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Abstract. Presented is an algorithm which for each A, B ∈ R
n×n and b ∈ R

n in a finite number

of steps either finds a solution of the equation Ax+B|x| = b, or states existence of a singular matrix

S satisfying |S − A| ≤ |B| (and in most cases also constructs such an S).
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1. Introduction. We consider here the equation

Ax + B|x| = b, (1.1)

where A,B ∈ R
n×n and b ∈ R

n (termed an absolute value equation by Mangasar-
ian [3]). This equation, in a particular form suitable for solving interval linear equa-
tions, was first studied in [9] (and even earlier in report form in [7], [8]). In the general
form (1.1) it was first introduced in [10] and has been since studied by Mangasarian
[2], [3], [4], Prokopyev [6], and Schäfer [13]. Since the linear complementarity prob-
lem can be easily translated into the form (1.1) (see [9], [13]), this equation forms
a common ground for the linear complementarity problem, linear programming and
convex quadratic programming (Murty [5]).

As the main result of this paper we present an algorithm (Fig. 3.1 below) which
for each A,B ∈ R

n×n and b ∈ R
n in a finite number of steps either finds a solution

to (1.1), or states existence of a singular matrix S satisfying

|S −A| ≤ |B| (1.2)

(Theorem 3.1). The result is preceded by several auxiliary results in Section 2 and,
as its consequence, a theorem of alternatives is proved in Section 4. Besides stating
existence of a singular matrix S satisfying (1.2), the algorithm in most cases also
constructs such a matrix. The algorithm proved to be surprisingly efficient, making
on the average about 0.11 ·n iterations per example, where n is the problem size. An
implementation of the algorithm is given in Section 5.
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We use the following notation. Ak• and A•k denote the kth row and the kth
column of a matrix A, respectively. Matrix inequalities, as A ≤ B or A < B, are
understood componentwise. The absolute value of a matrix A = (aij) is defined by
|A| = (|aij |). The same notations also apply to vectors that are considered one-column
matrices. I is the unit matrix, ek is the kth column of I, and e = (1, . . . , 1)T is the
vector of all ones. Yn = {y | |y| = e} is the set of all ±1-vectors in R

n, so that its
cardinality is 2n. For each x ∈ R

n we define its sign vector sgnx by

(sgnx)i =
{

1 if xi ≥ 0,
−1 if xi < 0

(i = 1, . . . , n),

so that sgnx ∈ Yn. For each y ∈ R
n we denote

Ty = diag (y1, . . . , yn) =




y1 0 . . . 0
0 y2 . . . 0
...

...
. . .

...
0 0 . . . yn


 .

2. Auxiliary results. In this section we give several auxiliary results to be
used later. The first of them is the Sherman-Morrison formula ((iii) below) and the
Sherman-Morrison determinant formula ((i) below), see [14]. As (i) is less known, we
give a proof of it here, and we append a proof of (iii) for completeness as well.

Proposition 2.1. Let A ∈ R
n×n be nonsingular, b, c ∈ R

n, and let α = 1 +
cTA−1b. Then we have:

(i) det(A + bcT ) = α det(A),
(ii) if α = 0, then A + bcT is singular,
(iii) if α 
= 0, then (A + bcT )−1 = A−1 − 1

αA
−1bcTA−1.

Proof. (i) From the identities(
I + A−1bcT 0

−cT 1

)
=

(
I −A−1b

0T 1

) (
I A−1b

−cT 1

)
,

(
I A−1b

0T α

)
=

(
I 0
cT 1

) (
I A−1b

−cT 1

)

it follows that

det(I + A−1bcT ) = det
(

I A−1b

−cT 1

)
= det

(
I A−1b

0T α

)
= α,

hence

det(A + bcT ) = det(A) · det(I + A−1bcT ) = α det(A).

