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A NORM INEQUALITY FOR THREE MATRICES∗

LAJOS LÁSZLÓ†

Abstract. We prove a Frobenius norm inequality for three matrices, analogous to the well-known Böttcher–Wenzel

inequality. The situation is also similar: standard inequalities would yield an upper bound, which however can be reduced by

means of further, detailed investigations.
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1. Introduction. For real matrices A,B of order n ≥ 2, we have

(1.1) ‖AB −BA‖F ≤
√

2 ‖A‖F ‖B‖F ,

conjectured by Böttcher and Wenzel [1] and proved by several authors, including the originators [2], cf. the

survey [3]. Note that the immediate use of triangle inequality in conjunction with submultiplicativity would

give a factor 2 on the right.

Consider now the problem of estimating from above the quantity

‖ABC − CBA‖F .

By standard means, we get

‖ABC − CBA‖F ≤ ‖ABC‖F + ‖CBA‖F ≤ 2 ‖A‖F ‖B‖F ‖C‖F .

Surprisingly enough, the factor 2 can be replaced by 1.

Remark 1.1. The reason of why we compare ABC just with CBA is given by the following observations.

There are 3! = 6 permutations of {A,B,C}, and if we disregard ABC and CBA, the differences

T1 = A(BC − CB), T2 = (AB −BA)C, T3 = A(BC)− (BC)A, T4 = (AB)C − C(AB),

are left. Applying Böttcher and Wenzel’s inequality immediately proves that

max
‖Ti‖F

‖A‖F ‖B‖F ‖C‖F
=
√

2, i = 1 . . . 4,

since in all four cases we can find {−1, 0, 1} matrices with equality holding. Therefore, in what follows, we

can concentrate on the difference ABC − CBA.
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2. The structure of ABC − CBA. The matrix

E = ABC − CBA,

depends on B linearly; therefore, one can write

e = Sb,

with suitable vectorizations e and b of E and B, resp. To be concrete, stretch out B,A, and C columnwise

(as in Matlab), and E rowwise, that is, let

b = (b1,1 b2,1, . . . , bn−1,n, bn,n)T ,

(vectors a and c are defined similarly), and let

e = (e1,1 e1,2, . . . , en,n−1, en,n)T .

Note that the k−th entry of vector b equals to the (i, j)−th entry of B for k = i + (j − 1)n, while the

l−th entry of vector e is equal to the (i, j)−th entry of E for l = (i− 1)n+ j.

Lemma 2.1. S is skew symmetric.

Proof. Calculate the (i, j)−th element of E. We get

(2.2) ei,j =

n∑
k=1

n∑
l=1

ai,kbk,lcl,j − ci,kbk,lal,j =

n∑
k=1

n∑
l=1

bk,l(ai,kcl,j − al,jci,k).

We shall prove that sp,q = −sq,p for 1 ≤ p, q ≤ n2. The unique representation

p = (i− 1)n+ j, 1 ≤ i, j ≤ n,

defines ei,j , while

q = k + (l − 1)n, 1 ≤ k, l ≤ n,
gives bk,l, the coefficient in (2.2) of which equals sp,q, therefore

(2.3) sp,q = ai,kcl,j − al,jci,k.

To calculate sq,p, we have to represent q as a row index in S, hence now (l, k) is a position in E, while p is

understood columnwise, that is, it points to the (j, i) position in B. In view of (2.2) this means

sq,p = al,jci,k − ai,kcl,j = −sp,q,

which completes the proof.

Lemma 2.2. For a skew symmetric matrix S, it holds that

‖S‖22 ≤ 1
2‖S‖

2
F .

Proof. It is known that the eigenvalues of a real skew symmetric matrix are purely imaginary and come

in conjugate pairs (and one of them is zero, if the order is odd). Ordering them monotone decreasingly as

|λ1| = |λ2| ≥ |λj |, j = 3, 4, . . . , n2,

and using the fact that S is normal, we get

‖S‖2F =

n∑
i=1

|λi|2 ≥ 2|λ1|2 = 2‖S‖22,

which was to be proved.
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3. The main theorem.

Theorem 3.1. For real square matrices A,B,C, it holds that

‖ABC − CBA‖2F ≤ ‖A‖2F ‖B‖2F ‖C‖2F − ‖B‖2F tr2(ATC),

where ‖ · ‖F denotes the Frobenius norm, and tr stands for the trace.

Proof. To simplify notations, we write aq and cq for ak,l and ck,l, resp., if q = k + (l − 1)n. Introducing

the auxiliary variables

up,q = apcq − aqcp,

Lagrange’s identity [4] gives

‖A‖2F ‖C‖2F − tr2(ATC) =
∑

1≤p<q≤n2

u2p,q.

