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Abstract. Let F be a field of characteristic different from 2. It is shown that the problems of

classifying

(i) local commutative associative algebras over F with zero cube radical,

(ii) Lie algebras over F with central commutator subalgebra of dimension 3, and

(iii) finite p-groups of exponent p with central commutator subgroup of order p3

are hopeless since each of them contains

• the problem of classifying symmetric bilinear mappings U × U → V , or

• the problem of classifying skew-symmetric bilinear mappings U × U → V ,

in which U and V are vector spaces over F (consisting of p elements for p-groups (iii)) and V is

3-dimensional. The latter two problems are hopeless since they are wild; i.e., each of them contains

the problem of classifying pairs of matrices over F up to similarity.

Key words. Wild problems, Classification, Associative algebras, Lie algebras, Metabelian

groups.
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1. Introduction. A classification problem is called wild if it contains the prob-
lem of classifying pairs of n×n matrices over a field under similarity transformations

(A,B) �→ (S−1AS, S−1BS), S is nonsingular.

The latter problem is considered as hopeless: it contains the problem of classifying
any system of linear mappings; that is, representations of any quiver, see [3, 5].

We consider
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(a) the problem of classifying symmetric bilinear mappings U × U → V , and
(b) the problem of classifying skew-symmetric bilinear mappings U × U → V ,

in which U and V are vector spaces over a field F of characteristic different from 2
and V is three-dimensional.

In Section 3, we prove that the problems (a) and (b) contain the problem of
classifying pairs of matrices over F up to similarity. In Sections 4 and 5, we show that

(i) the problem of classifying local commutative associative algebras over F with
zero cube radical contains (a),

(ii) the problem of classifying Lie algebras over F with central commutator sub-
algebra of dimension 3 contains (b), and

(iii) the problem of classifying finite p-groups of exponent p �= 2 with central
commutator subgroup of order p3 contains the problem (a) over the field Fp

with p elements.

Therefore, the problems (a), (b), and (i)–(iii) are wild.

Note that the wildness of (a), (b), (i) and (ii) was proved in [2] if the field F

is algebraically closed. The purpose of our paper is to remove this restriction on F,
which admits, in particular, to prove the wildness of (iii).

In Section 2, we give two preparation lemmas. One of them is about matrix
triples up to congruence; its proof is based on the method of reducing the problem of
classifying systems of forms and linear mappings to the problem of classifying systems
of linear mappings, which was developed in [11] and was presented in detail in [12,
Section 3]. In Section 6, we recall this reduction, restricting ourselves to the problem
of classifying triples of bilinear forms.

All fields that we consider are of characteristic not 2.

2. Two lemmas. In this section, we give two lemmas that we use in later sec-
tions.

In each matrix triple that we consider, the three matrices have the same size,
which we call the size of the triple. Triples (A,B,C) and (A′, B′, C′) are called
equivalent if there exist nonsingular R and S such that

(RAS,RBS,RCS) = (A′, B′, C′).

If R = ST then the triples are congruent.

Define the direct sum of matrix triples:

(A,B,C) ⊕ (A′, B′, C′) := (A⊕ A′, B ⊕B′, C ⊕ C′).
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We say that a triple is indecomposable for equivalence if it is not equivalent to a direct
sum of two triples of matrices of smaller sizes. We also say that a triple U is a direct
summand of a triple T for equivalence if T is equivalent to U ⊕ V for some V .

Lemma 2.1. Each matrix triple over a field is equivalent to a direct sum of triples
of size not 0× 0 that are indecomposable for equivalence. This sum is uniquely deter-
mined, up to permutation of summands and replacement of summands by equivalent
triples.

Proof. Each triple of m×n matrices over a field F gives a triple of linear mappings
F

n → F
m; that is, a representation of the quiver

• �� ���� •

By the Krull–Schmidt theorem [8, Section 8.2], each representation of a quiver is
isomorphic to a direct sum of indecomposable representations of nonzero size, and
this sum is uniquely determined up to permutation of summands and replacement of
summands by isomorphic representations.