(ii) If α = 0, then det(A + bcT ) = 0 by (i).
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(iii) If α 
= 0, then direct computation shows that

(A + bcT )(A−1 − 1
αA

−1bcTA−1) = I − 1
αbc

TA−1 + bcTA−1 − 1
αb(c

TA−1b)cTA−1

= I + (− 1
α + 1 − cT A−1b

α )bcTA−1 = I,

since the last term in parentheses equals zero. This implies that

(A + bcT )−1 = A−1 − 1
αA

−1bcTA−1,

which completes the proof.

The subsequent formulations will simplify if we use the notion of an interval
matrix.

Definition. Given A,B ∈ R
n×n, the set of matrices

[A− |B|, A + |B| ] := {S | |S −A| ≤ |B| } = {S | A− |B| ≤ S ≤ A + |B| }

is called an interval matrix (with midpoint matrix A and radius matrix |B|).
Next we have this definition introducing an important distinction:

Definition. A square interval matrix A is called regular if each S ∈ A is nonsin-
gular, and singular otherwise (i.e., if A contains a singular matrix).

Proposition 2.2. An interval matrix A = [A − |B|, A + |B| ] is singular if and
only if the inequality

|Ax| ≤ |B||x| (2.1)

has a nontrivial solution.

Proof. If A contains a singular matrix S, then Sx = 0 for some x 
= 0, which
implies

|Ax| = |(A− S)x| ≤ |A− S||x| ≤ |B||x|.

Conversely, let (2.1) hold for some x 
= 0. Define y ∈ R
n and z ∈ Yn by

yi =
{

(Ax)i/(|B||x|)i if (|B||x|)i > 0,
1 if (|B||x|)i = 0

(i = 1, . . . , n) (2.2)

and

z = sgnx.

Then Tzx = |x|, hence

((A − Ty|B|Tz)x)i = (Ax)i − yi(|B||x|)i = 0

for each i, so that A − Ty|B|Tz is singular, and since |yi| ≤ 1 for each i due to (2.1),
it follows that |(A− Ty|B|Tz)−A| = |Ty|B|Tz| ≤ |B|, hence A− Ty|B|Tz ∈ A and A
is singular.
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We have also proved the following constructive result which will be later used in
the proof of Theorem 4.1.

Corollary 2.3. If x is a nontrivial solution of (2.1), then the matrix

S = A− Ty|B|Tz,

where y is given by (2.2) and z = sgnx, is a singular matrix in [A − |B|, A + |B| ],
and Sx = 0.

The last proposition will be used at the key point of the proof of the main theorem.

Proposition 2.4. Let [A− |B|, A + |B| ] be regular and let

(A + BTz′)x′ = (A + BTz′′)x′′ (2.3)

hold for some z′, z′′ ∈ Yn and x′ 
= x′′. Then there exists a j satisfying z′jz
′′
j = −1

and x′
jx

′′
j > 0.

Proof. Assume to the contrary that for each j, z′jz
′′
j = −1 implies x′

jx
′′
j ≤ 0, so

that |x′
j − x′′

j | = |x′
j | + |x′′

j |. We shall prove that in this case

|Tz′x′ − Tz′′x′′| ≤ |x′ − x′′|, (2.4)

i.e., that

|z′jx′
j − z′′j x

′′
j | ≤ |x′

j − x′′
j |

holds for each j. Since |z′jx′
j − z′′j x

′′
j | = |z′j(x′

j − z′jz
′′
j x

′′
j )| = |x′

j − z′jz
′′
j x

′′
j |, this fact is

obvious for z′jz
′′
j = 1. If z′jz

′′
j = −1, then

|z′jx′
j − z′′j x

′′
j | = |x′

j + x′′
j | ≤ |x′

j | + |x′′
j | = |x′

j − x′′
j |,

which together proves (2.4). Now, from (2.3) we have

|A(x′ − x′′)| = |B(Tz′x′ − Tz′′x′′)| ≤ |B||Tz′x′ − Tz′′x′′| ≤ |B||x′ − x′′|

due to (2.4), where x′ − x′′ 
= 0, hence [A − |B|, A + |B| ] is singular by Proposition
2.2, a contradiction.

