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SPECTRAL PROPERTIES OF CERTAIN SEQUENCES OF PRODUCTS
OF TWO REAL MATRICES*

MICHELA BRUNDUT AND MARINO ZENNAROT

Abstract. The aim of this paper is to analyze the asymptotic behavior of the eigenvalues and eigenvectors of particular
sequences of products involving two square real matrices A and B, namely of the form B¥ A, as k — co. This analysis represents
a detailed deepening of a particular case within a general theory on finite families 7 = {A1,..., Ay, } of real square matrices
already available in the literature. The Bachmann—Landau symbols and related results are largely used and are presented in a
systematic way in the final Appendix.
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1. Introduction. It is well known that, given a finite family F = {A1,..., A,,} of n x n real matrices
and the associated multiplicative semigroup X (F) (i.e., the set of all the possible finite products P =
Afll ...Af:), generally the eigenvalues and the structure of the eigenspaces of a given P € X(F) are not
easily correlatable to the eigenvalues and eigenspaces of its factors. Recently, in [4], we have considered
the particular case in which all of the products P are asymptotically rank-one matrices (i.e., the eigenvalue
of maximum modulus is unique and simple) and, under some additional technical assumptions, we have
proved that the set of the leading eigenvectors of all the products P € X(F) determines a so-called leading
multicone, which is a particular symmetric subset of R™ (see also [3]), invariant under the action of F.

In this paper, we make a first study of the precise behavior of all the eigenvalues and eigenvectors of
specific sequences of products P, € X(F) as k — 0o. We consider one of the simplest cases, in which the
products involve only two elements of F and have the form P, = B*¥A. However, it is worth noting that the
results on sequences of this particular form can be extended in a straightforward way to more general cases
of product sequences such as, for example, P, = (Afl1 ...AZ*)’“A?:E ...Af:, where i1,...,4, € {1,...,m}
and kq,...,k. > 1 are fixed.

An important field of applications of what above is, for example, the investigation of the asymptotic
behavior of the solutions to discrete-time linear switched systems such as:

r(k+1)= A,y x(k), o:N—{1,...,m},

where z(0) € R", A,y € F, and o denotes the switching law. For an introduction to this subject, see, for
example, the monograph by Blanchini and Miani [2] and the paper by De Iuliis et al. [5].

In our statements and proofs, we make large use of the Bachmann—Landau symbols and related results.
Unfortunately, not all of them are easy to find in the literature. Therefore, we needed to give some proofs ex
novo and, so, we decided to collect systematically the whole necessary theory in a final appendix (Section 6).
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We think that it constitutes an interesting part of the paper in itself even if, at a first sight, it could seem
to be not very consistent with the main scope of our work.

The paper is organized as follows.

In Section 2, we recall some basic definitions and notions regarding the symmetric polynomials and the
term-orderings of monomials.

In Section 3, we consider such polynomials evaluated on a set of complex functions 71, ...,T,, defined
on a given domain D C R, to form the elementary symmetric functions. Then, making use of the results
on the Bachman—Landau symbols reported in Section 6, we analyze the order of the elementary symmetric
functions near an accumulation point of D, under specific assumptions on the mutual ordering of the T;’s.

In Section 4, we specialize the general results obtained in Section 3 to the particular case of the domain
D = N with accumulation point kg = 4o0o. In this framework, we consider the eigenvalues u;(k) of the
matrix B¥A, proving that they grow as A\¥,

Consequentely, if we initially label them in such a way that |pq (k)] > ---
|pi] € w(pir1) (see Corollary 4.8).

where the \;’s are the eigenvalues of B (see Proposition 4.7).
> |un(k)|, it turns out that

In Section 5, we apply the previous results on the asymptotic behavior of the eigenvalues of the matrices
B* A as k — 00, to the corresponding eigenvectors. In this way, we are able to prove that they converge to
vectors — explicitly computed — depending on the eigenvectors of B and on suitable submatrices of A (see
Theorem 5.5).

2. Elementary symmetric polynomials. We start by recalling some basic notions and results.

In the sequel, if z € C, then |z| will denote its module. Moreover, if v € R™, then we set || v || to be its
Euclidean norm and vers(v) :=v/ || v |.

DEFINITION 2.1. Let K be a field and K[X1,...,Xy] be the ring of polynomials in a set of variables
Xi1,...,X,. Fach element can be written as:

(2.1) P(Xy,....Xp) = > 0y, X{* - X0, where oy, €K, 7 > 0.
finite

We say that each ap,...., X1* -+ X is a monomial of P and that X{*--- X" is a term.

Note that a term is just a monomial with coefficient 1 and that a monomial can be zero, while a term
cannot.

Let us recall the well known lexicographic order among all the terms:
(2.2) Xt X)r > X7 Xon = ry>sp0or 30| vy =81,...,7 = Siy il > Sit1-
As immediate consequence of (2.2), we have an ordering among the variables:
(2.3) Xi>Xo>--> X,

Obviously, (2.2) induces a term-ordering on the terms of a given polynomial. So its mazimum term is
uniquely defined.
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NOTATION 2.2. We denote the monomials (respectively, terms) also by:
apXpR =y, X{1 oo X (respectively by Xpg:= X' X)),
where R stands for the multi-index (ry---r,) € N™.

With this notation, (2.2) induces an order on the (nonzero) monomials belonging to any given polynomial.
Namely, if we take P(X) = Y Rez arX r, where T C N” is a finite set, for all I, J € T it is natural to set

OZIY[ > O{.]y.] <~ YI > y'],

where the second inequality is given by (2.2). So, the mazimum monomial of P(X) is defined.

DEFINITION 2.3. We say that the integer d is the degree of a nonzero monomial (respectively, term)
Opyovpy, Xi1 - X0 if d =11 4 -+ 4+ 1. Moreover, the degree of a polynomial (2.1) is the mazimum degree
of its monomials. Finally, a polynomial is said homogeneous if all its monomials have the same degree.

In the sequel, we will often consider square-free terms: for them we can use a simpler notation and
denote them by:
X

iy Xi,, where 1<4; < - <ig<n.
It is clear that the set of square-free terms is finite, and here the lexicographic order can be expressed also

as follows. If X, --- X;, and Xj, --- X  are two square-free terms, then

(2.4) Xi1 "'Xid > le "'ch — 11 <1 or 1k | 11 =J1y--50k = Jk andik+1 <jk+1~
DEFINITION 2.4. The elementary symmetric polynomials o4 in X1,...,X, are defined, for each d =
1,...,n, as the sums of all the possible square-free terms of degree d in X1,...,X,, that is,
op:=1

o =X1+Xo+ -+ X,
oo = X1 Xo+ X1 Xz +-- + Xy 1 Xy

Oq ‘— Z Xil"'Xid

1<i1 < <ig<n
o= X1 X,

Clearly, each o4 is homogeneous of degree d. Moreover, as seen before, the mazimum term of o4 is
uniquely defined and turns out to be X --- Xy4. It is also clear that the maximum term of o4 — X7 --- X4 is
given by X1 tee deleJr].

The elementary symmetric polynomials are particular symmetric polynomials (i.e., the elements of
K[Xy,...,X,] invariant under all the permutations of the variables). It is known that they generate (as
K—algebra) all the symmetric polynomials.

In the sequel, we are going to use some slightly more general polynomials: substantially, we consider finite
sums of square-free monomials, not necessarily terms. These are still homogeneous but no more symmetric
and, so, it is worthwhile to give them a specific name.
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DEFINITION 2.5. A quasi-elementary symmetric polynomial of degree d in X1,..., X, is
qi(X1,...,X,) = Z iy iy Xiy -+ Xy, Where oy, € K, aq..q # 0.

1<i1 < <ig<n

Clearly, these polynomials specialize to the elementary symmetric polynomial o4 as far as all the coeffi-
cients are equal to 1.

REMARK 2.6. Accordingly to the previous definitions and remarks, the maximum monomial of the
polynomial ga(X1, ..., X,,) is a1 X1 - Xa.

3. Elementary symmetric functions and asymptotic properties. From now on, the role of the
field K as the field of coefficients of K[Xq,...,X,] will be played by the field R of real numbers.

Throughout this section, D C R denotes a domain and 2y € RU {£o0} an accumulation point of D.