Lemma 2.2. Let T , T ′, U , U ′ be triples of square matrices over a field F of
characteristic not 2. Let T ⊕T ′ and U ⊕U ′ be congruent, T and U be equivalent, and
let T and T ′ have no common summands for equivalence of size not 0 × 0. Then T
and U are congruent, and T ′ and U ′ are congruent.

This lemma is proved in Section 6.

3. The wildness of the problem of classifying bilinear mappings. In this
section, we prove the following theorem.

Theorem 3.1. Let F be a field of characteristic different from 2, let U and V

be vector spaces over F, and let V be three-dimensional. The problem of classifying
symmetric (skew-symmetric) bilinear mappings U × U → V whose image generates
the target space V is wild.

Note that the image of a bilinear mapping into a vector space need not be a
subspace of its target space. It is far from clear which subsets of the target space may
be such images. For vector spaces over the real numbers, a complete classification of
the images of bilinear mappings into a three-dimensional vector space is given in [4].

Let h : U × U → V be a bilinear mapping over F, and let dimV = 3. Choose
bases e1, . . . , em in U and f1, f2, f3 in V . Then there is a unique triple (M1,M2,M3)
of m×m matrices over F such that for all x, y ∈ U , we have

h(x, y) = [x]TM1[y]f1 + [x]TM2[y]f2 + [x]TM3[y]f3, (3.1)

where [x] and [y] are the coordinate vectors.
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The mapping h is symmetric, i.e. h(x, y) = h(y, x), if and only if the matrices
M1,M2,M3 are symmetric. The mapping h is skew-symmetric, i.e. h(x, y) = −h(y, x)
if and only if the matrices M1,M2,M3 are skew-symmetric. We can reduce the triple
by congruence transformations

(M1,M2,M3) �→ (STM1S, S
TM2S, S

TM3S), S is nonsingular, (3.2)

changing the basis in U , and by linear substitutions

(M1,M2,M3) �→
( 3∑

j=1

γ1jMj ,

3∑
j=1

γ2jMj,

3∑
j=1

γ3jMj

)
, [γij ] is nonsingular, (3.3)

changing the basis in V .

The image of h generates the target space V if and only if the triple (M1,M2,M3)
is linearly independent ; that is,

αM1 + βM2 + γM3 = 0 =⇒ α = β = γ = 0. (3.4)

Indeed, let us choose any nonzero entry aij in M1 and make zero the (i, j) entries
in M2 and M3 adding γM1 by transformations (3.3). Then we choose any nonzero
entry bi′j′ in the obtained matrix M2 and make zero the (i′, j′) entries in M1 and M3.
Finally, we choose any nonzero entry ci′′j′′ in the obtained matrix M3 and make zero
the (i′′, j′′) entries in M1 and M2. By (3.1),

h(ei, ej) = aijf1, h(ei′ , ej′) = bi′j′f2, h(ei′′ , ej′′ ) = ci′′j′′f3,

in which f1, f2, f3 is the obtained basis of V .

This admits to reformulate Theorem 3.1 in the following matrix form.

Theorem 3.2. The problem of classifying linearly independent triples of sym-
metric (skew-symmetric) matrices up to transformations (3.2) and (3.3) is wild.

Proof. For a matrix triple (A,B,C) and a fixed ε ∈ {1,−1}, we write

(A,B,C)T := (AT , BT , CT ),
(A,B,C)(ε) := (A(ε), B(ε), C(ε)),

where X(ε) :=
[

0 X

εXT 0

]
. (3.5)

Let (A,B) be a pair of n × n matrices. Following [2], we define the triple of
350n-by-350n matrices

T (A,B) := (In, In, In)(ε) ⊕ (I100n, 0100n, 0100n)(ε) ⊕ (050n, I50n, 050n)(ε)

⊕ (020n, 020n, I20n)(ε) ⊕ (I4n, J4(0n), D(A,B))(ε), (3.6)
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in which

J4(0n) :=




0n In 0 0
0 0n In 0
0 0 0n In

0 0 0 0n


 , D(A,B) :=



In 0 0 0
0 A 0 0
0 0 B 0
0 0 0 0n


 ,

and ε = 1 or −1 (respectively, the matrices of (3.6) are symmetric or skew-symmetric).
The triple T (A,B) satisfies (3.4).