3. The sign accord algorithm. The following theorem is the main result of
this paper.

Theorem 3.1. For each A,B ∈ R
n×n and each b ∈ R

n, the sign accord algorithm
(Fig. 3.1) in a finite number of steps either finds a solution of the equation

Ax + B|x| = b, (3.1)

or states singularity of the interval matrix [A−|B|, A+ |B| ] (and, in most cases, also
finds a singular matrix S ∈ [A− |B|, A + |B| ]).

Comment 1. For better understandability, we first describe the basic idea behind
the algorithm (Fig. 3.1). If we knew the sign vector z = sgnx of the solution x of
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function [x, S, f lag] = signaccord (A,B, b)
% Finds a solution to Ax + B|x| = b or states
% singularity of [A− |B|, A + |B| ].
x = [ ]; S = [ ]; flag = ′singular′;
if A is singular, S = A; return, end
p = 0 ∈ R

n;
z = sgn (A−1b);
if A + BTz is singular, S = A + BTz; return, end
x = (A + BTz)−1b;
C = −(A + BTz)−1B;
while zjxj < 0 for some j

k = min{j | zjxj < 0};
if 1 + 2zkCkk ≤ 0

S = A + B(Tz + (1/Ckk)eke
T
k );

x = [ ];
return

end
pk = pk + 1;
if log2 pk > n− k, x = [ ]; return, end
zk = −zk;
α = 2zk/(1 − 2zkCkk);
x = x + αxkC•k;
C = C + αC•kCk•;

end
flag = ′solution′;

Fig. 3.1. The sign accord algorithm.

(3.1), we could rewrite (3.1) as (A+BTz)x = b and solve it for x as x = (A+BTz)−1b.
The problem is, we know neither x, nor z; but we do know that they should satisfy
Tzx = |x| ≥ 0, i.e., zjxj ≥ 0 for each j (a situation we call a sign accord of z and
x). In its kernel form (Fig. 3.2) the sign accord algorithm computes the z’s and x’s
repeatedly until a sign accord occurs. A combinatorial argument (parts 3.1 and 3.2

z = sgn (A−1b);
x = (A + BTz)−1b;
while zjxj < 0 for some j

k = min{j | zjxj < 0};
zk = −zk;
x = (A + BTz)−1b;

end

Fig. 3.2. The kernel of the sign accord algorithm.

of the proof) based on Proposition 2.4 is used to prove that in case of regularity of
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[A− |B|, A+ |B| ], a sign accord is achieved within a prespecified number of steps, so
that crossing this number indicates singularity of [A− |B|, A + |B| ].

Comment 2. The algorithm (Fig. 3.1) may state singularity of the interval
matrix [A−|B|, A+|B| ] without actually finding a singular matrix in [A−|B|, A+|B| ]
(this is the case of the last if statement in its description), but such a situation occurs
rarely; it finds a singular matrix “almost always”, as it will be shown in Section 5.
Once singularity has been established, the algorithm stops; the equation (1.1) may
possess a solution, but it has not been found.

Proof. The proof consists of several steps.

1. Termination. The algorithm starts with the vector p = 0 and during each
pass through the while loop it increases some pk by 1. This means that after a finite
number of steps pk will become greater than 2n−k for some k, and the algorithm will
terminate in the fourth if statement1 (if not earlier).

2. Simplification. Next we shall simplify the description of the algorithm by
proving by induction that after each updating of C at the end of the while loop, the
current values of z, x and C satisfy

x = (A + BTz)−1b, (3.2)

C = −(A + BTz)−1B. (3.3)

This is obviously so for the initial values of z, x and C. Thus let (3.2), (3.3) hold true
at some step. Then for each real t the matrix

A + B(Tz − 2tzkeke
T
k ) = A + BTz − (2tzkBek)eT

k

is a rank one update of the matrix A + BTz, which is nonsingular by the induction
hypothesis because (3.2) holds, hence by the Sherman-Morrison determinant formula
we have

det(A + B(Tz − 2tzkeke
T
k )) = (1 − 2tzke

T
k (A + BTz)−1Bek) det(A + BTz)

= (1 + 2tzkCkk) det(A + BTz). (3.4)

Now two possibilities may occur.