By virtue of Lemma 2.1 and Lemma 2.2, we have

‖E‖2F = ‖e‖22 = ‖Sb‖22 ≤ ‖S‖22 ‖b‖22 ≤
1

2
‖S‖2F ‖b‖22.

Observing that ‖b‖2 = ‖B‖F , it remains to prove that

1

2
‖S‖2F ≤ ‖A‖2F ‖C‖2F − tr2(ATC).

This follows because the set {sp,q : 1 ≤ p, q ≤ n2} is a permutation of the set {up,q : 1 ≤ p, q ≤ n2}, whence

‖S‖2F =
∑

1≤p,q≤n2

s2p,q =
1

2

∑
1≤p<q≤n2

s2p,q =
1

2

∑
1≤p<q≤n2

u2p,q.

Remark 3.2. For illustration, we display the matrix S for n = 2 :

S =


0 u1,3 u2,1 u2,3
u3,1 0 u4,1 u4,3
u1,2 u1,4 0 u2,4
u3,2 u3,4 u4,2 0

 .

Remark 3.3. For second-order matrices A,B,C, more is true:

‖A‖2F ‖B‖2F ‖C‖2F − ‖ABC − CBA‖2F − ‖B‖2F tr2(ATC)

= (b21 + b24)u21,4 + (b1u2,4 − b4u1,2)2 + (b1u3,4 − b4u1,3)2,

which is an identity for the matrices

A =

(
a1 a3
a2 a4

)
, B =

(
b1 0

0 b4

)
, C =

(
c1 c3
c2 c4

)
.

Here the middle matrix B can be assumed to be diagonal, since for orthogonal U and V we have

‖ABC − CBA‖F = ‖U(ABC)V T − U(CBA)V T )‖F
= ‖(UAV T )(V BUT )(UCV T )− (UCV T )(V BUT )(UAV T )‖F ,

and V BUT can be chosen to be nonnegative diagonal, due to the singular value decomposition theorem.

Therefore, this identity is another proof of the theorem for 2× 2 matrices.
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4. On a possible generalization. The six permutations of our matrices make up two sets formed by

cyclic permutations of ABC and CBA resp.; hence, it is natural to examine the difference of these three-term

sums. So, let

E1 = ABC +BCA+ CAB, E2 = CBA+ACB +BAC,

and estimate from above the norm of

E = E1 − E2.

Introducing the abbreviations

X = BC − CB, Y = CA−AC, Z = AB −BA,

we examine two approaches. First, we have

‖E‖F = ‖A(BC − CB) +B(CA−AC) + C(AB −BA)‖F(4.4)

≡ ‖AX +BY + CZ‖F
≤ ‖AX‖F + ‖BY ‖F + ‖CZ‖F
≤ ‖A‖F ‖X‖F + ‖B‖F ‖Y ‖F + ‖C‖F ‖Z‖F
≤ 3
√

2 ‖A‖F ‖B‖F ‖C‖F ,

where the Böttcher–Wenzel inequality (1.1) was used three times.

On the other hand, another rearrangement gives a different result, namely

‖E‖F = ‖(ABC − CBA) + (BCA−ACB) + (CAB −BAC)‖F(4.5)

≤ ‖ABC − CBA‖F + ‖BCA−ACB‖F + ‖CAB −BAC‖F
≤ 3‖A‖F ‖B‖F ‖C‖F ,

where we utilized our Theorem 3.1, giving therefore – even in its weaker form! – a better result.

However, some experiments show that yet more is true, allowing us to formulate our guess as follows.

Conjecture. For three real square matrices A,B,C, it holds that

(4.6) ‖E‖2F ≤ 3
2

(
‖A‖2F ‖BC − CB)‖2F + ‖B‖2F ‖CA−AC)‖2F + ‖C‖2F ‖AB −BA)‖2F

)
,

or in short:

‖E‖2F ≤ 3
2

(
‖A‖2F ‖X‖2F + ‖B‖2F ‖Y ‖2F + ‖C‖2F ‖Z‖2F

)
.

Remark 4.1. The conjecture (in conjunction with Böttcher and Wenzel’s inequality) would imply (4.5),

and consequently also (4.4). Another argument for the strongness of the conjecture is that when estimating

‖E‖2F = ‖AX +BY + CZ‖2F , standard calculation would give merely

‖E‖2F ≤ 3
(
‖A‖2F ‖X‖2F + ‖B‖2F ‖Y ‖2F + ‖C‖2F ‖Z‖2F

)
.

