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Abstract. Let F be a field, let G be an undirected graph on n vertices, and let S(F, G)

be the set of all F -valued symmetric n × n matrices whose nonzero off-diagonal entries occur in

exactly the positions corresponding to the edges of G. The minimum rank of G over F is defined

to be mr(F, G) = min{rank A |A ∈ S(F, G)}. The problem of finding the minimum rank (maximum

nullity) of edge subdivisions of a given graph G is investigated. Is is shown that if an edge is adjacent

to a vertex of degree 1 or 2, its maximum nullity is unchanged upon subdividing the edge. This

enables us to reduce the problem of finding the minimum rank of any graph obtained from G by

subdividing edges to finding the minimum rank of those graphs obtained from G by subdividing each

edge at most once. The graph obtained by subdividing each edge of G once is called its subdivision

graph and is denoted by
a

G. It is shown that its maximum nullity is an upper bound for the maximum

nullity of any graph obtained from G by subdividing edges. It is also shown that the minimum rank

of
a

G often depends only upon the number of vertices of G. In conclusion, some illustrative examples

and open questions are presented.

Key words. Combinatorial matrix theory, Edge subdivision, Graph, Maximum nullity, Mini-

mum rank, Symmetric.
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1. Introduction. Given any field F and any (simple, undirected) graph G =

(V,E) on n vertices, let S(F,G) be the set of all symmetric n× n matrices A =
[

aij

]

with entries in F such that aij 6= 0, i 6= j if and only if ij ∈ E; there is no restriction

on the diagonal entries of A. Let

mr(F,G) = min{rankA |A ∈ S(F,G)}.

The problem of determining mr(F,G) has been intensively studied and many results

can be found in the survey paper [FH]. We also define

M(F,G) = max{nullity A |A ∈ S(F,G)}.

Since mr(F,G) + M(F,G) = n, the problems of determining mr(F,G) and M(F,G)

are equivalent.
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In this paper we investigate the problem of finding the minimum rank of edge

subdivisions of a given graph.

Definition 1.1. Let G = (V,E) be a graph and let e = vw be an edge of G.

Let Ge be the graph obtained from G by inserting a new vertex u into V , inserting

edges uv and uw into E, and deleting vw from E. We say that the edge e has been

subdivided once and call Ge an edge subdivision of G. A graph obtained from a finite

number of edge subdivisions of G is called an sG. The graph G itself is considered an

sG. We denote the class of all sG’s by SC(G), and call it the subdivision class of G.

The question we will consider is:

Fix a field F and a graph G. If H is in SC(G), what is M(F,H)?

In principle, this question can be completely answered by repeated application of

Theorem 17 in [vdH] (also see section 2) which enables one to calculate M(F,Ge) in

terms of the maximum nullity of two multigraphs on fewer vertices. However, this can

be a laborious process. We will see that this question can be answered by investigating

the maximum nullity of just those graphs obtained from G by subdividing each of its

edges at most once. The graph obtained from G by subdividing each edge exactly

once (the subdivision graph) plays a fundamental role and its maximum nullity can

be found for most graphs whether or not M(F,G) is known. Consequently, for most

graphs we can either find M(F,H) for every graph H ∈ SC(G) or at least infinitely

many sG’s.

Before proceeding we pause to recall and introduce some terms from graph theory.

Definition 1.2. The complement of the graph G = (V,E) is the graph Gc =

(V,Ec). If S ⊂ V , G[S] denotes the subgraph of G induced by S.

Definition 1.3. Given two graphs G, and H, with V (G) and V (H) disjoint,

• the union, G ∪ H, is the graph with vertex set V (G) ∪ V (H), and edge set

E(G) ∪ E(H).

• the join, G ∨ H, is the graph with vertex set V (G) ∪ V (H) and edge set

E(G) ∪ E(H) ∪ {uv|u ∈ V (G) and v ∈ V (H)}

Definition 1.4. Let G and H be graphs on at least two vertices, each with a

vertex labeled v. Then G ⊕
v

H is the graph on |G| + |H| − 1 vertices obtained by

identifying the vertex v in G with the vertex v in H.

Definition 1.5. Let G = (V,E) be a graph and let v, w ∈ V .

a) If vw ∈ E, G\vw is the graph obtained from G by removing the edge vw

from E.
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b) G/vw is the multigraph obtained from G by removing vw from E if it is an

edge, and identifying the vertices v and w. (If there is a vertex in G adjacent

to both v and w, there will be multiple edges in G/vw.)

c) G + vw is the multigraph obtained from G by adding an edge between v and

w. (So G + vw has a multiple edge if vw is an edge of G.)

Definition 1.6. We denote the path on n vertices by Pn, the cycle on n vertices

by Cn, and the complete graph on n vertices by Kn. The complete bipartite graph

Km,n is the complement of Km ∪ Kn. The n-wheel Wn is Cn−1 ∨ K1.

We also need a few standard terms from matrix theory.

Definition 1.7. The k × k matrix with all entries equal to 1 is denoted by Jk.

If A ∈ S(F,G), and v is a vertex in G, then A(v) is the matrix obtained from A by

deleting the row and column labeled by v.

The following results are well known; see Observations 1–5 in [BvdHL].

Observation 1.8. Let F be any field

a) For n ≥ 2, mr(F,Kn) = 1 and M(F,Kn) = n − 1.

b) If m, n ≥ 1, and m + n ≥ 3, then mr(F,Km,n) = 2.

c) If H is an induced subgraph of G, then mr(F,G) ≥ mr(F,H).

2. Edge Subdivisions and Maximum Nullity. We begin with a basic lemma

due to Johnson, Loewy, and Smith [JLS]; they did not explicitly mention that their

proof also holds for any field.

Lemma 2.1. Let F be any field, let G be any graph, and let e be an edge of G.

Then

mr(F,G) ≤ mr(F,Ge) ≤ mr(F,G) + 1(2.1)

M(F,G) ≤ M(F,Ge) ≤ M(F,G) + 1.(2.2)

Proof. The inequalities (2.2) follow immediately from (2.1) but it is convenient to

state both sets of inequalities. Let v, w be the vertices of e and let u be the new

vertex in Ge that is adjacent to v and w.