2.1. Case of 1 + 2zkCkk ≤ 0. Then Ckk 
= 0 and the real function ϕ(t) = 1 +
2tzkCkk satisfies ϕ(0)ϕ(1) = 1+2zkCkk ≤ 0, hence ϕ(τ) = 0 for τ = (−1)/(2zkCkk) ∈
[0, 1] and

det(A + B(Tz − 2τzkeke
T
k )) = 0.

Because of τ ∈ [0, 1] we have |Tz − 2τzkeke
T
k | ≤ I, so that the matrix A + B(Tz −

2τzkeke
T
k ) belongs to [A − |B|, A + |B| ] and is singular. This is the case of the first

1We prefer to write the condition as log2 pk > n − k instead of pk > 2n−k to avoid a possibly

large number 2n−k .
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if statement in the while loop. In this case the algorithm terminates with a singular
matrix S = A + B(Tz − 2τzkeke

T
k ) = A + B(Tz + (1/Ckk)eke

T
k ) ∈ [A− |B|, A + |B| ].

2.2. Case of 1 + 2zkCkk > 0. Here the first if statement of the while loop is not
in effect and provided this is also the case for the second one, the algorithm constructs
the updated values z̃, x̃ and C̃ along the formulae

z̃k = −zk,

α = 2z̃k/(1 − 2z̃kCkk) = −2zk/(1 + 2zkCkk),

x̃ = x + αxkC•k,

C̃ = C + αC•kCk•.

Then the matrix

A + BT
ez = A + B(Tz − 2zkeke

T
k ) = A + BTz − (2zkBek)eT

k

is nonsingular due to (3.4) (with t = 1), hence by the Sherman-Morrison formula
there holds

(A + BT
ez)−1 = (A + BTz)−1 +

(A + BTz)−12zkBeke
T
k (A + BTz)−1

1 + 2zkCkk

= (A + BTz)−1 + αC•ke
T
k (A + BTz)−1.

Then we have

(A + BT
ez)−1b = (A + BTz)−1b + αC•ke

T
k (A + BTz)−1b = x + αxkC•k = x̃

and

−(A + BT
ez)−1B = −(A + BTz)−1B − αC•ke

T
k (A + BTz)−1B = C + αC•kCk• = C̃,

which proves (3.2), (3.3) by induction. Hence we can see that the matrix C plays a
purely auxiliary role, helping to avoid an explicit computation of x = (A + BTz)−1b

at each step.

3. Correctness. If the condition of the while loop is not satisfied at some step,
then zjxj ≥ 0 for each j, hence Tzx ≥ 0, so that Tzx = |x|. Because x = (A+BTz)−1b

by (3.2), we have that Ax+B|x| = (A+BTz)x = b, so that x solves the equation (3.1).
Next there are four possible terminations in the four if statements. In the first three
of them singularity is clearly detected (this is obvious with the first two of them, and
the fact that the matrix S constructed in the third if statement is singular has been
proved in part 2.1). Thus it remains to be shown that if the condition of the fourth
if statement is satisfied, i.e., if log2 pk > n− k for some k, then [A − |B|, A + |B| ] is
singular. This will be proved if we demonstrate that if [A − |B|, A + |B| ] is regular,
then

pk ≤ 2n−k (3.5)

holds throughout the algorithm for each k, which will exclude the possibility of
log2 pk > n− k. Thus let [A− |B|, A + |B| ] be regular, and consider the sequence of
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k’s generated by the while loop of the algorithm. We shall prove by induction that
each k can appear there at most 2n−k times (k = n, . . . , 1).

