbol BL, it holds that

BL(fh) = BL(gk) =⇒ BL(h) = BL(k).

Proof. Using Definition 6.23 and Corollary 6.34, we can write

BL(h) = BL(f−1fh) = Θ(f−1)BL(fh) and BL(k) = BL(g−1gk) = Θ(g−1)BL(gk).

Since Θ(f) = Θ(g), Proposition 6.24 implies Θ(f−1) = Θ(g−1) as well. Therefore, the assumption BL(fh) =

BL(gk) lets us conclude that BL(h) = BL(k).

In order to study also the order of functions with complex values, we introduce a larger set than F+.

Notation 6.36. Let D be a subset of R and let x0 ∈ R∪ {±∞} be an accumulation point of D. We set

F = Fx0
(D) := {f : D \ {x0} −→ C}.

Observe that, if f ∈ F , then |f | ∈ F+. Therefore, we can define the order of f for x −→ x0 on the

domain D as the order of |f | (see Definition 6.7).
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Lemma 6.37. If f, g ∈ F , then it holds that O(|f + g|) ⊆ O(|f |) + O(|g|) and, dually, Ω(|f + g|) ⊇
Ω(|f |) + Ω(|g|).

Proof. It is a consequence of Proposition 6.26-(i,ii) and the fact that |f(x) + g(x)| ≤ |f(x)|+ |g(x)|.

Lemma 6.38. Let f, g ∈ F ; then the following facts hold:

(i) |f | ∈ ω(|g|) =⇒ Θ(|f + g|) = Θ(|f |);
(ii) |f | ∈ ω(|f + g|) =⇒ |g| ∈ Ω(|f |).

Proof. Recall first that

(6.38) |f(x)| − |g(x)| ≤ |f(x) + g(x)| ≤ |f(x)|+ |g(x)|.

(i) If |f | ∈ ω(|g|) then, for all c > 1, it eventually holds that |f(x)| > c|g(x)|. Therefore, (6.38) implies

c− 1

c
|f(x)| < |f(x) + g(x)| < c+ 1

c
|f(x)|

where, clearly, c−1
c > 0. So Θ(|f + g|) = Θ(|f |).

(ii) The assumption means that, for all c > 1, |f(x)| > c|f(x) + g(x)| eventually. Hence, from (6.38),

we obtain |f(x)| > c(|f(x)| − |g(x)|), that is, |g(x)| > c−1
c |f(x)|, and this implies |g| ∈ Ω(|f |).

Proposition 6.39. Let f, g ∈ F and assume that |g| ∈ O(|f |). Then it holds that:

(i) Θ(|f |) ⊆ Ω(|f + g|);
(ii) if |f | 6∈ O(|f + g|), then Θ(|f |) = Θ(|g|) ⊆ ω(|f + g|) on a suitable D′ ⊆ D.

Proof.

(i) By assumption and by Remark 6.11-(i), we have O(|g|) ⊆ O(|f |) and so, by Proposition 6.8-(iii), we

obtain Ω(|f |) ⊆ Ω(|g|). Therefore, by using Proposition 6.26-(ii), we obtain

Θ(|f |) ⊆ Ω(|f |) = Ω(2|f |) = Ω(|f |) + Ω(|f |) ⊆ Ω(|f |) + Ω(|g|) ⊆ Ω(|f + g|),

where the last inclusion follows from Lemma 6.37.

(ii) Clearly, Proposition 6.17-(i) and Corollary 6.10 imply that Θ(|f |) ⊆ ω(|f+g|) on a suitable D′ ⊆ D.

Consequently, Lemma 6.38-(ii), the assumption |g| ∈ O(|f |), Proposition 6.13, and Remark 6.6 allow

us to conclude that Θ(|f |) = Θ(|g|) on the same subdomain D′.
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