We shall make large use of the Bachmann—Landau notation in order to appropriately handle the orders
of real and complex functions defined on D for x — x¢. For instance, F,, (D) will denote the set of the
complex functions defined on D\ {z} (see Notation 6.36). For a detailed treatment of this subject in relation
to the use we make in this paper, the reader is referred to the Appendix in Section 6.

Let
T,: D—C, i=1,...,n,

be an ordered set of n complex functions of one real variable z satisfying, eventually (near x¢),
(3.5) Ty (z)| > [Ta(z)| = - = [To(z)]-

We can consider the evaluation of any polynomial P(X1,...,X,) € R[X,..., X,] at the n-tuple of functions
(Ty(x),...,T(z)) obtaining a complex function of the real variable x defined on the domain D as well.
Therefore, we can consider the order (near zg) of such a function and compare it with the order of any of
its evaluated monomials, that is, of a function of the type T7*(z)--- T}~ (z).

In this section, we are going to consider two particular cases of polynomials evaluated on a set of given
functions: the elementary symmetric ones and the quasi-elementary ones.

DEFINITION 3.1. The elementary symmetric functions in Ty(x), ..., Ty (x) are the elementary symmetric
polynomials 04(X1, ..., X,) evaluated in such set of functions, that is, for any degree d = 0,... ,n, we set
Symg(z) := oq(Ti(z), ..., Ta(x)) = Yo T Ty (),

1<iy < <ig<n

It is obvious that the orders of Symg,(x) and of its maximum (evaluated) monomial are equal to each
other for d = n (see Definition 2.4). But, for a general d, this is no more true: it is necessary to make
further assumptions. This will be done in the forthcoming Theorem 3.6. Its proof is quite tricky: essentially,
we are going to apply Proposition 6.39 to a particular pair of functions f and g, where g is an elementary
symmetric function and f is its maximum monomial and repeat the argument on the remaining parts.

We need first some technical results, which will be stated in a general form (i.e., concerning quasi-
elementary polynomials), and in this version they will be useful also in the next section.
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NOTATION 3.2. Consider, for each d € {1,...,n}, a quasi-elementary polynomial of degree d with real
coefficients (see Definition 2.5 ):

qa(X1,..., Xn) = Z Qg Xiy - Xy,  where oy, €ER, a1..q # 0,

1<iy < <ig<n
and denote the difference between qq and its maximum monomial by:
Ga(X1,.. ., X)) = qa(X1, ..., Xn) —0q...qX1 - Xg.
The evaluations of the above polynomials on (T1(x),...,T,(x)) will be denoted, respectively, by:
Qa(x) := qu(Ti(2), ..., Tu(2)), Qa(x) :=Ga(Ti(x), ..., Tu(x)),

which are both elements of Fy, (D), as well.

LEMMA 3.3. Keeping the notation above and assuming that (Ti(x),...,T,(x)) satisfies (3.5), for any
de{1,...,n}, the following property is verified:

(36) ‘T1'~'Td| EQ(|Qd|), i.e., |Qd| EO(|T1TdD

Moreover, for any d € {2,...,n— 1}, if a1..q—1,4+1 # 0, then

(3.7) Ty -+ Ta-1Tasr| € Q)
and, hence,
(3.8) Qal € O(T) -~ Ty1Tara|) C O(|Ty -+ Ty
Proof. It easily follows from (3.5), Lemma 6.37 and Proposition 6.39-(i). d

In general, it is not true that Q4(x) and its maximum (evaluated) monomial have the same order, even
if we assume strict inequalities |T;(z)| > |Ti+1(z)| in (3.5). Nevertheless, this happens under two sets of
assumptions: either if the order of T; is strictly bigger than the order of T;,; or if ¢4 = o4 and it satisfies
precise requirements, as we will see in the forthcoming Theorem 3.6. In the first case, we have the following

result.
PROPOSITION 3.4. With the notation above, assume in addition that the given functions Ty(x), ..., Ty (x)
verify
Th € w(|T2l), [Ta| € w(|T5)),...,  [To-al| € w(|Tnl)-
Then, for any d=1,...,n, we have

O(|Qal) = ©(|T1 -+ - Tul).

Proof. For d = n the thesis is obvious since, in this case, Qq = @, = a1..,, 11 -+ T,,. Thus, let d < n—1.
To compare the orders of T --- Ty and Ty, - - - T;,, where (i1,...,4q4) # (1,...,d), observe that iy > 1, iy >

2,..., ig > d and two cases may occur: either i; > 1,is > 2,...,iq > d or there exists k € {1,2,...,d — 1}
such that i1 =1, o =2,..., ix =k, ig11 > k+1,...,iqg > d.
Therefore, since the assumption also implies that |T;| € w(0), ¢ = 1,...,n — 1, we may repeatedly apply

Proposition 6.32-(v) and conclude that

Ty ---Ta| € w(|Ti, - - Ty ])-
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Now we recall that

Qal = 1Qa — Ty -+ Tyl < > iy iy | Ty Ty |-
(i1,0eria) (1)

Thus, Proposition 6.26-(v) yields
Ty -+ Ta| € w(|Qal),

and, consequently, Lemma 6.38-(i) concludes the proof. d

In the second case (¢4 = 04), before the main result of this section, let us prove a preliminary technical
fact.

LEMMA 3.5. Let Ti(z),...,Ty(z) € F = Fu(D) satisfy (3.5) eventually and let d be any integer in
{1,...,n}. If |Th ... Tq| € O(|Symy|), then on a suitable subdomain D' C D it holds that

(3.9) O(|Ty ... Tyl) = ©(|Symy — Ty ... Ta|) C w(|Symy]).

Proof. Let us apply (3.8) of Lemma 3.3 to the particular case ¢4 = o4, that is, Qq(z) = Symy,(x),
obtaining

(310) |Symd—T1...Td| € O(|T1Td|)

By assumption |77 ...T4| € O(|Sym,|). This condition, together with (3.10), allows us to apply Proposi-
tion 6.39-(ii) to the functions f =Ty ...Ty and g = Sym,;—1T ... Ty, obtaining (3.9) on a suitable subdomain
D' CD. O

THEOREM 3.6. Let Ty (x),...,Tn(x) € F = Fyo (D) satisfy (3.5) eventually and assume that
(3.11) |Sym;| € w(0), forall i=1,...,n.
Moreover, let s be any integer such that 1 < s <n—1.
If, for anyi=1,...,s, we have
(H;) |Sym,.Sym/~{| € O(|Sym,; "=, forall r=i+1,...,n,
then, for all 7 =0,...,s, the following facts hold:

() O([Symy|) = O(|T1 - - - T1).

Proof. Let us prove (K;) by finite induction on j =0,1,...,s. To this aim, observe that the condition
(Ko) 1 € ©(|Sym,|) = ©(1),
is obviously true.

(Kj—l) — (KJ) fOI‘j >1

By using (3.6) of Lemma 3.3 for d = j and in the particular case g¢; = 0, that is, Q;(z) = Sym;(x), we
get
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Hence, our goal reduces to |17 ...T;| € O(|Sym,|). Assume, by contradiction, that |77 ...T;| ¢ O(|Sym,]).
Then, by Lemma 3.5, we have that the relation (3.9) holds in the case d = j on a suitable subdomain D; C D:

(3.12) O(T; ... Tj|) = O(|Sym; — Ty ... Tj|) C w(|Sym,|).

Claim. The above fact implies that there exists a finite sequence of subdomains D, with
DQDjQ"'QDT—lngQ"'QDTL

such that, for each r € {j,5 + 1,...,n},

(ZAr) O(Ti]) = O(|Tj41l) = -+ = O(T}]) Cw | rgo=—— ) on D, 7' := max{j;r — 1},
|Symj—1|
and
(ZBy) O(Ty...T;]) = ©(|Sym, — Ty ... T,|) C w(|Sym,|) on D,.
Let us show the claim by finite induction on r = j,...,n.