Let us prove that two pairs (A,B) and (C,D) of n × n matrices are similar if
and only if T (A,B) reduces to T (C,D) by transformations (3.2) and (3.3). If (A,B)
and (C,D) are similar, then the triples T (A,B) and T (C,D) are congruent since
S−1(A,B)S = (C,D) implies

RT (I4n, J4(0n), D(A,B))(ε)R = (I4n, J4(0n), D(C,D))(ε),

in which

R := (ST )−1 ⊕ (ST )−1 ⊕ (ST )−1 ⊕ (ST )−1 ⊕ S ⊕ S ⊕ S ⊕ S.

In the remainder of this section, we prove the converse. Denote by M1, M2, and
M3(A,B) the matrices of the triple T (A,B) and assume that T (A,B) reduces to
T (C,D) by transformations (3.2) and (3.3). These transformations are independent;
so we can produce the substitutions (3.3) reducing T (A,B) = (M1,M2,M3(A,B)) to

U(A,B) := (γi1M1 + γi2M2 + γi3M3(A,B))3i=1

in which [γij ] is nonsingular, and then apply the remaining congruences (3.2) to
U(A,B) and obtain T (C,D) = (M1,M2,M3(C,D)). The rank of each matrix of the
triple U(A,B) is equal to the rank of the corresponding matrix of T (C,D) since the
triples are congruent. This implies that γij = 0 if i �= j. Thus, α := γ11, β := γ22,
and γ := γ33 are nonzero, and

U(A,B) = (αM1, βM2, γM3(A,B))

= (αIn, βIn, γIn)(ε) ⊕ (αI100n, 0100n, 0100n)(ε) ⊕ (050n, βI50n, 050n)(ε)

⊕ (020n, 020n, γI20n)(ε) ⊕ (αI4n, βJ4(0n), γD(A,B))(ε). (3.7)

Write (3.6) and (3.7) in the form

T (C,D) = (In, In, In)(ε) ⊕ T ′, (3.8)

U(A,B) = (αIn, βIn, γIn)(ε) ⊕ U ′, (3.9)

in which T ′ is (3.6) with (C,D) instead of (A,B) and without the first summand,
and U ′ is (3.7) without the first summand.

The sums (3.8) and (3.9) satisfy the conditions of Lemma 2.2 since:
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• T (C,D) and U(A,B) are congruent.
• (In, In, In)(ε) and T ′ have no common summands for equivalence. Indeed,

the pairs (In, In)(ε) and T ′
2 formed by the first and the second matrices of

these triples have no common summands for equivalence: each indecompos-
able summand of (In, In)(ε) for equivalence is equivalent to (I1, I1), but the
form of T ′

2 ensures that if any pair of nonzero matrices is an indecomposable
summand of T ′

2 for equivalence, then this pair is equivalent to (I4, J4(0)).
• (In, In, In)(ε) and (αIn, βIn, γIn)(ε) are equivalent. Indeed, T (C,D) and
U(A,B) are equivalent, (In, In, In)(ε) and U ′ have no common summands
for equivalence, hence by Lemma 2.1 (In, In, In)(ε) is a direct summand of
(αIn, βIn, γIn)(ε) for equivalence. In like manner, (αIn, βIn, γIn)(ε) is itself a
direct summand of (In, In, In)(ε) for equivalence since (αIn, βIn, γIn)(ε) and
T ′ have no common summands for equivalence.

By Lemma 2.2, (In, In, In)(ε) and (αIn, βIn, γIn)(ε) are congruent; that is, there exists
a nonsingular matrix S such that

ST I(ε)
n S = αI(ε)

n = βI(ε)
n = γI(ε)

n .