We first prove that mr(F,G) ≤ mr(F,Ge). Let

A =













d1 a b 0T

a d2 0 xT

b 0 d3 yT

0 x y C













∈ S(F,Ge)

with rankA = mr(F,Ge) and with the first three rows and columns of A labeled by

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 530-563, August 2009



ELA

Minimum Rank of Edge Subdivisions of Graphs 533

u, v and w. Then a, b 6= 0. Let B be the matrix obtained from A by adding row 1

to row 2 and column 1 to column 2. Then rankB = rankA and B(u) ∈ S(F,G). It

follows that

mr(F,G) ≤ rankB(u) ≤ rankB = rankA = mr(F,Ge).

To prove the upper bound on mr(F,Ge), let

A =







d1 a bT

a d2 cT

b c B






∈ S(F,G)

with rankA = mr(F,G) and the first two rows and columns of A labeled by v and w.

Then a 6= 0 and

Ae =













0 0 0 0T

0 d1 a bT

0 a d2 cT

0 b c B













−













a a a 0T

a a a 0T

a a a 0T

0 0 0 0













∈ S(F,Ge).

It follows that

mr(F,Ge) ≤ rankAe ≤ rankA + 1 = mr(F,G) + 1.

Our next aim is to give an important case of equality for the first inequality in

(2.2), but first we need some additional results.

Proposition 2.2. Let F be a field and let G be a graph with a vertex u of degree

2. Assume the neighbors v, w of u are adjacent, and let e = vw. Then we have

a) if F 6= F2, mr(F,G) ≤ mr(F,G − u) + 1.

b) if F 6= F2, M(F,G − u) ≤ M(F,G).

c) mr(F,G) ≤ mr(F, (G − u)\e) + 1.

d) M(F, (G − u)\e) ≤ M(F,G).

Proof.

a) It is given that F 6= F2. Let

A =





a b xT

b c yT

x y D



 ∈ S(F,G − u)

with rankA = mr(F,G − u) and with the first two rows and columns of A

labeled by v and w so that b 6= 0. Since F 6= F2, there exists d ∈ F such that
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d 6= 0 and d 6= −b. Then

B =

[

0 0T

0 A

]

+ d

[

J3 O

O O

]

∈ S(F,G)

and mr(F,G) ≤ rankB ≤ rankA + 1 = mr(F,G − u) + 1.

b) This follows from a) and the equations mr(F,G) = n−M(F,G) and mr(F,G−

u) = n − 1 − M(F,G − u).

c) Let

A =





d1 0 bT

0 d2 cT

b c D



 ∈ S(F, (G − u)\e).

with rankA = mr(F, (G − u)\e). Then

B =

[

0 0T

0 A

]

+

[

J3 O

O O

]

∈ S(F,G)

and as before, mr(F,G) ≤ rankB ≤ rankA + 1 = mr(F, (G − u)\e) + 1.

d) This follows from c) in the same way that b) follows from a).

We need the following definition, extending S(F,G) to graphs which may have

multiple edges, and a result from [vdH].

Definition 2.3. Let G = (V,E) be a multigraph on n vertices.

If F 6= F2, define S(F,G) as the set of all F -valued symmetric n×n matrices A = [aij ]

with

1. aij = 0 if i 6= j and i and j are not adjacent,

2. aij 6= 0 if i 6= j and i and j are connected by exactly one edge,

3. aij ∈ F if i 6= j and i and j are connected by multiple edges, and

4. aii ∈ F for all i ∈ V .

If F = F2, we define S(F2, G) as the set of all F2-valued symmetric n × n matrices

A = [aij ] with

1. aij 6= 0 if i 6= j and i and j are connected by an odd number of edges,

2. aij = 0 and i and j are connected by an even number of edges, and

3. aii ∈ F2 for all i ∈ V .

We use the formulas found at the beginning of the paper to define mr(F,G) and

M(F,G) in this multigraph setting.
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Theorem 2.4 (van der Holst). Let F be a field, let G be a graph, and let u be a

vertex of degree two in G with neighbors v and w. Then

M(F,G) = max{M(F, (G − u) + vw),M(F, (G − u)/vw)}.

We now prove that M(F,G) is unchanged if an edge adjacent to a degree two

vertex or a degree one vertex is subdivided.

Theorem 2.5. Let F be a field, let G = (V,E) be a graph, let e be an edge

adjacent to a vertex of degree at most 2, and let Ge be the graph obtained by subdividing

e once. Then M(F,Ge) = M(F,G).

Proof. Let u,w be the vertices of e.

I. degree(u) = 2:

Let v be the other vertex adjacent to u. Let u′ be the new vertex in Ge, By Theorem

2.4 applied to the degree two vertex u′,

M(F,Ge) = max{M(F, (Ge − u′) + uw),M(F, (Ge − u′)/uw)}.

But (Ge − u′) + uw = G, so

(2.3) M(F,Ge) = max{M(F,G),M(F, (Ge − u′)/uw)}.

Case 1. vw /∈ E. Then G is an edge subdivison of (Ge − u′)/uw. By Lemma 2.1,

M(F,G) ≥ M(F, (Ge − u′)/uw) and we conclude that M(F,Ge) = M(F,G).

Case 2. vw ∈ E. Then there are two edges from v to w in (Ge − u′)/uw.

Subcase 1. F 6= F2. It follows from Definition 2.3 that

M(F, (Ge − u′)/uw) = max{M(F,G − u),M(F, (G − u)\vw)}.

Applying Proposition 2.2 b), d) yields M(F, (Ge − u′)/uw) ≤ M(F,G) so by (2.3),

M(F,Ge) ≤ M(F,G), and by Lemma 2.1, equality holds.

Subcase 2. F = F2. By Definition 2.3, M(F, (Ge − u′)/uw) = M(F, (G − u)\uw).

By Proposition 2.2 d), this is less than or equal to M(F,G), and again by (2.3) and

Proposition 2.1, M(F,Ge) = M(F,G).

II. degree(u) = 1:

Let v be the vertex of degree 2 in Ge that results from subdividing e. Then Ge =

(Ge −u)⊕
v

K2. Since Ge −u is isomorphic to G, Ge is isomorphic to G⊕
u

K2. Because
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the degree of u in G ⊕
u

K2 is 2,

mr(F,Ge) = mr(F,G ⊕
u

K2) = mr(F,G) + mr(F,K2) = mr(F,G) + 1

by Lemma 38 in [S]. (This lemma is also a corollary of a theorem in [H] and [BFH]

which holds for any field - Theorem 57 in [BGL].) Therefore M(F,Ge) = M(F,G).