(ZAJ) and (ZBJ)

Both easily follow from (3.12) on D;. In fact, (ZB;) coincides with (3.12). Concerning (ZA;), note
instead that we are assuming (K1), that is, |11 T, ... Tj_1| € ©(|Sym;_,|) and, hence, |T1T5 ... T;_1| € w(0)
by (3.11). Therefore, by Proposition 6.24 and again by (3.12), we obtain

T\ T ... Ty|

T| = —"-———2
| J| |T1T2...Tj_1|

€ w(Sym,)O(Sym;™,|) = w(|Sym, Sym;,|) on D;,

where the last equality is yielded by Proposition 6.32-(v).
(ZAp) and (ZBy), j <h<r—-1= (ZA,) and (ZB,)

Given (ZA,_1), in order to prove (ZA,), it is enough to verify that ©(|T,_1|) = ©(|T}|). By Lemma 3.3,
relation (3.7) for d = r — 1, we have

|T1 cee TT_QTT| S Q(\Symrfl — Tl cee Tr—l‘)a
and, thus, the assumption (ZB,_1) implies
|T1 i 'TT,QTT| S Q(|T1 .. .Tr,1|).

On the other hand, hypothesis (3.5) implies |T;.| € O(|T,_1|) and, consequently, Proposition 6.32-(i) also
yields the opposite relation:
Ty - T 2Ty | € O(|Ty ... Tr—1)-

In conclusion, we obtain

O(Ty - Ty_oTy|) = O(Ty ... T_1)).

Now observe that, if r = j+1, then (K;_1) and (3.11) yield |T} - -- Tr_2| € w(0). Moreover, if r > j +2,
the same inclusion is guaranteed by (ZB,_3) on the subdomain D, _5 and hence, thanks to Proposition 6.15
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and Corollary 6.16, also on its subdomain D,_;. So we can apply the Cancellation Law (see Corollary 6.35)
to the above equality and obtain O(|T|) = ©(|T;.—1]), as required. Therefore, (ZA,.) holds.

In order to show that (ZB,.) is true, we first observe that

O(Th ... T;)) = O(|Ty ... TEN)O(|Tj41]) -- - O(Tr|) <

3.13 S r—j S T'*j+1
(313) C u(isymy) o 1) (1B 7
|Sm | |Symj—1|

holds on D,._;, where the first equality follows from Proposition 6.32-(iii), the inclusion from (3.12) and
(ZA,), and the last equality from Proposition 6.32-(v). On the other hand, from the assumptions (3.11) and
(H;) and by Lemma 6.25-(ii), for all r = j 4+ 1,...,n we obtain

|Sym; 7| . |Sym!;~ j+1|
P ) L e, SE_Leq(sym,),
|Sym] 1|

|Sym,.| € O
|Sym/; ]|

on the original domain D. Again by Proposition 6.15 and Corollary 6.16, this fact and relation (3.13) give
immediately
[Ty ...T,| € w(|Sym,|) on D,_;.

In particular, this implies that |7} ...7T,| € O(|Sym,.|). Then, again by Lemma 3.5, we have that the relation
(3.9) holds with d = r on a suitable subdomain D,. C D,._;, which is precisely (ZB,) .

Hence, the claim is proved. In particular, this means that (ZB,,), that is,
O(Ty ... Tul) € w(|Sym,,]),

holds on a suitable subdomain D,,. Since Sym, = Ti...7T, by definition, we get a contradiction and the
proof of (K;) is complete. |

4. Preliminary results on the eigenvalues of B*A. In this section, we use the results of Section 3
to study products of elements of R™™ (the space of square matrices n x n with real entries) from the point
of view of their eigenvalues and eigenvectors. By GL(n,R) we denote the general linear group, that is, the
subset of R™™ consisting of invertible matrices.

Recall that, if M € R™™ and pq,...,u, € C are its eigenvalues, then the characteristic polynomial of
M, defined to be pps(z) := det(zl,, — M), can be expressed as:

pu(2) = (2 =) (2 = pn) =
=2" = (p+ )" T (1) e

n

Z O'] (W1 ey in) 2

Jj=

(4.14)

where o; denotes as usual the j-th elementary symmetric polynomial in n variables.

DEFINITION 4.1. If M € R™"™ then, for each j = 1,...,n and any j-tuple 1 < i3 < iy < --- <1i; < n,
we denote by M;, . ;. the submatriz of M obtained by mtersectmg the rows i1, ...,%; with the columns of the
same indices i1, ... ,ij. We say that det(M, 1,,,Zj) s a principal minor of M.
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It is clear that the j x j left-upper block of M is nothing, but M;. ;. Let us recall an elementary fact
in which this notation is used (the proof can be found, for instance, in Jacobson [7]).

PROPOSITION 4.2. The characteristic polynomial of a matrix M € R™™ has the form:

n

(4.15) pu(z) =2" —a12" P-4 (=D, = Z(—l)j a; 2,
3=0

where ag = 1, aq is the trace of the matrix M, o,, = det(M) and, in general,
aj = Z det(Mil...ij>-
i1 <<
Comparing (4.14) and (4.15), we immediately obtain the following result.

COROLLARY 4.3. If M € R™" and p1, ..., 1, € C are its eigenvalues then, for all j =0,...,n,

0j (/-l/la v a/j/n) = Z det(Milmij)'

i1 <<y

NOTATION 4.4. From now on, we label the eigenvalues of M in such a way that

lpa| > > .

In the sequel, we will deal with the following situation. We consider two matrices A, B € R™", where
B = Diag(\1,...,Ay) and, for a positive integer k, we put

M = B*A.
Setting A = (ag) and M = (mg), it is clear that my = AFay. Hence, for any j = 1,...,n and for any
j-tuple iy < iy < --- <1ij, we have

det(M;, i) = Af -+ Af det(Ai, i)

Therefore, Corollary 4.3 immediately gives the following fact.

COROLLARY 4.5. Let A, B € R™", where B = Diag(\1,...,\n). Let k be a positive integer, M := B* A

and ugk), . ,,u%k) be its eigenvalues. Then, for any j =1,...,n, we have

Tj (Mgk)7 ce 7M’E’Lk)) = Z )‘fl T /\Z det(Ailu.ij)'

i1<...<ij

(k)

emphasize that they are both functions of the integer k, we slightly modify the notation:

Observe that the previous equality concerns polynomials either in the p; "’s or in the A;,’s. In order to

wi(k) == ygk) and A;(k):=\F, fori=1,...,n.
In particular, accordingly to Notation 4.4, we assume
(4.16) (k)| = o = [pa(R)l, forall k> 1.

From now on, we assume the following condition on the matrix A:

(4.17) det(A;. ;) #0, forall j=1,...,n.
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REMARK 4.6. In the left-hand side of the equality in Corollary 4.5, we find the j-th elementary symmetric
polynomial evaluated in the pu;(k)’s. So, keeping the notation of Definition 3.1, we write

(4.18) Sym; (k) = 051 (k), ., i ().

On the right side, we have instead a quasi-symmetric polynomial of degree j in the A;’s so that the
equality in Corollary 4.5 may be rewritten as:

(4.19) Symy(k) = > det(A;, i) Ay (k) Ay, (k).

i1 <<y

In this framework, the domain D of these functions is the set N of natural numbers and, obviously, the
accumulation point is kg = +00. Therefore, the symbols O, w, etc., stand for O, o, Wi, etc., respectively.

PROPOSITION 4.7. Assume in addition that A, B € GL(n,R), (4.17) holds and
(4.20) [Adr] > - > |An] > 0.
Then the following facts hold:

(i) [Sym;| € ©(|Ay---Aj|) for allj=1,...,n;
(ii) for allj=1,...,n—1 we have

(H,) |Sym,.Sym§:{| € 0(|Symj|r_j+1) forall r=7+1,...,n;

(ili) |u;] € O(JA;]) forallj=1,...,n.

Proof. (i) The assumption (4.20) implies |A;| € w(]Ai4+1]) for all ¢ = 1,...,n. This fact, together
with condition (4.17), says that Sym, as expressed in (4.19), satisfies the assumptions of Proposition 3.4.
Therefore,

(4.21) [Sym;| € O(|Ay---Aj), forall j=1,...,n.

(ii) Now let 1 < j <mn —1. Using (4.21), it is clear that (H;) is equivalent to
|A1 T AT(Al T Aj*l)rij| € 0(“/\1 o 'Aj|rij+1)a for all r= J+1...,n,
or, in other words, to

(422) ‘A1~--Aj|r_j+1 EOJ(‘A1~'-AT(A1"'Aj_l)r_j‘), for all r=j3+1,...,n.

We start by noting that
[Are g € O(|Ar -+ Ay PO ).