Write δ := detS, then δ2 = α = β = γ. Thus, U(A,B) = δT (A,B)δ and T (A,B)
are congruent. Since U(A,B) is congruent to T (C,D), we have that T (A,B) and
T (C,D) are congruent. Write them in the form

T (A,B) = T ⊕ D(A,B)(ε), T (C,D) = T ⊕ D(C,D)(ε), (3.10)

in which T is the direct sum (3.6) without the last summand, and

D(X,Y ) := (I4n, J4(0n), D(X,Y )).

Since triples (3.10) are congruent, they are equivalent and Lemma 2.1 ensures that
D(A,B)(ε) is equivalent to D(C,D)(ε). Hence, D(A,B) ⊕ D(A,B)T is equivalent to
D(C,D) ⊕D(C,D)T .

The triple D(A,B)T is equivalent to

D′(A,B) := PD(A,B)T P = (I4n, J4(0n), D′(A,B)),

where

P :=




0 0 0 In

0 0 In 0
0 In 0 0
In 0 0 0


 , D′(A,B) :=




0n 0 0 0
0 BT 0 0
0 0 AT 0
0 0 0 In


 .

Therefore, D(A,B) ⊕D′(A,B) is equivalent to D(C,D) ⊕D′(C,D).
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By [2, Lemma 3], D(A,B) and D′(C,D) have no common direct summands for
equivalence. Analogously, D(C,D) and D′(A,B) have no common direct summands
for equivalence. Lemma 2.1 ensures that D(A,B) is equivalent to D(C,D); that is,
D(A,B)S = RD(C,D) for some nonsingular R and S. Equating the corresponding
matrices of these triples gives

S = R =



S0 S1 S2 S3

0 S0 S1 S2

0 0 S0 S1

0 0 0 S0


 , D(A,B)S = RD(C,D).

Hence, (A,B)S0 = S0(C,D), and so (A,B) is similar to (C,D).

4. The wildness of the problems of classifying associative and Lie al-
gebras. In this section, we prove the following theorem.

Theorem 4.1. Let F be a field of characteristic different from 2.

(a) The problem of classifying local commutative algebras Λ over F for which

(Rad Λ)3 = 0 and dim(Rad Λ)2 = 3

is wild.

(b) The problem of classifying Lie algebras over F with central commutator sub-
algebra of dimension 3 is wild.

We follow the proof of Theorem 4 in [2], in which F is algebraically closed.

By a semialgebra we mean a finite-dimensional vector space R over F with mul-
tiplication ab := h(a, b) given by a mapping

h : R×R → R (4.1)

that is bilinear, i.e.

(αa + βb)c = α(ac) + β(bc), a(αb + βc) = α(ab) + β(ac)

for all α, β ∈ F and all a, b, c ∈ R. A semialgebra R is commutative or anti-
commutative if ab = ba or, respectively, ab = −ba for all a, b ∈ R. Denote by R2

and R3 the vector spaces spanned by all ab and, respectively, by all (ab)c and a(bc),
in which a, b, c ∈ R.

Lemma 4.2. The problem of classifying commutative (anti-commutative) semial-
gebras R with R3 = 0 and dimR2 = 3 is wild.

Proof. Let R be a semialgebra with R3 = 0 and dimR2 = 3. The multiplication
on R is defined by the bilinear mapping (4.1). Since R3 = 0, we have ar = ra = 0 for
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all a ∈ R and r ∈ R2. Hence, h(a + R2, b + R2) = h(a, b) for all a, b ∈ R, and so h

induces (and is determined by) the bilinear mapping

h̄ : R/R2 ×R/R2 → R2, (4.2)

which is symmetric or skew-symmetric if the semialgebra R is commutative or anti-
commutative and whose image generates R2.

Every symmetric or skew-symmetric bilinear mapping g : U × U → V with
dimV = 3 whose image generates V can appear as (4.2). Indeed, consider the com-
mutative or anti-commutative semialgebra R := U ⊕ V with multiplication given by
the bilinear mapping

h : R×R → R, h(u + v, u′ + v′) := g(u, u′) ; u, u′ ∈ U, v, v′ ∈ V.