Hein van der Holst has found an alternate proof of Theorem 2.5 using the formula

in Theorem 14 of his paper [vdH].

Corollary 2.6. Let G be a graph in which every edge is adjacent to a vertex of

degree at most 2. Then M(F,H) = M(F,G) for every graph H ∈ SC(G).

We illustrate Corollary 2.6 with a few examples of graphs on 4 and 5 vertices.

(The simple results we obtain here follow from other known results.)

Example 2.7. Consider the three graphs

paw folding stool4S

For each of these, M(F,G) = 2 for any field F . By Corollary 2.6, M(F,H) = 2 for

every graph H ∈ SC(G).

We summarize this example as:

Proposition 2.8. Let F be a field and let G be one of the following.

a) a tree with one vertex of degree 3 and all other vertices of degree at most 2.

b) a unicyclic graph with one vertex whose degree is 3 or 4 and with all other

vertices of degree at most 2.

Then M(F,G) = 2.

Example 2.9. Consider the three graphs

bowtie5S 2, 3K

For each, M(F,G) = 3 for any field F . By Corollary 2.6, M(F,H) = 3 for every
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graph H ∈ SC(G).

We summarize as:

Proposition 2.10. Let F be a field and let G be one of the following.

a) a tree with one vertex of degree 4 and all other vertices of degree at most 2.

b) Cm ⊕
v

Cn for any m,n ≥ 3.

c) an sK2,3; i.e., a graph consisting of two vertices u, v and 3 disjoint paths,

each of length at least 2, between them.

Then M(F,G) = 3.

Finally we consider the first graph in the table on page 8 of [RW] that has an

edge that is not adjacent to a vertex of degree one or two.

Proposition 2.11. Let F be a field, let the diamond ≡ K4\e be labeled

a b

c

d

and let H ∈ SC(diamond). Then

(2.4) M(F,G) =







2 if a and b are adjacent in H

3 if a and b are not adjacent in H.

Proof. We have M(F,diamond) = 2.

If a and b are adjacent in H, then H can be obtained by successively subdividing

edges adjacent to a degree 2 vertex. By Theorem 2.5, M(F,H) = M(F,diamond) = 2.

If a and b are not adjacent in H, then H can be obtained from the diamond by

first subdividing the edge ab and then subdividing the remaining edges. Then H is

an sK2,3 and by Proposition 2.10 c), M(F,H) = 3.

We note that the remark on page 5 of [JLS] follows from this result.

In contrast to Proposition 2.11 we state the following proposition about the bull

graph, , without proof.
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Proposition 2.12. Let F be a field. Then M(F,X) = 2 for every sbull, X.

Remark 2.13. The last two propositions demonstrate, unlike Theorem 2.5, that

if e = vw is an edge in a graph G, and deg(v) = deg(w) = 3, then M(F,Ge) may or

may not be equal to M(F,G).

Remark 2.14. Similar results can be easily obtained for any of the following

graphs on 5 vertices.

, , ,

3. Zero Forcing Sets, the Subdivision Graph, and SC(K4). In order to

analyze edge subdivisions of graphs in which several or all edges are not adjacent to

a degree 1 or degree 2 vertex, it is useful to employ the concept of zero forcing sets

as defined in [AIM].

Definition 3.1. [Zero forcing rule] Let G be a graph with each vertex colored

white or black. If a black vertex has only one white neighbor that vertex may be

colored black.

Definition 3.2. Given a graph G = (V,E), a subset Z of V is called a zero

forcing set if it has the property that when the vertices of Z are colored black and the

remaining vertices of V are colored white, then all vertices of V can be made black

by successively applying the zero forcing rule to G.

Definition 3.3. Z(G) is the minimum of |Z| over all zero forcing sets Z of G.

Any zero forcing set S with |S| = Z(G) is called a minimal zero forcing set.

Theorem 3.4. Let F be a field and let G be a graph. Then M(F,G) ≤ Z(G).

This is Proposition 2.4 of [AIM].

We next consider the class of sK4’s, the simplest class that illustrates a basic

phenomenon. (This is more frequently called the class of hK4’s.)

Definition 3.5. Given a graph G, let
a

G be the graph obtained from G by

applying one edge subdivision to each edge of G. We call
a

G the subdivision graph of

G.

Example 3.6.
a

K4 is the graph in figure 3.1.

Note that 1, 2, 3, 4 are the original vertices and each ij is a new vertex obtained
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12

1 2

3

4

13

14

23

24

34

Fig. 3.1.

from subdividing the edge ij in K4.

Proposition 3.7. Let G be an sK4. Then

(3.1) Z(G) ≤







3 if G is not an s
a

K4

4 if G is an s
a

K4.

Proof. If G is not an s
a

K4, then there exist two vertices of degree 3 that are

adjacent in G. Call these a and b. Then G has the form

a b

c

wj

vi

zm

xk

d

y1x1

v1

v2

w1

w2

z1

y

It is, of course, possible that v1 = c, w1 = a, x1 = a, y1 = b, or z1 = c. Then

{d, x1, y1} is easily seen to be a zero forcing set for G.

If G is an s
a

K4, then G has the form
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y1

a b

c

wk

vj

zn

ui

d

u1

x1

v1

v2

w1

w2

z1

x ym

u2

with i, j, k, ℓ, m, n all positive integers. In this case {d, x1, y1, u1} is a zero forcing

set.

Remark 3.8. The next result shows that equality holds in (3.1).

Proposition 3.9. Let F be any field and let G be an sK4. Then

M(F,G) = Z(G) =







3 if G is not an s
a

K4

4 if G is an s
a

K4.

Proof. Successively applying the first inequality in (2.2) of Lemma 2.1, yields

3 = M(F,K4) ≤ M(F,G).

But if G is not an s
a

K4, by Theorem 3.4 and Proposition 3.7,

M(F,G) ≤ Z(G) ≤ 3,

so that M(F,G) = Z(G) = 3.

Now consider the graph
a

K4 in Figure 3.1. Let
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1 2 3 4 12 13 14 23 24 34

A =

1

2

3

4

12

13

14

23

24

34





































0 0 0 0 1 1 1 0 0 0

0 0 0 0 −1 0 0 1 1 0

0 0 0 0 0 −1 0 −1 0 1

0 0 0 0 0 0 −1 0 −1 −1

1 −1 0 0 0 0 0 0 0 0

1 0 −1 0 0 0 0 0 0 0

1 0 0 −1 0 0 0 0 0 0

0 1 −1 0 0 0 0 0 0 0

0 1 0 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0 0 0





































which is in S(F,
a

K4). Because the first four rows of A are linearly dependent (and

consequently the first four columns), we have

mr(F,
a

K4) ≤ rankA ≤ 6.