On the other hand, as observed before, |A;| € w(|A;|) for all 4,5 € {1,...,n} with ¢ < j and, in particular,
|A;] € w(0) by Proposition 6.5-(i). Consequently,

O(|A;1"7*) C O(IA Dw([Ajr1l) - w(lAL]) S w(lA; -~ Arl),

where the first inclusion follows from Corollary 6.10 and the second one from Proposition 6.32-(v).
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The two relations above give immediately

A A € O(IAy -+ Ay Ay A = (A Ay A A,

where the equality follows again from Proposition 6.32-(v). Therefore, (4.22) is proved.

(iii) We want to apply Theorem 3.6 to the function (4.18) in the case s = n — 1. In order to do this,

observe that (4.16) guarantees the assumption (3.5) and that (H;) is a stronger form than (H;). Moreover,
|Sym;| € w(0) for alli =1,...,n by (4.21) and (4.20). So we get

lp1 - py) € ©(|Symy]), forall j=0,1,...,n—1
Taking (4.21) and the obvious equality |u1 ... | = |Sym,,| into account, we then obtain
1 g € O(AL -+ Ayl)
for all j =0,1,...,n or, equivalently from Proposition 6.32-(iii),
(4.23) Ol -+ Os1) = Ollas -+ 1) = O(IAs - Ayl) = Oa]) -+ O ).

We have to show that ©(|p;|) = ©(|A,|) forall j =1,...,n.

Let us prove it by induction on j. Clearly, for j = 1, it is immediate consequence of (4.23).

Assume then that ©(|u:|) = O(|A¢]) for all ¢ < j — 1. Hence, since |A;| € w(0) for all i, we can apply
Corollary 6.35 (Cancellation Law) to (4.23). In this way, we obtain ©(|x;|) = O(]A;|) as required. |

For an illustration of property (iii) of Proposition 4.7, we refer the reader to the forthcoming Example 5.6.

COROLLARY 4.8. Let the assumptions (4.20) and (4.17) hold. Then

[l € w(lpal);  [pel € w(lpsl) s os lpn—al € w(|pnl)-

Proof. Along the proof of Proposition 4.7, we already noted that |A;| € w(]A;41]) for all i. Hence,
Proposition 4.7-(iil) implies that ;| € w(|uit1]|) foralli=1,...,n —1. O

5. Main result. Now we apply the asymptotic results on the eigenvalues of {BkA}kzl given in the
previous section to study the corresponding eigenvectors, obtaining in this way the main result of this paper.

Let €& = (v1,...,vy,) be the canonical basis of R™.

From now on, each linear endomorphism of R™ will be identified with the n x n real matrix associated
with it with respect to £.

NOTATION 5.1. Define the following subspaces of R™:

V= (v1,...,v5), j=1,...,n,
V= {(vjt1,...,vn), j=1,...,n—1; V,:={0}.

We also denote by p; (respectively T)j) the canonical projection of R™ on the first (respectively second)
summand:

plen:‘/}@Vj—)V}'7 ﬁjRn:‘G®V]—>V]
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In the sequel, we have to deal with n x n matrices, so it is useful to use, instead of p; and p;, these maps

composed with the canonical embeddings e; (respectively €;) of V; (respectively V;) in R™. Hence, set

Pj = ejpj, Pj I:Ejﬁﬁ ]:1,,’]1
NOTATION 5.2. For all integers h,k > 1, we denote by Iy the identity matriz of order k and by Opxk
the null h X k matriz. If h = k, we simply write Q.
Finally, if V is any vector space, by id(V') and Oy we mean, respectively, the identity and the null endomor-
phism of V.

REMARK 5.3. With the above notation, we have that

(5.24) ker(P;)) =V;, Pjx)=z < z€V,,
. ker(P;)=V;, Pj(z)=2 < z€V;

and

(525) Pj =+ Fj = Zd(Rn)

Finally, observe that, if j = n, then p, = id(R") = P,, while p,, is zero everywhere and P,, = Ogx.

The above observations are trivial as soon as we identify all the above endomorphisms with the corre-
sponding matrices referred to the basis €. Namely, the n x n matrices P; and P; are

L Qjxm—yj) - 05 Ojxn-j
P, = P, =

J ’ J

@(n—j)Xj On—; @(n—j)xj Ih—j

In this framework, consider an invertible matrix A € GL(n,R). The natural way to associate an
endomorphism of V; to A is to consider

., N .
Vi, -5 R* 5 R 5V

that is, pjAe;. It is immediate to see that the matrix representing p;Ae; (with respect to the basis &)
consists of the upper left j x j block of A. So, using Definition 4.1,

pjAe; = Ay 4, forall j=1,...,n

Conversely, if we take an invertible matrix M € GL(j,R), that is, a linear endomorphism of V}, the natural
way to extend it to the whole R" is

Pj M e
R" =4V, — V; = R",
and the resulting matrix is e; Mp;.

The composition of the two operations (restriction and extension) applied to a matrix A € GL(n,R)
clearly gives the endomorphism of R™:

Aj = ej(pjAej)p; = P AP;.
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Since flj =e; A1, jpj, it turns out to be the upper left j x j block of A surrounded by zeroes, that is,

A Ojxm—y)

A=
Om-j»xj  Ony

If Ay ; is invertible, we set /Ij to be the n x n pseudoinverse matrix obtained surrounding by zeroes the
matrix A;_l_j, that is,
-1
N Al Ojxmy)
AT =
Otm—iyxi  On—j

Finally, note that the following equalities hold:

(5.26) ATA; =P = AjAT, forall j=1,...,n.

Now consider a matrix B € GL(n,R) having n distinct real eigenvalues A1,...,A,. Up to a suitable
linear transformation, we can assume that the corresponding normalized eigenvectors of B are the elements
v1,...,U, of the canonical basis £ of R™. Therefore, the linear endomorphism of R™ associated with B with
respect to £ has a diagonal form and, without loss of generality, we assume that

B = Diag(\1, ..., \n).

Keeping Notation 5.1 into account, the following properties come from straightforward computations.

LEMMA 5.4. For all j =1,...,n, the subspaces V; and Vj of R™ are invariant under the map B. More
precisely,

B(‘/J):V;a B(VJ):VJ

Moreover, for all k € N:

(5.27) P;B* = P,B*P; = B* P},
(5.28) P;B" =P;B"P; = B"P,,
(5.29) P,B*P; =0=P,;B"P;.

Finally, we are in a position to state the main result of this paper.

THEOREM 5.5. Let A, B € GL(n,R) and assume that B has A\1,...,\, as (real) eigenvalues and that
(4.17) and (4.20) hold. Moreover, let v1,...,v, be the normalized eigenvectors of B (i.e., the canonical basis
of R™).

As usual, for each positive integer k, let py(k), ..., un(k) be the eigenvalues (possibly complex) of B* A,
where

lp(B)| > > (k)]

Then we have:

(i) there ewists an integer k such that, for all k > k, the eigenvalues py(k), ..., un(k) are distinct;
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(ii) for all k > k, denote by ugk),...,uglk) the normalized eigenvectors of the matriz B¥A such that

vers(jljvj)Tu;k) > 0 (if equality occurs, either of the two options may be selected). Then the

sequence {ugk)}k is convergent for each 7 =1,...,n and
len;C u§»k) = Vers(;l;'vj).

Proof. (i) It immediately follows from Corollary 4.8.

(ii) Let k > k, so that all the eigenvalues of B* A are distinct by part (i) and, hence, so are the corresponding
eigenvectors are well.

Now choose an index j € {1,...,n}. Note that, being ||u§k) || = 1, there exists a converging subsequence
of {u§k)}k. So we consider any of such converging subsequences which, for the sake of simplicity, we still

denote by {ugk)}k. We also denote by u; its limit, which is a normalized vector.
We split the proof into three parts.

Part 1: we prove that P;u; = 0 and Pju; = u;.
If j = n, the equalities P,hu,, = 0 and P,u, = u, are trivial.

Thus, we are left to consider j € {1,...,n — 1}. Possibly by scaling both the matrices A and B by )\;1,
we can assume that \; = 1;so |A\;| > 1 for all ¢ < j —1 and |\;] <1 for all i > j 4+ 1 . Therefore, we have

(5.30) lim B¥P; =0 and lim B™"P; = B;*,
k—o0 k—o0
where we denote by B, > the matrix (referred to the basis £) which is null everywhere but the element (7, 9)
which is 1. In particular, for every z = (z1,...,z,) € R™, observe that
(5.31) Jim B *Pjz = B;*z = x;v; = (0,...,0,2,,0,...,0)".