Clearly, R3 = 0 and dimR2 = 3. Since V = R2 and the spaces U and R/V are
naturally isomorphic, we can identify g and h̄.

We have reduced the problem of classifying commutative (anti-commutative)
semialgebras R with R3 = 0 and dimR2 = 3 to the problem of classifying symmetric
(skew-symmetric) bilinear mappings (4.2). The latter problem is wild by Theorem
3.1.

Proof of Theorem 4.1. Let R be a semialgebra with R3 = 0 and dimR2 = 3.

(a) Suppose first that R is commutative. We “adjoin” the identity 1 by considering
the algebra Λ consisting of the formal sums

α1 + a ; α ∈ F, a ∈ R,

with the componentwise addition and scalar multiplication and the multiplication

(α1 + a)(β1 + b) = αβ1 + (αb + βa + ab).

This multiplication is associative since R3 = 0, and so Λ is an algebra. It is commu-
tative because R is commutative. Since R is the set of its noninvertible elements, Λ
is a local algebra and R is its radical.

(b) Suppose now that R is anti-commutative. Since R3 = 0, the Jacobi identity

(ab)c + (bc)a + (ca)b = 0

holds on R, and so R is a Lie algebra. The set R2 is the commutator subalgebra of
R; it is central since R3 = 0.

Thus, Theorem 4.1 follows from Lemma 4.2.

Note that the wildness of the problem of classifying local associative algebras
Λ with (Rad Λ)3 = 0 and dim(Rad Λ)2 = 2 over an algebraically closed field F of
characteristic not 2 was proved in [1].
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5. The wildness of the problem of classifying metabelian p-groups. The
exponent of a finite group G is the minimal positive integer m such that gm = 1 for
all g ∈ G. In this section, we prove the following theorem.

Theorem 5.1. The problem of classifying finite p-groups of exponent p �= 2 with
central commutator subgroup of order p3 is wild.

Let G be a finite p-group of exponent p �= 2 with central commutator subgroup
A. Then G/A and A are abelian p-groups of type (p, . . . , p). We consider G/A and
A as vector spaces over the field Fp with p elements, but we use the multiplicative
notation

aαbβ ; α, β ∈ Fp, a, b ∈ G/A or A, (5.1)

instead of the additive notation αa + βb. Define the mapping:

ϕ : G/A×G/A → A, ϕ(gA, g′A) := [g, g′]. (5.2)

Lemma 5.2. (a) The mapping (5.2) is a skew-symmetric bilinear mapping over
the field Fp and its image generates A.

(b) The mapping (5.2) uniquely determines the group G, up to isomorphism.

(c) Let A and B be vector spaces over Fp, p �= 2. Let ψ : B × B → A be a
skew-symmetric bilinear mapping whose image generates A. Then there exist

• a finite p-group G of exponent p with central commutator subgroup A, and
• a linear bijection B → G/A that transforms ψ to (5.2).

Proof. (a) The mapping (5.2) is bilinear and skew-symmetric since

[gh, x] = h−1g−1x−1ghx = h−1[g, x]x−1hx = [g, x][h, x], [g, h] = [h, g]−1

for all g, h, x ∈ G.

(b) The group G/A can be decomposed into a direct product of cyclic groups of
order p; let g1A, . . . , gtA be their generators. Then gp

i = 1 and each element of G is
uniquely represented in the form

gα1
1 · · · gαt

t a ; 0 ≤ αi < p, a ∈ A. (5.3)

The multiplication of two elements of G that are written in the form (5.3) is fully
determined by the mapping (5.2) since

gα1
1 · · · gαt

t a · gβ1
1 · · · gβt

t b = gα1+β1
1 gα2

2 · · · gαt
t · gβ2

2 · · · gβt

t ab[gα2
2 · · · gαt

t , gβ1
1 ]