Now we prove the conjecture for second-order triangular matrices.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 221-226, March 2022.

225 A norm inequality for three matrices

Proof. Let

A =

(
a1 a3
0 a2

)
, B =

(
b1 b3
0 b2

)
, C =

(
c1 c3
0 c2

)
.

Note that we write here for simplicity a2, b2, c2 instead of a4, b4, c4, resp. Denoting

F = ‖A‖2F ‖BC − CB)‖2F + ‖B‖2F ‖CA−AC)‖2F + ‖C‖2F ‖AB −BA)‖2F
=
(
‖A‖2F ‖X‖2F + ‖B‖2F ‖Y ‖2F + ‖C‖2F ‖Z‖2F

)
,

(4.6) is equivalent with

p = 3F − 2‖E‖2F ≥ 0,

where p is a sixth degree polynomial in nine variables with 78 terms. Our idea is to write p as a quadratic

form

p = bTQb, b = (b1, b2, b3)T , Q ∈ R3×3,

and show that Q is positive semidefinite. (Note that this is not a necessary condition for nonnegativity of

polynomial p, due to Hilbert’s 17-th problem, nevertheless, here it works.) With this end in view we examine

the left upper determinants

d1 = q1,1, d2 =

∣∣∣∣q1,1 q1,2
q2,1 q2,2

∣∣∣∣ , d3 = det(Q).

1. d1, a fourth degree polynomial is a quadratic form of the variables {a1c3, a3c1, a2c3, a3c2} with

coefficient matrix 
6 −3 −3 3

−3 6 3 −3

−3 3 4 −1

3 −3 −1 4

 ,

if we omit the surplus term a23c
2
3. Its characteristic polynomial in x is (x2 − 14x + 9)(x − 3)2 with

positive zeros; hence, d1 is positive definite.

2. d2 is of eighth degree, however, fortunately enough, it can be factored as

d2 = 3K2 δ2,

with

K = a1c3 − a3c1 + a3c2 − a2c3.

As for δ2, the term containing a23c
2
3 can be dropped again, and the corresponding coefficient matrix

is 
5 −1 −3 3

−1 5 3 −3

−3 3 5 −1

3 −3 −1 5

 ,

with characteristic polynomial x(x− 12)(x− 4)2; hence, δ2 (and thus d2) is positive semidefinite.
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3. The determinant |Q| itself is of degree 12; however, the fourth power of K can be factored out, so

that we get

d3 = 18K4 δ3.

The factor δ3 is a quartic again and can be handled similarly to the former ones. The basis elements

are

{a1c1, a1c2, a1c3, a2c1, a2c2, a2c3, a3c1, a3c2, a3c3}.

Here, however, one must utilize the basic identities

a1c1 · a3c3 = a1c3 · a3c1, a2c2 · a3c3 = a2c3 · a3c2,
a1c2 · a3c3 = a1c3 · a3c2, a2c1 · a3c3 = a2c3 · a3c2,(4.7)

to get rid of a3c3 and obtain thus the 9× 9 matrix

6 −3 0 −3 0 0 0 0 0

−3 4 0 2 −3 0 0 0 0

0 0 10 0 0 −6 −1 3 0

−3 2 0 4 −3 0 0 0 0

0 −3 0 −3 6 0 0 0 0

0 0 −6 0 0 10 3 −1 0

0 0 −1 0 0 3 10 −6 0

0 0 3 0 0 −1 6 10 0

0 0 0 0 0 0 0 0 12


.

Its characteristic polynomial is x(x− 20)(x− 2)2(x− 6)2(x− 12)3, having nonnegative zeros; hence,

this matrix is positive semidefinite. Although d2 and d3 can vanish, this problem can be handled

easily by calculating the missing three subdeterminants, mentioned in Sylvester’s criterion. They

prove to be nonnegative as well.

To sum up, the original matrix Q is positive semidefinite, and the conjecture is in this special case

proved.

Remark 4.2. Changing as in (4.7) the basis elements in case of need, is an essential part of semidefinite

programming. (Without doing that one would have here a negative eigenvalue ≈ −0.3614.)

Also note that a similar proof for second-order full matrices seems to be too difficult, since the number

of terms in p is then 243, and over this, the subdeterminants of matrix Q cannot be factored.

Hence, we need to raise the following problem.

Problem. Prove (or disprove) the above conjecture for real (or complex) matrices of arbitrary order!
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[1] A. Böttcher and D. Wenzel. How big can the commutator of two matrices be and how big is it typically? Linear Algebra

Appl., 403:216–228, 2005.
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