Moreover, from (5.30), it immediately follows that

: itp—kp _ i+tp-
(5.32) lim AfB7FP; = AT B

k—o0
Finally recall that, by assumption,
k k
(5.33) pi(kyul = BF Aul®.

Since we are assuming \; = 1, by Proposition 4.7, it holds that |u;| € ©(A;) = ©(1). In particular,
leej] € (1) so that the function p;(k) is eventually lower bounded away from zero, that is, there exists a
real number D > 0 and k > k such that

(5.34) D < |u;(k)|, for k>F.
In order to show that P;u; = 0, we project the vectors in (5.33) on V; via P; and we obtain
,uj(k)?ju;k) = FjBkAugk) = BkﬁjAu§k)7
where the last equality follows from (5.28). Since {Au§k)} is bounded, taking the limit of the equality above
and using (5.30), we finally obtain

lim p, (k)ﬁju(‘k) = klirrgo BijAugk) =0.

k—o0 J
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Using (5.34), we get limy_, o0 ?jugk)

yields Pju; = u;.

= 0 and, since u; = limy_, o0 u§k)7 also Fjuj = 0. Consequently, (5.25)

Part 2: we prove that vers(/ij‘vj) is the limit of all the converging subsequences considered in Part 1.
From Pju; = uj, using (5.24) we obtain that u; € V.
In order to complete the argument, we project the vectors in (5.33) on V; via P; and obtain
k k
uj(k‘)Pju§- ) = P]BkAu§ )
Therefore, taking (5.25) into account and applying (5.27), we get
k -\, (k -\, (k
wi(k) Pyl = P;BRA(P; + Pj)u” = B*P,A(P; + Pj)ul”
_pkj k) k B, k)
—B Aj’LLj +B PjAPj’LLj 5

where the last equality follows from P;AP; = flj. Composing both sides with the operator fljB_k and
taking (5.26) into account, we finally obtain

It — k k e F5) k
(5.35) 1 () A BF P = Pl 4 A P AP

Taking the limit of the equality above and using the equalities P;u; = 0 and Pju; = u;, we have that the
right-hand side converges to u;, clearly nonzero. Therefore, also the left-hand side does the same.

Note that, by (5.32), the sequence AjB_kPjugk) converges to A;rBfoouj. Thus, also the sequence
{1;(k)}r converges to a nonzero limit and we can set

pie = lim (k) # 0.
Therefore, the limit of (5.35) is
;L?OA;'B]-_OOuj = u;.

So, taking (5.31) into account, we have B *“u; = av;, where o = (u;);. In this way, we finally obtain
u;?oafljvj = uj,

(k)

. 1+ T . . _ _ 1+ .
and, since vers(A;v;)" u;’ > 0 by assumption and since [ju;|| = 1, we get u; = vers(A] v;), as required.

Part 3: Conclusion.

In the previous part, we have proved that any converging subsequence of {ug»k) }1 has a limit equal to the
normalized vector u; = vers([lj’uj). Now assume by contradiction that the whole sequence is not converging
to this limit. Then there exists a subsequence, {dgk)}k say, and a constant K > 0 such that ||11§k) —uj|| > K
eventually. Clearly, also the elements of such subsequence are normalized and, consequently, by using again

the previous arguments, we obtain the existence of a subsequence of {a§.’“>}k that converges to u;, making
the absurde. O

EXAMPLE 5.6. We consider the pair of 2 x 2-matrices

2 5
-5 9 3.0
A= , B= :
5 11 1
—3 3 0 3
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already introduced in Example 3 of [4], which satisfy conditions (4.17) and (4.20). In fact,

2
det(Al) = —57

and
It turns out that

if - |
which imply

uy = vers(Afv) = ,

uy = vers(Afvg) =

1
det(Alg) = det(A) = 6,

0.928476690885259...

5
V29
2
V29 0.371390676354103...

9

In order to illustrate the validity of property (iii) of Proposition 4.7, we compute

lu1(1)/21] = 0.333333333333333...,

|1 (2) /23] = 0.139579470420236...,
l111(3) /23] = 0.213607341785639...,
|1 (4) /23] = 0.221269131148016...,
| (5)/A3] = 0.222116371870562...,

lu2(1)/A2] = 0.333333333333333...,

(
l12(2) /A3 = 1.194062895960829...,
l12(3) /A3 = 0.780247838269162....,
l12(4) /73] = 0.753230537861045...,
|2 (5) /25| = 0.750357415183206...,

whose behavior suggests that |1 (k)/\F| and |u2(k)/A5| have a limit as k& — oo.

Moreover, the validity of (ii) of Theorem 5.5 is supported by the computed eigenvectors:

[ 0.707106781186547... ]
O
1=
| 0.707106781186547... |
[ 0.989115991126860... ]
ey
1 )
| 0.147137881244529... |
[ 0.999879791491405... ]
W3
1 ’
| 0.015504920738377... |
[ 0.999998528423443... ]
W
1 )
L 0.001715561408985... |

[ 0.894427190999915... ]
W
2 )
| 0.447213595499957... |
[ 0.936801009986018... ]
u?
2 )
| 0.349862641173897... |
[ 0.929092626659850... ]
u®
2 ’
| 0.369847118531833... |
[ 0.928542842067220... ]
uld
2 )
| 0.371225255667942... |
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0.999999981849039... 0.928484013966713...
W) = u® =
1= o2 T ’
0.000190530629530... 0.371372368127006...

which clearly seem to converge to u; and wus, respectively, as k — oco.

6. Appendix on Bachmann—Landau symbols. The topic considered in this note has been widely
studied in the literature, starting from the works by Bachmann [1] and Landau [9]. We also mention Hardy [6]
and the important successive contribution by Knuth [8].

However, there are some slight differences among the various treatments, both in the notation and in
the basic definitions themselves. Therefore, although most of the properties and results are simple to prove
and extensively used, here we collect them in a systematic way and give the proofs that are less immediate.

We first establish the notation and the definitions we are intended to use.

NOTATION 6.1. Let D be a subset of R and let zyp € RU {00} be an accumulation point of D. We
denote by ]—';; (D), or simply F*, the set of the real nonnegative functions:

Ft={f:D\ {zo} — R},

defined on D\ {zo}, where RT is the set of the nonnegative real numbers.

DEFINITION 6.2. If f,g € FT, we say that f(z) < g(x) (<, >, >, =, respectively) eventually (near xq) if
there exists a neighborhood U of xg such that f(x) < g(z) (<, >, >, =, respectively) for all z € UN(D\{xo}).

DEFINITION 6.3. For all f € F1, we define the following subsets of FT:

(2) ©s4(f), or simply O(f), is the set
O(f) := {g € F | there exist c1,co > 0 such that c; f(x) < g(z) < caf(x) eventually};
(b) Oua(f), or simply O(f), is the st
O(f) :={g € FT | there exists c > 0 such that g(x) < cf(x) eventually};
(¢) 0z,(f), or simply o(f), is the set
o(f):={g € FT|for allec > 0 it holds that g(z) < cf(x) eventually};
(d) Qq,(f), or simply Q(f), is the set
Q(f) :={g € FT | there exists c > 0 such that g(x) > cf(z) eventually};
(€) way(f), or simply w(f), is the set
w(f) :={g € F*|for alle > 0 it holds that g(x) > cf(z) eventually}.

The symbols ©, O, Q, o, and w are called Bachmann—Landau symbols.

REMARK 6.4. Denoting by “0” the everywhere zero function, it holds that Q(0) = F*, while ©(0) =
0O(0) is the set of the eventually zero functions. Furthermore, o(0) = (), while w(0) = {f € F* | f(z) >
0 eventually} is the set of the eventually positive functions.
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The following results regarding the set w(0) of the eventually positive functions are immediate to be
checked.

PROPOSITION 6.5. For all f € F* it holds that:

(i) w(f) € w(0);

(i1) o(f) #0 <= f € w(0).

REMARK 6.6. It is easy to see that the © symbol determines an equivalence relation on FT, that is, for

all f,g € FT it holds that
feB(g) < geO(f) — O(f) =6(yg).

DEFINITION 6.7. Given f € F1, the equivalence class ©(f) is said to be the order of f for x — xq on
the domain D.

Moreover, if f,g € FT are such that O(f) = O(g), then we say that they have the same order.