By Theorem 3.4 and Proposition 3.7,

M(F,
a

K4) ≤ Z(
a

K4) ≤ 4.

Since mr(F,
a

K4) + M(F,
a

K4) = |
a

K4| = 10,

mr(F,
a

K4) = 6 and M(F,
a

K4) = 4.

Then if G is an s
a

K4 by Corollary 2.6, Theorem 3.4, and Proposition 3.7, we have

4 = M(F,
a

K4) = M(F,G) ≤ Z(G) ≤ 4.

Remark 3.10. It is interesting to compare this result with the more comprehen-

sive result in the appendix of [JLS] which says that if F is an infinite field and G is

a graph that contains an sK4, then M(F,G) ≥ 3.

Remark 3.11. Instead of producing the matrix A in the last proof, we could

have shown that M(F,
a

K4) ≥ 4 by Theorem 2.4. However, the method of construction

of A can be generalized to obtain a useful result.

Proposition 3.12. Let F be a field and let G be a bipartite graph with bipartite

sets X, Y of cardinality n and m respectively. Assume that every vertex in Y has

degree 2. Then mr(F,G) ≤ 2n − 2.

Proof. We define a (0, 1,−1) matrix A in S(F,G) as follows. Assume all rows of

X come before all rows of Y . Let aij = 0 if i, j are both in X or are both in Y . Each
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j in Y has two neighbors i1, i2 in X. Let ai1,j = 1 and ai2j = −1. If i ∈ X, j ∈ Y ,

and ij is not an edge of G, let aij = 0. Finally, if i ∈ Y , j ∈ X, let aij = aji. Then

A ∈ S(F,G) and

rankA = rankA[X |Y ] + rankA[Y |X] = 2 rankA[X |Y ].

But the rows of A[X |Y ] sum to 0, so

mr(F,G) ≤ rankA ≤ 2(|X| − 1) = 2n − 2.

Corollary 3.13. Let F be a field and Let G = (V,E) be a graph. Then

mr(F,
a

G) ≤ 2|G| − 2.

Proof. Let Y be the set of new vertices obtained by subdividing each edge in E.

Then
a

G is a bipartite graph with bipartite sets V , Y with |Y | = |E| and each vertex

in Y of degree 2. By Proposition 3.12, mr(F,
a

G) ≤ 2|G| − 2.

The method of proof of Proposition 3.12 can be adapted to prove a more general

result that is needed in the last section.

Proposition 3.14. Let F be a field and let G be a bipartite graph with bipartite

sets X, Y of cardinality n and m respectively. Assume that no vertex of Y has

degree one. If F = F2, assume further that each vertex of Y has even degree. Then

mr(F,G) ≤ 2n − 2.

Proof. We will create the required matrix A. Assume that all vertices in X

precede all vertices in Y .

I. If F = F2, let aij =







1 if ij ∈ E

0 if i = j or ij /∈ E

Then the rows of A[X |Y ] sum to zero and

mr(F,G) ≤ rankA = 2 rank A[X |Y ] ≤ 2(n − 1).

II. Assume F 6= F2. Let c denote the characteristic of the field F . Let aij = 0 if

i, j are both in X or are both in Y . For each non-isolated vertex v in Y , Let d(v)

be the degree of v, and let each of the first d(v) − 2 nonzero entries in the column

corresponding to v be equal to 1. We then have 2 cases:

Case 1) c divides d(v) − 1. Then let the last two non-zero entries be 1 + a and

−a, where a 6= 0,−1.
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Case 2) c does not divide d(v)−1. Then let the last two non-zero entries be given

by 1 and −(d(v) − 1), where by convention, d(v) − 1 = 1 + 1 + 1 + ... + 1, d(v) − 1

times.

Following this method of construction for every vertex in Y defines a matrix A in

S(F,G), in which the first n rows of A (and, consequently, the first n columns) sum

to 0. Then rankA ≤ 2n − 2.

4. A universality result. Remarkably, for many graphs G, the minimum rank

of its subdivision graph depends only on the number of vertices of G.

Theorem 4.1. Let F be any field and let G be a graph on n vertices that contains

the subgraph Pn. Then mr(F,
a

G) = 2n − 2.

Proof. By Corollary 3.13 it suffices to show that mr(F,
a

G) ≥ 2n − 2. Label the

vertices of Pn consecutively as v1, v2, . . . , vn and let ei i+1 be the edge incident to vi

and vi+1. Let yi i+1 be the new vertex in
a

G formed by the subdivision of ei i+1. Then

v1, y12, v2, y23, . . . , vn−1, yn−1 n, vn induce P2n−1 in
a

G. By Observation 1.8(c),

mr(F,
a

G) ≥ mr(F, P2n−1) = 2n − 2.

Remark 4.2. In graph theory terminology the hypothesis that Pn is a subgraph

of G is referred to by saying that G has a Hamiltonian path.

Remark 4.3. The converse of Theorem 4.1 is false. Let G be the folding stool

. Then P5 is not a subgraph of G, but by Proposition 2.8, M(F,
a

G) = 2. So

mr(F,
a

G) = |
a

G| − 2 = 10 − 2 = 2|G| − 2.

From Theorem 4.1 we see that all
a

G arising from a graph G on n vertices with Pn as

a subgraph have some surprising common features.

1. The number of vertices of G completely determine mr(F,
a

G). This is the

universality feature.

For example, consider the four graphs K5, W5, C5, P5. For any field F , we

have

mr(F,K5) = 1, mr(F,W5) = 2, mr(F,C5) = 3, and mr(F, P5) = 4.

But since each has 5 vertices and P5 is a subgraph of each,

mr(F,
a

K5) = mr(F,
a

W5) = mr(F,
a

C5) = mr(F,
a

P5) = 8.
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2. Even if mr(F,G) depends on F , mr(F,
a

G) does not.

For example let G be the full house graph, . The following is known from

[BGL] (see page 891):

mr(F2, full house) = 3, but mr(F, full house) = 2 for every field F 6= F2.

But since P5 is a subgraph of the full house, mr(F,
a

full house) = 8 for every

field F .