3.1. Case k = n. Assume that n appears at least twice in the sequence, and let
z′, x′ and z′′, x′′ correspond to any two nearest occurrences of it (i.e., there is no other
occurrence of n between them). Then z′jx

′
j ≥ 0, z′′j x

′′
j ≥ 0 for j = 1, . . . , n − 1, and

z′nx
′
n < 0, z′′nx

′′
n < 0, z′nz

′′
n = −1, which implies z′nx

′
nz

′′
nx

′′
n > 0 and x′

nx
′′
n < 0. Hence,

z′jx
′
jz

′′
j x

′′
j ≥ 0 for each j. But since

(A + BTz′)x′ = b = (A + BTz′′)x′′ (3.6)

holds due to (3.2) and x′ 
= x′′ (because x′
nx

′′
n < 0), it follows from Proposition

2.4 that there exists a j with z′jz
′′
j = −1 and x′

jx
′′
j > 0, implying z′jx

′
jz

′′
j x

′′
j < 0, a

contradiction; hence n occurs at most once in the sequence.

3.2. Case k < n. Again, let z′, x′ and z′′, x′′ correspond to any two nearest
occurrences of k, so that z′jx

′
j ≥ 0, z′′j x

′′
j ≥ 0 for j = 1, . . . , k − 1, z′kx

′
k < 0, z′′kx

′′
k < 0

and z′kz
′′
k = −1. This implies that z′jx

′
jz

′′
j x

′′
j ≥ 0 for j = 1, . . . , k−1, z′kx

′
kz

′′
kx

′′
k > 0 and

x′
kx

′′
k < 0. Since (3.6) holds due to (3.2), and x′ 
= x′′ because of x′

kx
′′
k < 0, Proposition

2.4 implies existence of a j with z′jz
′′
j = −1 and x′

jx
′′
j > 0, hence z′jx

′
jz

′′
j x

′′
j < 0,

so that j > k. Since z′jz
′′
j = −1, j must have entered the sequence between the

two occurrences of k. Hence between any two nearest occurrences of k there is an
occurrence of some j > k in the sequence; this means by the induction hypothesis
that k cannot occur there more than (2n−k−1 + . . . + 2 + 1) + 1 = 2n−k times.

3.3. Conclusion. We have proved that in case of regularity (3.5) holds for each
k, hence a situation of log2 pk > n− k indicates singularity of [A− |B|, A+ |B| ]. This
justifies the last possible termination, and thereby also the whole algorithm.

As the reader might have noticed, we have never used the fact that z = sgn (A−1b)
is set at the outset. This is only a heuristic step, supported by computational expe-
rience, aimed at diminishing the number of steps of the algorithm. The finiteness of
the algorithm will remain unaffected if we start from an arbitrary z ∈ Yn.

The sign accord algorithm was first given in [9], albeit only in its kernel form
(Fig. 3.2) and for a very special case of the equation (1.1) arising in the process of
solving interval linear equations ([9], Algorithm 3.1 and Theorem 3.1). In its present
form it was formulated in the internet text [11], but without proof.

4. Theorem of the alternatives. The following theorem could be inferred
from Theorems 1 and 2 in [10]. We give here a direct proof based on Theorem 3.1
which, in contrast to [10], does not use properties of P -matrices or of the linear
complementarity problem.

Theorem 4.1. For each A,B ∈ R
n×n, exactly one of the two alternatives holds:

(i) for each B′ with |B′| ≤ |B| and for each b ∈ R
n the equation

Ax + B′|x| = b (4.1)
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has a unique solution,
(ii) the inequality

|Ax| ≤ |B||x| (4.2)

has a nontrivial solution.