The next list of properties of the Bachmann-Landau symbols is an easy consequence of Definition 6.3.

PROPOSITION 6.8. For all f,g € F' it holds that:

(i) O() NQf) = 0O(f), 6(f) S Q) and, if f & ©(0), then O(f) S O(f);
(ii) O(f) =06(g) <= O(f) =0(g) <= Q(f) = Qg);
(iii) O(f) € O(g) = Q(f) 2 Q(g);
(iv) g € O(f) <= ©O(g9) € O(f) = O(f) CQg) = fecQg);
(v) g€olf) < fewly);
(vi) g € o(f) <= ©(g) Co(f) < O(g) S o(f);
(vii) g € w(f) <= O(g) Cw(f) <= Qg) Cw(f);
(vil)) ©(f) = O(g) = {o(f) = o(g) and w(f) =w(g)};
(ix) o(f) C O(f) and, dually, w(f) € AF);
(x) O(f) Nw(f) =0 and, dually, o(f) NQ(f) = 0.

NOTATION 6.9. By writing BL(f), we mean any Bachmann—Landau symbol of a function f € FT.

The next result is an obvious corollary to Remark 6.6 and Proposition 6.8-(iv,vi,vii).

COROLLARY 6.10. For all f,g € F* and for all symbols BL it holds that
g9 € BL(f) <= ©(g) € BL(/).

REMARK 6.11. It is easy to see that the O and o symbols determine a partial order and a strict partial
order relation, respectively, with the latter stronger than the former, on the quotient set of the equivalence
relation determined by the © symbol. In fact, for all f,g,h € F* it holds that:

() {6(f) € O(y) and O(9) € O(h)} = O(f) € O(h);
(i) o(f) N O(f) =

(iii) {©(f) S o(g) and @( ) € o(h)} = ©(f) S o(h);
(iv) {©(f) € O(g) and ©(g) C o(h)} = O(f) € o(h);
(v) {8(f) € o(g) and O(g) € O(h)} = O(f) C o(h).

Moreover, the dual symbols 2 and w determine order relations, in some sense “opposite”, such that:

(vi) {©(f) € Q(g) and O(g) € Q(h)} = O(f) € Q(h);
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(vii) w(f) N (f ) =0;
(viii) {O(f) € w(g) and O(g) C w(h)} = O(f) € w(h);
X)

{ ) Cuw
(ix) {o(f ) Q(g) and ©(g) C w(h)} = O(f) C w(h);
)

(x) {O(f) Cw(g) and O(g) € Q(h)} = O(f) S w(h).
NOTATION 6.12. In the sequel, by D' we mean a subdomain of D having the same accumulation point
xo and, for any function f € FT, we still denote its restriction fipr by f.

The following result is obvious by Definition 6.2.
PROPOSITION 6.13. Let f,g € FT, and g € BL(f). Then g € BL(f) on D’ for all subdomains D' C D.

LEMMA 6.14. Let f,h € F*, D' C D, and h € BL(f) on the subdomain D'. Moreover, if BL = o, we
also assume that f € w(0). Then there exists h € Ft such that h|D/ = hypr and h € BL(f) on the whole
domain D.

Proof. First note that BL(f) # 0 on the whole domain D also in the case BL = o, since we assume
f € w(0) and thanks to Proposition 6.5-(ii). Therefore, in any case, we can consider k € FT such that
k € BL(f) and extend hp to the whole domain D by setting

Piz) - hz) ifzeD
©\k(z) ifz gD,

Now, it is immediate to check that he BL(f) on D, concluding the proof. ]

We can conclude with the following result.

PROPOSITION 6.15. Let f,g € FT, and BL1(f) C BLz2(g), where BLy and BLy are two, possibly equal
to each other, Bachmann—Landau symbols. Moreover, if BL1 = o, we also assume that f € w(0). Then it
also holds that BL1(f) C BLa(g) on D’ for all D' C D.

Proof. First note that, like in Lemma 6.14, our assumptions imply that BL1(f) # () on the whole domain
D (and, consequently, on any D’ C D by Proposition 6.13) also in the case BL; = o. Then, for a given
subdomain D', we consider h € F* such that h € BL1(f) on D’ (note that the values attained by h outside
D' do not matter).

By Lemma 6.14, there exists h € F*t such that B‘D/ = hjp and h € BL,(f) C BLy(g) on the whole
domain D. Now Proposition 6.13 allows us to conclude that h € BLy(g) on D', that is, h € BLa(g) on D,
as well. Therefore, the arbitrariness of h concludes the proof. 0

The next corollary is straightforward.

COROLLARY 6.16. Let f,g € FT, and BL(f) = BL(g). Moreover, if BL = o, we also assume that
fyg € w(0). Then BL(f) = BL(g) on D’ for all D’ C D.

Although Proposition 6.8-(x) tells us that the sets O(f) and w(f) are disjoint (and, analogously, the
sets Q(f) and o(f)), they do not form a partition of FT. Nevertheless, now we shall prove that they do this

«

in a “weak sense”.

PROPOSITION 6.17. Let f,g € FT. Then the following statements hold:

(i) g€ O(f) < g € w(f) on a suitable D' C D;
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(ii) g € Qf) < g € o(f) on a suitable D' C D;

(iii) g € o(f) < g € Q(f) on a suitable D' C D;

(iv) g€ w(f) < g€ O(f) on a suitable D' C D.

Proof. (i) If g & O(f) then, for each ¢ > 0 and for each neighborhood I,, there exists a point z. € I,
such that g(z.) > cf(x.). In particular, one can find a sequence (z,)n, T, — Zo, such that g(z,) >
M, f(x,), where the M, ’s are chosen in such a way that M, — +oo and (M,,), is a strictly increasing
sequence. Therefore, g € w(f) on D' := (,)n.

Conversely, if g € w(f) on D’, then by Proposition 6.8-(x) it holds that g € O(f) on D’. Therefore, by
Proposition 6.13, g & O(f) on D either.

(1) Tt follows from the previous point (i) and Proposition 6.8-(iv,v).

(#91) If g & o(f), then there exists ¢ > 0 such that, for each neighborhood I,,, there exists a point x; € I,
such that g(xy) > cf(x;). Hence, there exists a sequence (zy)n, T, —> g, such that g(z,) > cf(x,).
Therefore, we get g € Q(f) on D’ := (xy,)n.

Conversely, if g € Q(f) on D’, then by Proposition 6.8-(x) it holds that g & o(f) on D’. Therefore, by
Proposition 6.13, g € o(f) on D either.

(iv) It follows from the previous point (iii) and Proposition 6.8-(iv,v). 0

COROLLARY 6.18. Let f,g € FT. Then it holds that:

(i) if g € O(f)\ o(f), then g € O(f) on a suitable D' C D;
(ii) if g € Q(f) \w(f), then g € O(f) on a suitable D' C D.

PROPOSITION 6.19. Let f,g € F*. Then it holds that:

(i) w(f) 2 wlg) = o(f) C olg);

(i) if f € w(0), then o(f) S o(g) <= w(f) 2 w(g);

(iil) if f, g € w(0), then o(f) = o(g) <= w(f) =w(g)-

Proof. (i) If f & w(0), then o(f) = by Proposition 6.5-(ii) and, hence, the statement is clearly true.
Thus, we assume that f € w(0) and consider h € o(f). If h € o(g), then h € Q(g) on a suitable D’ C D by
Proposition 6.17-(iii) and, consequently, g € O(h) on D’. Therefore, Remark 6.11-(iv) and Proposition 6.13
yield g € o(f) on D" and so, by Proposition 6.8-(v), f € w(g) on D’. Finally, Proposition 6.15 assures that
w(g) C w(f) also on D', leading us to the the absurd inclusion f € w(f) on D’ (see Remark 6.11-(vii)).
Thus, we can conclude that, necessarily, h € o(g).

(#4) We need to prove the opposite implication to (i). To this purpose, we consider h € w(g) and, assuming
that h & w(f), by using the dual version of the previous arguments, we arrive at g € o(f) on a suitable
D' C D. Since f € w(0), this time Proposition 6.15 assures that o(f) C o(g) also on D’, leading us to the the
absurd inclusion g € o(g) on D’ (see Remark 6.11-(ii)). Thus, we can conclude that, necessarily, h € w(f).