= gα1+β1
1 · · · gαt+βt

t ab[gα2
2 · · · gαt

t , gβ1
1 ][gα3

3 · · · gαt
t , gβ2

2 ] · · · [gαt
t , g

βt−1
t−1 ]. (5.4)
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(c) Let ψ : B×B → A be a skew-symmetric bilinear mapping on vector spaces A

and B over Fp and let the image of ψ generate A. We write the operations in A and
B in the multiplicative notation, as in (5.1). Choose a basis b1, . . . , bt in B. Denote
by G the set of all formal expressions of the form (5.3) and extend the multiplication
on B to G by analogy with (5.4):

gp
1 = · · · = gp

t = 1, gα1
1 · · · gαt

t a · gβ1
1 · · · gβt

t b

= gα1+β1
1 · · · gαt+βt

t abψ(bα2
2 · · · bαt

t , bβ1
1 )ψ(bα3

3 · · · bαt
t , bβ2

2 ) · · ·ψ(bαt
t , b

βt−1
t−1 ).

It is easy to check that G is a group, A is its central commutator subgroup, and the
vector space G/A is isomorphic to B. The exponent of G is p because if x, y ∈ G and
xp = yp = 1 then

(xy)p = x2y2xy · · ·xy[y, x] = x3y3xy · · ·xy[y, x][y2, x]

= xpyp[y, x][y2, x] · · · [yp−1, x] = [y, x]1+2+···+(p−1)

= [y, x](p−1)p/2 = 1.

Proof of Theorem 5.1. By Lemma 5.2, the problem of classifying finite p-groups
of exponent p with central commutator subgroup of order p3 reduces to the problem
of classifying skew-symmetric bilinear mappings over Fp whose images generate the
target spaces, which is wild by Theorem 3.1.

The problem of classifying finite p-groups with central commutator subgroup G′

of order p2 is wild both for the groups in which G′ is cyclic and for the groups in
which G′ is of type (p, p); see [9]. Finite p-groups with central commutator subgroup
of order p are classified in [7, 10].

Note that

if U and V are vector spaces over a field F of characteristic not
2 and dim V = 3, then each skew-symmetric bilinear mapping
h : U × U → V whose image generates V is surjective.

(5.5)

Indeed, d := dimU ≥ 3. Let d = 3 (the case d > 3 is considered analogously).
Represent h in the form (3.1). Using transformations (3.3), we have

M1 =


 0 1 0
−1 0 0
0 0 0


 , M2 =


 0 0 1

0 0 0
−1 0 0


 , M3 =


0 0 0

0 0 1
0 −1 0


 ,

and obtain

h(x, y) = (x1y2 − x2y1, x1y3 − x3y1, x2y3 − x3y2),
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in which x1, x2, x3 and y1, y2, y3 are the coordinates of x and y. It is easy to verify
that the system

x1y2 − x2y1 = a, x1y3 − x3y1 = b, x2y3 − x3y2 = c

is solvable for all a, b, c ∈ F.

By Lemma 5.2(c), the statement (5.5) over F = Fp is a special case of the following
theorem [6, Theorem B]: Let p > 3 and let G be a finite group whose commutator
subgroup G′ is an abelian p-group generated by at most 3 elements. Then G′ coincides
with the set of all commutators; moreover, the proof is valid for p = 3 under the
assumption that G is nilpotent of class 2.

The statement (5.5) does not extend to symmetric bilinear mappings: the map-
ping f : F

2 × F
2 → F

3 over any field F given by the formula

f((x1, x2), (y1, y2)) = (x1y1, x1y2, x2y1)

is not surjective (since (0, 1, 1) has no preimage) though its image generates F
3 (since

each (a, b, c) with a �= 0 has a preimage); see [4, Example 1].

6. A proof of Lemma 2.2. Lemma 2.2 follows from [11, Theorem 1] (or see
[12, Theorem 3.1]), in which the problem of classifying systems of forms and linear
mappings over a field of characteristic not 2 was reduced to the problem of classifying
systems of linear mappings. This reduction is presented in detail in [12, Section 3];
we recall it restricting ourselves to the problem of classifying triples of bilinear forms.