Corollary 4.4. Let F be any field and let G be any graph on n vertices and m

edges that contains the subgraph Pn. Then M(F,
a

G) = Z(
a

G) = 2 + m − n.

Proof. Since
a

G has n + m vertices by Theorem 4.1,

M(F,
a

G) = n + m − (2n − 2) = 2 + m − n.

By Theorem 3.4, Z(
a

G) ≥ 2 + m − n.

As we saw in the proof of Theorem 4.1, P2n−1 is an induced subgraph of
a

G.

Clearly, the set Z of all vertices in
a

G not in this P2n−1 and one of its pendant vertices

is a zero forcing set for
a

G. Then Z(
a

G) ≤ |Z| = m + n − (2n − 1) + 1 = 2 + m − n.

This concludes the proof.

5. Main Results. Let G be any graph on n vertices and m edges. We now ex-

plain a procedure for determining M(F,H) for every graph H ∈ SC(G) in terms of the

finitely many graphs in SC(G) that are intermediate between G and
a

G. Throughout

this section it will be convenient to assume that all graphs are labeled.

Definition 5.1. Given a graph G = (V,E) on m edges and any subset B of

E, the graph obtained by subdividing each edge in B once is called an intermediate

subdivision graph of G. We will denote the set of all such graphs by IS(G). Then

IS(G) ⊂ SC(G) and |IS(G)| = 2m. It is convenient to describe the graphs in IS(G)

as follows. Given a spanning subgraph H of G, let G(
a

H) be the graph obtained by

subdividing each edge of G that belongs to H once.

Example 5.2. Let G be the paw

u

v

w

x

If H1 is , then G(
a

H1) is the graph
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u

v

w

x

a

b

while if H2 is u v xw , then G(
a

H2) is

u

v

w

xa

b

We note that even though H1 and H2 as unlabeled graphs are both isomorphic to

P3 ∪ K1, G(
a

H1) and G(
a

H2) are not isomorphic.

Remark 5.3. G(
a

G) is the subdivision graph
a

G of G.

Definition 5.4. Let G be a graph and let H be a spanning subgraph of G.

A graph X is in the H-subdivision class C(G(
a

H)) if X can be obtained from G by

subdividing each edge of G that belongs to H at least once.

Example 5.5. If G and H1 are as in Example 5.2, then the graphs C4 ⊕
v

P6 and

C6 ⊕
v

P5 are in C(G(
a

H1)).

Observation 5.6. Given a graph G, any sG is in C(G(
a

H)) for some spanning

subgraph H of G.

Theorem 5.7. Let F be a field and let H be a spanning subgraph of G. If the

graph X ∈ C(G(
a

H)), then

M(F,X) = M(F,G(
a

H)).

Proof. X can be obtained from G(
a

H) by successively subdividing edges adjacent

to a degree 2 vertex. The result follows from Theorem 2.5.

We can now establish the fact that for any graph G, the maximum nullity of any

graph in SC(G) is constrained to belong to a finite set of integers.

Theorem 5.8. Let F be any field, let G be any graph, and let X be an sG. Then

(5.1) M(F,G) ≤ M(F,X) ≤ M(F,
a

G).
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Moreover, if k is any integer in the set

{M(F,G),M(F,G) + 1,M(F,G) + 2, . . . ,M(F,
a

G)},

then there is a spanning subgraph H of G such that M(F,G(
a

H)) = k.

Proof. By Observation 5.6 and Theorem 5.7, M(F,X) = M(F,G(
a

H)) for some

spanning subgraph H of G. But G(
a

H) is obtained from G by subdividing each edge

of H once, and
a

G is obtained from G(
a

H) by subdividing each edge of G that is not

in H once. By Lemma 2.1,

M(F,G) ≤ M(F,G(
a

H)) ≤ M(F,
a

G)

which verifies (5.1).

To verify the second claim, let e1, e2, . . . , em be the edges of G and for j = 1, . . . ,m

let Gj be the graph obtained from G by subdividing each edge in {e1, . . . , ej} once.

Then Go = G, Gm =
a

G, and by Lemma 2.1,

M(F,Gj) ≤ M(F,Gj+1) ≤ M(F,Gj) + 1.

It follows that M(F,Gj) = k for some j ∈ {0, 1, . . . ,m}. Let H be the spanning

subgraph of G induced by the edges of Gj .

Corollary 5.9. Let F be any field and let G be a graph on n vertices and m

edges that contains the subgraph Pn. Then if X is any sG,

M(F,G) ≤ M(F,X) ≤ M(F,
a

G) = 2 + m − n.

Proof. Apply Corollary 4.4 and Theorem 5.8.

Corollary 5.10. Let F be a field. Then if X is any sKn,

n − 1 ≤ M(F,X) ≤ M(F,
a

Kn) = 1 +

(

n − 1

2

)

.

Proof. This follows from Observation 1.8, Corollary 5.9, and the fact that Kn has
(

n
2

)

edges.

Note that if n = 4, we have for any sK4, 3 ≤ M(F,X) ≤ 4 in agreement with

Proposition 3.9. Although Proposition 3.9 gives M(F,X) more precisely in this special

case, Corollary 5.10 also gives the possible maximum nullities for any sKn, n > 4.

Our final aim is to show, given a field F and a graph G, how to determine M(F,X)

for all X ∈ IS(G) and consequently, via Theorem 5.7, for all X ∈ SC(G). Results

obtained will resemble Proposition 3.9 but will in general be more complicated.
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Definition 5.11. Let F be a field and let G be a graph. We say a spanning

subgraph H of G is M -critical for (F,G) if for each subgraph H ′ of H with one less

edge than H,

M(F,G(
a

H ′)) < M(F,G(
a

H)).

For k = M(F,G) + 1, M(F,G) + 2, . . . ,M(F,
a

G), let Mk(F,G) be the set of all

M -critical graphs H satisfying M(F,G(
a

H)) = k.

Theorem 5.12. Let F be a field, let G be a graph, and let

k ∈ {M(F,G) + 1,M(F,G) + 2, . . . ,M(F,
a

G)}.

Let H ∈ IS(G) satisfying

i) There is a subgraph X of H in Mk(F,G).

ii) No Y ∈ Mk+1(F,G) is a subgraph of H.

Then M(F,G(
a

H)) = k.

Proof. Since G(
a

H) can be obtained from G(
a

X) by subdividing the edges of H

that are not in X, by Lemma 2.1

k = M(F,G(
a

X)) ≤ M(F,G(
a

H)).