(4491) Since also g € w(0), we can interchange the roles of f and g in (ii) and get the desired result. o

PROPOSITION 6.20. Let f,g € FT. Then
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Proof. Clearly, it is sufficient to prove the opposite implication to Proposition 6.8-(viii). Thus, we
assume that w(f) = w(g). If f € ©(g), then necessarily either f & O(g) or f &€ Q(g). In the first case, by
Proposition 6.17-(i), there exists a suitable D’ C D where f € w(g). In the second case, by Proposition 6.17-
(ii), there exists a suitable D” C D where f € o(g) and this means that g € w(f) on D" (see Proposition 6.8-
(v)). On the other hand, Corollary 6.16 assures that w(g) = w(f) also on D’ and D", yielding the absurd
inclusion f € w(f) in the first case and g € w(g) in the second case (see Remark 6.11-(vii)). Thus, we can
conclude that it must be f € ©(g) and, consequently, O(f) = ©(g). 0

COROLLARY 6.21. Let f,g € w(0). Then

O(f) =O(g9) < o(f) = o(g).

Proof. The result is immediately obtained by combining Proposition 6.20 and Proposition 6.19-(iii). 0O

REMARK 6.22. Observe that the hypothesis f € w(0) in Proposition 6.19-(ii) is essential. In fact, if
f € w(0), Proposition 6.5-(ii) implies that o(f) = C 0(0) = (). On the other hand, if f ¢ ©(0) either, then
Proposition 6.20 yields w(f) # w(0) and, consequently, Proposition 6.5-(i) implies w(f) 2 w(0).

Observe that in the points (¢) and (e) of Definition 6.3, we impose the strict inequalities. This allows
us to introduce the following notion.

DEFINITION 6.23. If f € w(0), we define

—1 .
1) = {(f(w)) if f(x) #

0
0 if f(x) =0

and, since O(f) C w(0), we also define

O~ ={r"heo(f)}

Observe that defining f~1(x) := 0 whenever f(z) = 0 allows us to conclude that (f~1)~(z) = f(z) for
all x € D, although, in principle, this is an inconsistent definition. Anyway, this fact has no consequences at
all on the order of f~! as both f and f~! are eventually positive and their values are insignificant outside
a neighborhood of the accumulation point zg of D.

PROPOSITION 6.24. Let f € w(0). Then

Proof. Note first that f=! € w(0) as well. Hence, ©(f~1) C w(0) by Proposition 6.8-(vii). On the other
hand, by definition, it is also clear that (©(f))~! C w(0).

Now observe that h € ©(f~!) if and only if there exist c¢1,co > 0 such that
crf Hz) < hz) < cof ()

eventually. But this is equivalent to

flz) _ 1 _ f(x)

< <
ce T h(x) T ¢

eventually, which, in turn, is equivalent to h=! € O(f), that is, h € (O(f))~ . 0
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The following result is easy to prove.

LEMMA 6.25. Let f € w(0), h € O(f) and g € F*. Then the following facts hold for all symbols BL:

(i) k € BL(g) = hk € BL(fg);
(i) k € BL(fg) = h~'k € BL(g).

Concerning the “sum” of Bachmann-Landau symbols (intended in the natural sense), for any BL it is
straightforward to see that

(6.36) BL(f) + BL(g) C BL(f + ).

To always give a meaning to the left-hand side of (6.36), in the case BL = o, we assume that f, g € w(0),
so that o(f) # 0 and o(g) # 0 (see Proposition 6.5-(ii)).
Indeed, also the opposite inclusions hold, as is illustrated by the next Proposition 6.26.
PROPOSITION 6.26. If f,g € F*t, then the following statements hold:
(i) O(f +9) = O(f) + Ol9);
(ii) Q(f +9) = Qf) + Qg) = O(f) + Qg) = Q(f) + O(g);
(iii) O(f +9) = O(f) +O(9);
(iv) if f,g € w(0), then o(f 4+ g) = o(f) + o(g);
(v) w(f +9) =w(f) +wl(g)-

Proof. Observe that, in all cases, it is sufficient to prove the opposite inclusions to (6.36).

(i) Let h € O(f + g). So there exists ¢ > 0 such that h(z) < e(f(x) + g(x)) eventually. If we define
F(z) := max{0,h(x) — cg(x)} and G(z) := h(x) — F(x), we clearly have that FF € O(f), G € O(g) and
h(z) = F(x) + G(z) for all z, concluding the proof.

(ii) Except for exchanging the roles of f and g and taking Proposition 6.8-(i) into account, we only need to
show that Q(f 4+ g) C O(f) + Q(g). Therefore, let us consider h € Q(f + g). So there exists ¢ > 0 such that
h(z) > c(f(x) + g(x)) eventually. If we define F'(z) := c¢f(z) and G(z) := h(x) — ¢f(x), we clearly have that
Feo(f), GeQ(g) and h(z) = F(z) + G(z) for all z. Hence, h € O(f) + Q(g), as required.

(#31) Consider h € O(f + g). So there exist two constants ¢y, ce > 0 such that
a1 (f(x) +9(x)) < h(z) < o (f(z) + g(2)),

eventually. If we define

Fl@) m {mf(x) @ S90) | aw {h(x)—clf(x) if f(z) < g(o)
W)~ erg(x) i f(z) > g() c19(x) it f(2) > g(x)

we obviously get h(x) = F(x) + G(z) for all z. In order to show that F' € ©(f) and G € O(g), it is enough
to observe that, eventually, we have

cf(z) < F(x) = h(z) — arg(z) < (263 — 1) f()
whenever f(z) > g(z) and

c1g(x) < G(x) = h(z) — c1 f(z) < (2¢2 — c1)g(x)
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whenever f(z) < g(z). This proves that h € O(f) + O(g).

(iv) Let h € o(f + g). Since f,g € w(0), we have that f + g € w(0) as well. Therefore, (f + g)~*h € o(1)
by Lemma 6.25-(ii) and, in turn, F := (f + g)"'hf € o(f) and G := (f + g) "*hg € o(g) by Lemma 6.25-(i).
Moreover, h(z) = F(z) + G(x) eventually, implying that h € o(f) + o(g).

(v) Since w(f + g) C w(f) Nw(g), if h € w(f + g), then h = 2h+ 1h € w(f) + w(g). O

The following corollary to Proposition 6.26-(ii), which regards the symbol €, is straightforward.
COROLLARY 6.27. For all f € F*, it holds that

) +Q(f) = (/).

As for the other symbols, the situation is illustrated by the next proposition, whose proof is once again
rather easy.

PROPOSITION 6.28. For all f € F* the following properties hold:

(i) ©(f) +0(f) = 6(f);
(if) if f € w(0), then O(f) + o(f) = O(f) and O(f) + o(f) = O(f);
(iii) O(f) +w(f) = Qf) +w(f) = w(f)-

Regarding the symbol w, as a complement to Propositions 6.26-(v) and 6.28-(iii), we have the following
result.

PROPOSITION 6.29. For all f,g € F*, it holds that
w(f+9) COf) +wlg) and, simmetrically, w(f+g) Cw(f)+0O(g).

Proof. Except for exchanging the roles of f and g, we only need to show the former inclusion. Therefore,
let us consider h € w(f + g). So for all ¢ > 0, we have that h(z) > c(f(z) + g(z)) eventually. If we define
F(z) := f(x) and G(z) := h(z) — f(x), we clearly have that h(x) = F(z) + G(x) for all z, F € O(f) and,
for all ¢ > 1, G(x) > (¢ — 1) f(z) + cg(x) > cg(x) eventually, that is, G € w(g). Hence, we can conclude that
h € O(f)+ w(g), as required. |

REMARK 6.30. In general, the opposite inclusions are not true. To see this, we assume that f € w(g)
and consider h € w(g) No(f) (we choose, for instance, g € w(0) and h = \/fg). Then Proposition 6.28-(ii)
yields f+h € O(f) and, consequently, Proposition 6.8-(x) implies that f+h & w(f). Since w(f+g) C w(f),
we conclude that O(f) + w(g) € w(f + g).

Concerning the “product” of Bachmann—Landau symbols (intended in the natural sense), for any BL it
is straightforward to see that

(6.37) BL(f) BL(g) C BL(fg).
Once again, to always give a meaning to the left-hand side of (6.37); in the case BL = o, we assume

that f,g € w(0) so that o(f) # 0 and o(g) # 0.