Proof. Given A,B ∈ R
n×n, the interval matrix [A−|B|, A+ |B| ] is either regular,

or singular. In the latter case the assertion (ii) holds due to Proposition 2.2. To
prove that regularity implies (i), we first note that each B′ with |B′| ≤ |B| satisfies
[A− |B′|, A+ |B′| ] ⊆ [A− |B|, A+ |B| ], hence regularity of [A− |B|, A+ |B| ] implies
that of [A− |B′|, A + |B′| ] and the sign accord algorithm as applied to the equation
(4.1) with arbitrary b ∈ R

n cannot state singularity, hence according to Theorem 3.1 it
finds in a finite number of steps a solution of the equation (4.1). To prove uniqueness,
assume to the contrary that (4.1) has solutions x′ and x′′, x′ 
= x′′. Put z′ = sgnx′,
z′′ = sgnx′′, then Tz′x′ ≥ 0, Tz′′x′′ ≥ 0 and (A+B′Tz′)x′ = b = (A+B′Tz′′)x′′ holds,
hence by Proposition 2.4 there exists a j with z′jz

′′
j = −1 and x′

jx
′′
j > 0, implying

z′jx
′
jz

′′
j x

′′
j < 0 contrary to z′jx

′
j ≥ 0 and z′′j x

′′
j ≥ 0, a contradiction. Hence the solution

of (4.1) is unique.

We have proved that either (i), or (ii) always holds. Assume to the contrary that
both of them hold together. Then according to Corollary 2.3 there exists a singular
matrix S of the form S = A − Ty|B|Tz such that |Ty| ≤ I, Sx = 0 and Tzx = |x|,
where x is a nontrivial solution of (4.2). Put B′ = −Ty|B|. Then |B′| ≤ |B| and the
equation

Ax + B′|x| = 0

has at least two different solutions (namely, x and 0), which contradicts (i). Hence,
(i) and (ii) cannot hold simultaneously; this means that exactly one of them holds.

Returning back to the single equation (1.1), we have the following consequence.

Proposition 4.2. If the interval matrix [A − |B|, A + |B| ] is regular, then for
each right-hand side b the equation

Ax + B|x| = b

has a unique solution which can be found by the sign accord algorithm (Fig. 3.1) in a
finite number of steps.

5. Implementation. The sign accord algorithm (Fig. 3.1) has been implement-
ed (with minor modifications) in the MATLAB function EK.P which is a part of the
free software package VERSOFT [1]. Its syntax is

[x,y,C]=ek(A,B,b)

where A,B, b are the data of (1.1), and (if applicable) x is a solution of (1.1), C.As is
a singular matrix in [A− |B|, A+ |B| ], y is a nonzero vector satisfying (2.1), C.iter is
the number of iterations (i.e., the number of k’s generated by the while loop), and
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C.flag contains a verbal description of the output. Contrary to the description of the
algorithm (Fig. 3.1) a vector (or matrix) of NaN’s is used instead of an empty output
here (thus complying to the INTLAB [12] standard). We have run the following test
with 1000 randomly generated examples of size 500 × 500 on a laptop with Mobile
AMD Sempron(tm) Processor 3500+ 1.80 GHz and 1.00 GB RAM:

tic

n=500; m=1000;

sols=0; sing=0; iter=0;

for j=1:m

rand(’state’,j);

A=2*rand(n,n)-1;

B=0.01*(2*rand(n,n)-1);

b=2*rand(n,1)-1;

[x,y,C]=ek(A,B,b);

if ~isnan(x(1)), sols=sols+1; end

if ~isnan(C.As(1,1)), sing=sing+1; end

iter=iter+C.iter;

end

sols, sing, averiter=iter/m, avertime=toc/m

sols =

877

sing =

123

averiter =

60.6610

avertime =

3.7141

As it can be seen, a solution has been found in 877 cases, and a singular matrix
C.As has been found in all the remaining 123 singularity cases. The average number
of iterations averiter corresponds well to the results of the author’s test on 100,000
various-size examples done back in 2005 which showed that the average number of
iterations is about 0.11 · n, where n is the matrix size. The average running time for
a 500 × 500 example is 3.7141 seconds.
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