Now suppose M(F,G(
a

H)) > k. Let e1, . . . , em be the edges of H. For j =

1, . . . ,m, let Gj be the graph obtained from G by subdividing the edges e1, . . . , ej of

G once. Then,

M(F,Gm),M(F,Gm−1), . . . ,M(F,G1),M(F,G)

is a decreasing sequence of integers beginning above k, ending at an integer less than or

equal to k and with no gaps by Lemma 2.1. So for some ℓ, M(F,Gℓ) = k+1. Let Yℓ be

the subgraph of H induced by e1, . . . , eℓ. By definition, M(F,G(
a

Yℓ)) = M(F,Gℓ) =

k + 1. Since Yℓ is one such subgraph, there is a subgraph Y of H with a minimum

number of edges satisfying M(F,G(
a

Y )) = k + 1. Necessarily, Y ∈ Mk+1(F,H)

contradicting the hypothesis. Therefore, M(F,G(
a

H)) ≤ k.

6. Examples. We now give two moderately complex examples of graphs G for

which we determine M(F,X) for every X ∈ SC(G). There is no intrinsic difficulty

in working out the values of these maximum nullities, but because of the number

of intermediate subdivision graphs that must be examined, it takes a few pages to

determine all the possibilities for each graph.
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K5 : For simplicity, we depict K5 as embedded on a torus

w y

z

x

v

Let F be any field. By Corollary 5.10, if X is any sK5, 4 ≤ M(F,X) ≤ 7. The problem

of determining M(F,X) thus reduces to determining Mk(F,K5) for k = 5, 6, 7.

We begin by finding M(F,K5(
a

H)) if H is either of the two 2-trees

gem:

v

x y

w z
K5 − K3:

v

x

y

w

z

K5(
a

gem) is the graph

w y

z

x

v1

2

3

4

5 6

7

The set {w, 1, 3, 6} is a zero forcing set for K5(
a

gem); one possible forcing sequence is

v, y, 7, z, x, 4, 2, 5. Therefore

4 = M(F,K5) ≤ M(F,K5(
a

gem)) ≤ Z(K5(
a

gem)) = 4

and M(F,K5(
a

gem)) = 4.
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K5(
a

K5 − K3) is the graph

w y

z

x

v 1

2

3

45

6

7

It has {v, 1, 3, 7} as a zero forcing set so, as before, M(F,K5(
a

K5 − K3)) = 4.

By Lemma 2.1, if H is a partial 2-tree (i.e., any subgraph of a 2-tree), we have

M(F,K5(
a

H)) = 4. Therefore, no partial 2-tree is M -critical for (F,K5).

If H is not a partial 2-tree, by Theorem 11.2.3 in [BLS] it contains an sK4, so we

consider subgraphs of K5 containing an sK4. (One may reach the same conclusion by

examining a table of all graphs on 5-vertices; see for example page 8 of [RW].) There

are 7 such graphs: K5, K5−e, W5, full house, (K4)e, K4⊕
v

K2, K4∪K1. (Here (K4)e

means the graph obtained from K4 by subdividing one edge.) We consider K5(
a

H) for

each of these.

1. K5(
a

K5) ≡
a

K5:

By Corollary 5.10, M(F,
a

K5) = 1 +
(

4

2

)

= 7.

2. K5(
a

K5 − e):

w y

z

x

v1

2

3

4

5 6

78

9

Then Z = {x, 1, 2, 3, 5, 9} is a zero forcing set (one possible forcing sequence is
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w, 8, z, v, 4, 7, y, 6), so

M(F,K5(
a

K5 − e)) ≤ 6.

By Lemma 2.1,

7 = M(F,
a

K5) ≤ M(F,K5(
a

K5 − e)) + 1.

Thus we have M(F,K5(
a

K5 − e)) = 6.

Since K5 − e is the only subgraph of K5 with one less edge, by definition, K5 ∈

M7(F,K5).

3. K5(
a

W5):

w y

z

x

v1

2

3

4

5 6

78

Since {v, 1, 2, 3, 5} is a zero forcing set, M(F,K5(
a

W5)) ≤ 5. But K5(
a

K5 − e) is an

edge subdivision of K5(
a

W5), so by Lemma 2.1,

M(F,K5(
a

W5)) ≥ 6 − 1

and we conclude that M(F,K5(
a

W5)) = 5.

4. K5(
a

full house):

w y

z

x

v1

23 4

56

8

7
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Note that {v, 1, 5, 6, 8} is a zero forcing set, so M(F,K5(
a

full house)) ≤ 5. Since

K5(
a

K5 − e) is an edge subdivision of K5(
a

full house), M(F,K5(
a

full house)) ≥ 6− 1,

as in the previous case, and we have M(F,K5(
a

full house)) = 5.

Now note that W5 and full house are the only subgraphs of K5 − e with one less

edge. Since M(F,K5(
a

K5 − e)) = 6 while M(F,K5(
a

W5)) = M(F,K5(
a

full house)) = 5,

we have K5 − e ∈ M6(F,K5).

5. K5(
a

K4 ∪ K1):

w y

z

x

v

1 2

34

5

6

We apply Proposition 3.14 with X = {w, x, y, z} and Y = {v, 1, 2, 3, 4, 5, 6}. Since

every vertex of Y has even degree, we have mr(F,K5(
a

K4 ∪ K1)) ≤ 2 · 4 − 2 = 6 for

every field F . Since {v, w, 1, 2, 6} is a zero forcing set, M(F,K5(
a

K4 ∪ K1)) ≤ 5.

Since K5(
a

K4 ∪ K1) has 11 vertices, both of these inequalities are equalities. So

M(F,K5(
a

K4 ∪ K1)) = 5. Any subgraph H of K4 ∪K1 with one less edge is a partial

2-tree, so M(F,K5(
a

H)) = 4. It follows that K4 ∪ K1 ∈ M5(F,K5).

6. K5(
a

K4 ⊕
v

K2):

Note that K5(
a

K4 ⊕
v

K2) is an edge subdivision of K5(
a

K4 ∪ K1) and K5(
a

full house)

is an edge subdivision of K5(
a

K4 ⊕
v

K2). By Lemma 2.1,

5 = M(F,K5(
a

K4 ∪ K1) ≤ M(F,
a

K4 ⊕
v

K2) ≤ M(F,K5(
a

full house)) = 5.