In this framework, Lemma 6.25 may be equivalently restated as follows.

LEMMA 6.31. Let f € w(0) and g € FT. Then the following facts hold for all symbols BL:
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(i) ©(f) BL(g) < BL(f9g);
(i) ©(f~") BL(fg) € BL(g).

Indeed, also the opposite inclusions to (6.37) and to Lemma 6.31-(i) hold, as will be illustrated by the
next Proposition 6.32.

PROPOSITION 6.32. If f,g € FT, then the following equalities hold:

(i) O(fg) = O(f)0O(9) = ©(f)O(g) = O(f)O(9);

(ii) Q(fg) = Qf)g) and, if f € w(0), then Q(fg) = O(f)Q(g);
(iii) ©(fg) = 0(f)e(9);

(iv) if f,9 € w(0), then o(fg) = o(f)o(g) = O(f)o(g) = o(f)O(9);
(v) w(fg) =w(flw(g) and, if f € w(0), then w(fg) = O(f)w(g).

Proof. Observe that, in all cases, it is sufficient to prove the opposite inclusions to (6.37). To this
purpose, for given f,g,h € FT, we define the functions:

flx) if f(@) #0 Bt f(a) £0
F(z) = % if f(x) =0, g(x) #0 and G(z):= { g(z) if f(z) =0, g(z) #0
h(z) if f(z) = g(z) =0 h(z) if f(z) = g() =0

which are such that h(z) = F(z)G(z) for all .

(i) Except for exchanging the roles of f and g and taking Proposition 6.8-(i) into account, we only need to
show that O(fg) C ©(f)O(g). To this purpose, let us consider h € O(fg), that is, for some ¢ > 0 we have
h(z) < cf(x)g(z) eventually. Therefore, f(x)g(x) = 0 implies h(z) = 0 eventually and hence, on the one
hand, F(z) = f(x) eventually (so that F' € O(f)) and, on the other hand, G(z) < max{c, 1}g(z) eventually
(so that G € O(g)). Hence, h € ©(f)O(g), as required.

(#7) Consider h € Q(fg). In this case, we clearly have that F' € Q(f) and G € Q(g). Thus, h € Q(f)Q2(g), as
required.

Furthermore, if f € w(0), it turns out that F(z) = f(x) eventually so that F' € ©(f).

(791) Consider h € ©(fg). Like in case (i), we clearly have again that F(z) = f(z) eventually so that
F € O(f). Moreover, this time it turns out that G € ©(g). Thus, h € ©(f)O(g), as required.

(iv) Since f,g € w(0), it holds that o(f) # 0, o(g) # 0 and o(fg) # 0 (see Proposition 6.5-(ii)). Then we
consider h € o(fg), which easily implies v € o(y/fg). Therefore, by Lemma 6.25, we immediately get

O :=+/glfheo(f) and T :=+/f"1gh € o(g).

Clearly, it holds that h(z) = ®(z)I'(z) eventually and, therefore, h € o(f)o(g), as required.

To complete this case, except for exchanging the roles of f and g, we are left to show that o(fg) =
O(f)o(g). The inclusion ©(f)o(g) C o(fg) is granted by Lemma 6.31-(i). In order to prove the opposite
one, we consider h € o(fg) and, once again, the functions F' and G defined above. Since f € w(0), as usual
we have that F' € ©(f). Moreover, this time it immediately turns out that G € o(g). Thus, h € O(f)o(g),
as required.
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(v) Consider h € w(fg) and another function u € w(1) such that u(xz) > 0 for all x. If we define

VIEE i f(2) £, gla) £ 0
(I)(.’E) = g(Z)(zzz) if f(.%‘) =0, g(m) 7é 0 7
feyu(x) i f(z) #0, glx) =
h(x) if f(z) = g(x) =0
and
VI it f(a) £0, gla) 0
I(z) = { 9@ul@) i fl@) =0, g(z) #0
f(%i%x) if f(z) #0, g(z) =0
h() if f(z) = g(x) =0

we clearly have that ® € w(f), I' € w(g) and h(z) = ®(x)I'(z) for all z. Thus, h € w(f)w(g), as required.

To complete this case, we need to assume that f € w(0) and show that w(fg) = O(f)w(g). Again,
the inclusion O(f)w(g) C w(fg) is granted by Lemma 6.31-(i), whereas the opposite one is obtained by
considering h € w(fg) and the functions F and G defined above. Since f € w(0), as usual we have that
F € O(f). Moreover, this time it immediately turns out that G € w(g). Thus, h € O(f)w(g), as required. O

REMARK 6.33. Observe that, once again, the hypothesis f € w(0) in Proposition 6.32 is essential. In fact,
if f € w(0), the situation is quite different. Namely, it holds that ©(f)w(g)Nw(fg) =0, O(f)o(g)No(fg) =0
and O(f)Q(g) € Q(fg) for all g € FT.

Clearly, Proposition 6.32 can be immediately resumed as follows.
COROLLARY 6.34. Let f,g € w(0). Then, for any symbol BL, it holds that
BL(f) BL(g) = BL(fg) = ©(f) BL(9g).

COROLLARY 6.35 (Cancellation Law). Let f, g € w(0) such that O(f) = ©(g) and let h,k € FT. Then,
for any symbol BL, it holds that

BL(fh) = BL(gk) = BL(h) = BL(k).
Proof. Using Definition 6.23 and Corollary 6.34, we can write
BL(h) = BL(f~ fh) = ©(f"")BL(fh) and BL(k) = BL(g~'gk) = ©(g~")BL(gk).

Since O(f) = ©(g), Proposition 6.24 implies O(f~1) = ©(g~!) as well. Therefore, the assumption BL(fh) =
BL(gk) lets us conclude that BL(h) = BL(k). |

In order to study also the order of functions with complex values, we introduce a larger set than F+.
NOTATION 6.36. Let D be a subset of R and let xg € RU {xo0} be an accumulation point of D. We set
F =Fuo (D) :={f : D\ {xo} — C}.

Observe that, if f € F, then |f| € FT. Therefore, we can define the order of f for x — xy on the
domain D as the order of |f| (see Definition 6.7).
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LemMA 6.37. If f,g € F, then it holds that O(|f + g|) € O(|f]) + O(lg]) and, dually, Q(|f + g|) 2
QA1) + QgD
Proof. It is a consequence of Proposition 6.26-(i,ii) and the fact that |f(x) + g(z)| < |f(z)| + |g(z)]. O

LEMMA 6.38. Let f,g € F; then the following facts hold:

(i) [f] € w(lgl) = O(|f +9l) = O(F));
(i) [f] € w(lf +gl) = lgl € Qf]-

Proof. Recall first that

(6.38) [f (@) = lg(@)| < |f(z) + g(@)] < [f(2)] + [g(x)]-
(i) If | f| € w(|g|) then, for all ¢ > 1, it eventually holds that |f(x)| > ¢|g(z)|. Therefore, (6.38) implies

@) < (@) + g <

where, clearly, <X > 0. So O(|f + g|) = O(|f]).

c

(ii) The assumption means that, for all ¢ > 1, |f(z)| > ¢|f(z) + g(x)| eventually. Hence, from (6.38),
we obtain | f(z)| > ¢(|f(x)| — |g(x)]), that is, |g(z)| > % |f(x)], and this implies |g| € Q(|f]). 1]

/()]

PROPOSITION 6.39. Let f,g € F and assume that |g| € O(|f]). Then it holds that:

(i) o) < s +gl);
(i) if |f1 € O(1F + g, then O(1]) = ©(lgl) € w(|f + gl) on a suitable D' C D.

Proof.

(i) By assumption and by Remark 6.11-(i), we have O(|g|) € O(]f|) and so, by Proposition 6.8-(iii), we
obtain Q(|f]) C 2(|g|). Therefore, by using Proposition 6.26-(ii), we obtain

O(fD) € lfh) = @lf) = Qdrh) +df) < Q(f) + 2gl) < f + g,

where the last inclusion follows from Lemma 6.37.

(ii) Clearly, Proposition 6.17-(i) and Corollary 6.10 imply that ©(|f]) C w(|f +g|) on a suitable D’ C D.
Consequently, Lemma 6.38-(ii), the assumption |g| € O(|f]), Proposition 6.13, and Remark 6.6 allow
us to conclude that ©(|f]) = ©(]g|) on the same subdomain D’. d
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