For a fixed ε ∈ {1,−1} and each matrix triple (A,B,C), define the adjoint triple

(A,B,C)◦ = ε(AT , BT , CT ).

Suppose we know a maximal set ind(Q) of nonequivalent indecomposable matrix
triples (this means that every matrix triple that is indecomposable for equivalence is
equivalent to exactly one triple from ind(Q)). Replace each triple in ind(Q) that is
equivalent to a selfadjoint triple by one that is actually selfadjoint, and denote the
set of these selfadjoint triples by ind0(Q). Then in each two- or one-element subset
{T ,U} ⊂ ind(Q) � ind0(Q) such that T ◦ is equivalent to U , select one triple and
denote the set of selected triples by ind1(Q). (If T ◦ is equivalent to U then {T ,U}
consists of one triple and we take it.)

Let T = (A,B,C) ∈ ind0(Q). A matrix pair (R,S) for which

(AS,BS,CS) = (RA,RB,RC)

is called an endomorphism of T ; the set End(T ) of endomorphisms is a ring. Since
T is indecomposable for equivalence, the subset

Rad(T ) := {(R,S) ∈ End(T ) |R or S is singular}
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is the radical and the factor ring

T(T ) := End(T )/Rad(T )

is a field or skew field, see [11]. Since T is selfadjoint, for each endomorphism (R,S)
of T we can define the adjoint endomorphism

(R,S)◦ := (ST , RT ).

The mapping (R,S) �→ (R,S)◦ is an involution on End(T ), which induces the invo-
lution

(f + Rad(T ))◦ = f◦ + Rad(T ) (6.1)

on T(T ). For each selfadjoint automorphism

f := (R,S) = (R,S)◦ ∈ End(T ) � Rad(T ),

define the selfadjoint matrix triple

T f := RT = (RA,RB,RC).

Lemma 6.1. Over a field F of characteristic different from 2, every triple of
symmetric (skew-symmetric) matrices of the same size is congruent to a direct sum

T (ε)
1 ⊕ · · · ⊕ T (ε)

p ⊕
q⊕

i=1

(
Ufi1

i ⊕ · · · ⊕ Ufili

i

)
,

in which ε = 1 (respectively, ε = −1),

T1, . . . , Tp ∈ ind1(Q), Ui ∈ ind0(Q),

T (ε)
i is defined in (3.5), Ui �= Ui′ if i �= i′, and each fij is a selfadjoint automorphism
of Ui. This sum is uniquely determined by the initial triple, up to permutation of
summands and replacement of fij by gij such that the Hermitian forms

x◦
1(fi1 + Rad(Ui))x1 + · · · + x◦

li(fili + Rad(Ui))xli

and

x◦
1(gi1 + Rad(Ui))x1 + · · · + x◦

li(gili + Rad(Ui))xli

are equivalent over the field or skew field T(Ui) with involution (6.1).

Proof. This lemma is a special case of [12, Theorem 3.1] (which was deduced
from [11, Theorem 1]). Indeed, each triple of n × n symmetric or skew-symmetric
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matrices over F defines the triple of symmetric or skew-symmetric bilinear forms on
F

n. Following [12, Section 3], we can consider the latter triple as a “representation of
the graph with relations”

G : 1α

β

γ

α = εα∗, β = εβ∗,
γ = εγ∗

in which ε = 1 or ε = −1, respectively (compare the graph G with the graph (7) in
[11], whose representations are pairs of symmetric or skew-symmetric bilinear forms).
The “quiver with involution” of G (see [12, Section 3]) is

Q : 1

γ=εγ∗

��

α=εα∗

��β=εβ∗
�� 1∗

Each triple of m×n matrices can be considered as a triple of linear mappings F
n → F

m;
that is, a representation of Q. Respectively, ind(Q) is a maximal set of nonisomorphic
indecomposable representations of Q and we can apply [12, Theorem 3.1].

Lemma 2.2 follows from Lemma 6.1.
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