It follows that neither K4 ⊕
v

K2 nor full house is an M critical graph for (F,K5).
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7. K5(
a

(K4)e):

w y

z

x

v1

2

3

4

5

6

7

{v, 1, 3, 5} is a zero forcing set, so M(F,K5(
a

(K4)e)) = 4 and (K4)e is not M -critical.

Finally W5 has two subgraphs with one less edge, the gem and (K4)e. Since

M(F,K5(
a

W5)) = 5 while

M(F,K5(
a

gem)) = M(F,K5(
a

(K4)e) = 4,

we conclude that W5 ∈ M5(F,K5).

We summarize these calculations as

Theorem 6.1. Let F be any field. Then there are exactly four M -critical graphs

for (F,K5) : K4 ∪ K1, W5, K5 − e, and K5. More precisely:

M5(F,K5) = {K4 ∪ K1,W5}

M6(F,K5) = {K5 − e}

M7(F,K5) = {K5}.

Applying Theorem 5.12 to this case, we have the following result which is analogous

to Proposition 3.9.

Theorem 6.2. Let F be any field and let G be an sK5 so that G ∈ C(K5(
a

H))

for some H ∈ IS(K5). Then

M(F,G) =































4 if neither K4 ∪ K1 nor W5 is a subgraph of H

5 if either K4 ∪ K1 or W5 is a subgraph of H, but K5 − e is not

6 if H = K5 − e

7 if H = K5.
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Two rather surprising features of this example is that M(F,X) is field indepen-

dent for every graph in SC(K5), and furthermore, it can be checked that M(F,X) =

Z(X) for all these graphs. In our next example we will see that both of these can fail.

W5: We label the wheel on 5 vertices, W5, in the following way:

and note that by Theorem 4.1, M(F,
a

W5) = 5, and by Corollary 5.9, if G is any sW5

then 3 ≤ M(F,G) ≤ 5.

We first consider the 2 subgraphs of W5 with one less edge, the gem and (K4)e.

Since
a

W5 can be obtained from W5(
a

gem) or W5(
a

(K4)e) by exactly one subdivision,

Lemma 2.1 implies 4 ≤ M(F,W5(
a

G)) when G is either of these two graphs. First we

consider W5(
a

gem).

The set {v, 1, 6, 7} forms a zero forcing set for this graph, so

M(F,W5(
a

gem)) ≤ Z(W5(
a

gem)) ≤ 4.

Therefore M(F,W5(
a

gem)) = 4.
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Now, we consider W5(
a

(K4)e).

The set {w, 1, 2, 7} is a zero forcing set, so similarly, M(F,W5(
a

(K4)e) = 4. Since the

gem and (K4)e are the only two subgraphs of W5 with one less edge, it follows that

W5 ∈ M5(F,W5) for any field F .

There are six spanning subgraphs of W5 with exactly 6 edges. We presently

consider four of these and will save discussion of the other two for later.

1. Bowtie: W5(
a

bowtie) is the graph:

This has a zero forcing set of size 3, namely {v, 2, 3 } Hence

3 ≤ M(F,W5(
a

bowtie) ≤ Z(W5(
a

bowtie) ≤ 3.

So M(F,W5(
a

bowtie)) = 3.

2. House1:
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Then W5(
a

house1) is the graph:

{w, 1, 2} is a zero forcing set, so similarly M(W5(
a

house1)) = 3

3. House2:

W5(
a

house2) is the graph:

Notice that W5(
a

house1) and W5(
a

house2) are not isomorphic. One zero forcing set for

W5(
a

house2) is {w, 1, 2}, so M(W5(
a

house2)) = 3.
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4. K2,3: W5(
a

K2,3) is the graph:

A zero forcing set for this graph is {z, 2, 3}, and M(W5(
a

K2,3)) = 3

Therefore, M(F,W5(
a

G)) = 3 for any field F and any subgraph G of the bowtie,

house1, house2, or K2,3. By examining a table of graphs we see that we have now

determined M(F,W5(
a

H)) for all subgraphs of W5 except diamond ∪ K1 and the two

graphs

(we have chosen one among many equivalent labelings for these two graphs). Note

that, for all of the graphs G considered thus far in this example, we have found

M(F,G) independent of our field F . Such is not the case for the remaining graphs.

Now we consider diamond ∪ K1, labeled as follows:

and we will assume for now that F 6= F2. W5(
a

diamond ∪ K1) is the graph:
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Since W5(
a

gem) is a subdivision of W5(
a

diamond ∪ K1),

3 ≤ M(F,W5(
a

diamond ∪ K1)) ≤ 4.

Applying Proposition 3.14 with F 6= F2 and X = {v, w, x, z} gives

mr(F,W5(
a

diamond ∪ K1)) ≤ 6.

Hence M(F,W5(
a

diamond ∪ K1)) ≥ 4. So M(F,W5(
a

diamond ∪ K1)) = 4.

Remembering that M(F,W5(
a

H)) = 3 for every proper spanning subgraph H of

diamond ∪ K1, it follows that diamond ∪ K1 must be M-critical for (F,W5) for all

fields other than F2. Since M(F,W5(
a

K)) = 3, for all graphs K that do not contain

diamond ∪ K1, it also follows that no other graph can be an element of M4(F,W5).

Thus, we have the following proposition:

Proposition 6.3. Let F be a field, F 6= F2. Then there are exactly 2 M-critical

graphs for (F,W5): W5 and diamond ∪ K1. In other words,

M5(F,W5) = {W5}

M4(F,W5) = {diamond ∪ K1}

Now, for the case F = F2: we have examined 4 of the possible 6 graphs in IS(W5)

that are obtained from W5 by subdividing exactly 6 edges. Now we examine the other

two in turn. First, we look at W5(
a

dart):
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Using Theorem 2.4, with u equal to the vertex 3,

M(F2,W5(
a

dart)) = max{M(F2, (W5(
a

dart) − 3) + vx),

M(F2, (W5(
a

dart) − 3)/vx)}

These two graphs are the following:

Notice that subdividing the edge xy in the first graph yields W5(
a

house1), so we have

M(F2, (W5(
a

dart) − 3) + vx) = 3. We use Theorem 2.4 again on the second graph,

with u equal to vertex 5.

M(F2,W5(
a

dart)) = max{3,M(F2, ((W5(
a

dart) − 3)/vx) − 5 + vz),

M(F2, ((W5(
a

dart) − 3)/vx − 5)/vz)}.

These two graphs are the following:

The first has a zero forcing set of {w, 1, 2}, and hence has maximum nullity at most

3. Since we are working over F2, we can replace the double edge from v to y in the

second graph by no edge. Then {w, 1, 2} is again a zero forcing set, and the maximum

nullity over F2 is at most 3. Therefore, M(F2,W5(
a

dart)) = 3.

The final graph we examine is the kite. W5(
a

kite) is the graph:
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Again using Theorem 2.4, with u equal to the vertex 3,

M(F2,W5(
a

kite)) = max{M(F2, (W5(
a

H) − 3) + vx),

M(F2, (W5(
a

H) − 3)/vx)}

These two graphs are the following:

We recognize that the second of these is isomorphic to (W5(
a

dart) − 3)/vx from

above, so we only need consider the first. The first graph has a zero forcing set of

{w, 1, 2}, so its maximum nullity is at most 3. Therefore,

M(F2,W5(
a

kite)) = 3

It follows that W5(
a

gem) and W5(
a

(K4)e) are the only graphs in IS(W5) with

maximum nullity 4 over F2, and hence both gem and (K4)e are M-critical over F2.

We summarize our findings over F2 as follows:

Proposition 6.4. There are exactly 3 M-critical graphs for (F2,W5):

M5 = {W5}

M4 = {gem, (K4)e}

We summarize the preceding two propositions in the following theorem:
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Theorem 6.5. Let F be a field, and let G be an sW5 so that G ∈ C(W5(
a

H)) for

some H ∈ IS(W5). Then

M(F,G) =







































5 if H = W5

4 if one of the following holds:

a. H = gem or H = (K4)e

b. F 6= F2, H 6= W5, and diamond ∪ K1 is a subgraph of H.

3 otherwise

For all graphs X in SC(K5) we have M(F,X) = Z(X), and for all X in SC(W5)

we have M(F,X) = Z(X) as long as F 6= F2. Such examples as these and the ones

encountered earlier in the paper may lead one to believe that if G is any graph for

which M(F,G) = Z(G) and F 6= F2, then M(F,X) = Z(X) for every X ∈ SC(G).

However, this is not the case.

Let G = W6 be labeled as follows.

For any field F 6= F2 and any a 6= 0,−1, the matrix





























a2 − 1 a 1 + a −1 1 −a

a 1 1 0 0 −1

1 + a 1 1 1 0 0

−1 0 1 −1 1 0

1 0 0 1 0 1

−a −1 0 0 1 1 + 1





























∈ S(F,W6)

and it is straightforward to check that rankA = 3. Therefore, whenever F 6= F2,

mr(F,W6) ≤ 3 and M(F,W6) ≥ 3. It is known [BGL] that mr (F2,W6) = 4 (see the

table accompanying Theorem 49).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 530-563, August 2009



ELA

Minimum Rank of Edge Subdivisions of Graphs 561

Now subdivide each spoke of W6 to obtain the graph W ∗

6 .

We verified with a computer program that Z(W ∗

6 ) > 3, so it is 4 since {1, 7, 8, 9}

is a zero forcing set. But the graph W ∗

6 − 1 is the 5-sun and mr(F, 5-sun) = 8 for

every field [BFH]. Therefore mr(F,W ∗

6 ) ≥ 8 and M(F,W ∗

6 ) ≤ 3. By Lemma 2.1,

for F 6= F2, we have M(F,W ∗

6 ) ≥ M(F,W6) ≥ 3, so M(F,W ∗

6 ) = M(F,W6) = 3.

Finally, by Corollary 4.4, M(F,
a

W6) = Z(
a

W6) = 6.

In summary:

M(F,W6) = 3 = Z(W6), F 6= F2

M(F,W ∗

6 ) = 3 < Z(W ∗

6 ) = 4, F 6= F2

M(F,
a

W6) = 6 = Z(
a

W6) for every field F

Thus as edges are subdivided in a graph the equality M(F,G) = Z(G) may be lost

and then regained.

We end this section by mentioning that the procedure in the examples above may

be simplified for some graphs. Since the minimum degree of K5 and W5 is at least

3, it was necessary to consider all intermediate subdivision graphs for each. But we

saw in Proposition 2.11 that everything is determined by whether or not the one edge

adjacent to the degree 3 vertices is subdivided.

More generally, in view of Theorem 2.5, it suffices to consider only the intermedi-

ate subdivision graphs obtained by subdividing those edges incident to vertices whose

degrees are at least 3. For example in the gem

a

b c

u v
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we need only concern ourselves with the edges ab, ac, bc, and the eight intermediate

subdivision graphs X obtained by either subdividing once or not subdividing each

of these edges. Once M(F,X) is known for each of these graphs, it is known for all

X ∈ SC(gem).

7. Conclusion and Open Questions. Given a field F and a graph G, we

have considered the problem of finding the minimum rank (maximum nullity) of any

graph obtained from G by subdividing edges. Theorem 2.5 enables us to reduce this

problem to finding the minimum rank of the intermediate subdivision graphs (those

graphs obtained from G by subdividing each edge at most once). Moreover, in any

minimum rank problem whatsoever, we need not concern ourselves with any graphs

in which two degree two vertices are adjacent, or a degree two vertex is adjacent to a

degree one vertex, as these problems reduce to a minimum rank problem for a graph

on fewer vertices.

We have also elucidated the special role of the subdivision graph
a

G showing that

M(F,
a

G) is an upper bound for M(F,X) for any X ∈ SC(G). Since M(F,G) is a

lower bound, M(F,X) for X ∈ SC(G) can take on only finitely many values. In the

penultimate section we gave examples to show how all of these maximum nullities may

be determined. Moreover, if G contains a Hamiltonian path, then M(F,
a

G) depends

only on the number of vertices in G.

We conclude with the following questions.

1. Suppose e = vw is an edge in a graph G, and that deg(v),deg(w) ≥ 3. When

is M(F,Ge) = M(F,G)?

2. Suppose G is any graph in which each vertex has degree at least 3 and that

H is a graph which has one less edge subdivision than
a

G. Is it always the

case that M(F,H) < M(F,
a

G)?

3. Is M(F,
a

G) = Z(
a

G) for every field F and graph G?

This is true if G is a tree or if G contains Pn as a subgraph.

4. For which graphs G is M(F,X) field independent for all X ∈ SC(G)?
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