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POSITIVITY OF HADAMARD POWERS OF A FEW BAND MATRICES∗

VEER SINGH PANWAR† AND A. SATYANARAYANA REDDY†

Abstract. Let PG([0,∞)) and P′
G([0,∞)) be the sets of positive semidefinite and positive definite matrices of order n,

respectively, with nonnegative entries, where some positions of zero entries are restricted by a simple graph G with n vertices.

It is proved that for a connected simple graph G of order n ≥ 3, the set of powers preserving positive semidefiniteness on

PG([0,∞)) is precisely the same as the set of powers preserving positive definiteness on P′
G([0,∞)). In particular, this provides

an explicit combinatorial description of the critical exponent for positive definiteness, for all chordal graphs. Using chain

sequences, it is proved that the Hadamard powers preserving the positive (semi) definiteness of every tridiagonal matrix with

nonnegative entries are precisely r ≥ 1. The infinite divisibility of tridiagonal matrices is studied. The same results are proved

for a special family of pentadiagonal matrices.
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1. Introduction. Throughout this paper, every matrix has real entries. A matrix is called nonnegative

if all its entries are nonnegative. A matrix A is called positive semidefinite (PSD) (respectively positive

definite (PD)) if A is symmetric and 〈x,Ax〉 ≥ 0 for all x ∈ Rn (respectively 〈x,Ax〉 > 0 for all x ∈ Rn \{0}).
If r > 0, then we denote the rth Hadamard power of a nonnegative matrix A = [aij ] by Aor (or (A)◦r),

where Aor = [arij ]. A lot of interest has been shown in studying the real entrywise powers preserving the

positive semidefiniteness of various families of matrices, see [2, 5, 7, 8, 9, 10, 12, 13]. A well-known result

is that if A is a nonnegative PSD matrix of order n and r ≥ n − 2, then A◦r is PSD. Moreover, for every

positive noninteger r < n − 2, there exists a positive semidefinite matrix A such that A◦r is not positive

semidefinite (see [5, Theorem 2.2]).

Let I ⊆ R. A function f defined on I is called superadditive on I if f(a+b) ≥ f(a)+f(b) for all a, b ∈ I.

Let G = (V,E) be a simple graph with vertex set V = {1, . . . , n} such that n ≥ 3. Let Pn(I) and P′

n(I),

respectively, be the sets of all positive semidefinite and positive definite matrices of order n with entries in

I. Let

PG(I) = {A = [aij ] ∈ Pn(I) : aij = 0 for all i 6= j, (i, j) /∈ E},

P
′

G(I) = {A = [aij ] ∈ P
′

n(I) : aij = 0 for all i 6= j, (i, j) /∈ E},

HG = {r ∈ R : A◦r ∈ PG(R) for all A ∈ PG([0,∞))},

H
′

G = {r ∈ R : A◦r ∈ P
′

G(R) for all A ∈ P
′

G([0,∞))}.

Let H be an induced subgraph of the graph G. Then HG ⊆ HH .

Our first result is as follows:

Theorem 1. Let G be any connected simple graph with at least 3 vertices. Then HG = H′

G.
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A matrix A = [aij ] is called a band matrix of bandwidth d if aij = 0 for |i− j| > d. The band matrices

of bandwidth 1 (respectively 2) are also called tridiagonal (respectively pentadiagonal). Let the symmetric

nonnegative band matrices T and P be defined as follows:

T =



a1 b1
b1 a2 b2

b2
. . .

. . .

. . .
. . .

. . .

. . .
. . . bn−1
bn−1 an


and P =



x1 0 y1
0 x2 0 y2

y1 0
. . .

. . .
. . .

y2
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . yn−2

. . .
. . .

. . . 0

yn−2 0 xn


,(1)

where n ≥ 3, ai, bj , xi and yk ≥ 0 for 1 ≤ i ≤ n, 1 ≤ j ≤ (n− 1), 1 ≤ k ≤ (n− 2).

A sequence {ak}k>0 is called a chain sequence if there exists a parameter sequence {gk}k≥0 such that

0 ≤ g0 < 1 and 0 < gk < 1 for k ≥ 1 and ak = (1− gk−1)gk for k ≥ 1 (see [4, p. 91]). A basic example of a

chain sequence is the constant sequence
{

1
4

}
k≥1 with the parameter sequence

{
1
2

}
k≥1. For more information

and examples on chain sequences, see [4, 11, 14].

A graph G = (V,E), where V = {1, . . . , n}, is called a band graph of bandwidth d if {i, j} ∈ E if and

only if i 6= j and |i − j| ≤ d. Let G be a band graph of bandwidth 1 with n ≥ 3, i.e., a path graph. Then

PG([0,∞)) is precisely the set of all PSD nonnegative tridiagonal matrices of order n. By Theorem 1.4 in [8],

HG = [1,∞). Hence, the Hadamard powers preserving the positive semidefiniteness of all the nonnegative

tridiagonal matrices of order n ≥ 3 are precisely r ≥ 1. We give an alternative proof for this in our next

theorem using chain sequences.

Theorem 2. The matrix T ◦r is PD (PSD) for every PD (PSD) matrix T in (1) if and only if r ≥ 1.

Similarly, for n ≥ 3, let G be a graph with vertex set V = {1, . . . , n}, which is the disjoint union of two

path graphs with vertex sets V1 = {1, 3, . . . , p} and V2 = {2, 4, . . . , q}, where p = n − 1, q = n if n is even,

and p = n, q = n− 1 if n is odd. Then PG([0,∞)) is precisely the set of all PSD nonnegative pentadiagonal

matrices as in Equation (1). Hence, by Theorem 1.4 of [8], HG = [0,∞) for n = 3, 4, and HG = [1,∞) for

n ≥ 5. We prove the latter result alternatively in our next Theorem.

Theorem 3. The matrix P ◦r is PD (PSD) for every PD (PSD) matrix P in (1) of order n ≥ 5 if and

only if r ≥ 1.

A nonnegative symmetric matrix A is said to be infinitely divisible (ID) if Aor is PSD for every r > 0.

It is obvious that every ID matrix is PSD; however, the converse need not be true (see [1]). Some basic

examples of ID matrices are nonnegative PSD matrices of order 2 and diagonal matrices with nonnegative

diagonal entries. For more examples and results on ID matrices, see [1, 3, 6, 10]. In our next theorem, we

give a characterization for the matrix T to be infinitely divisible.

Theorem 4. The matrix T in (1) is ID if and only if T is PSD and bibi+1 = 0 for every i ∈ {1, 2, . . .,
n− 2}.

In Section 2, we give proofs of the above results, concluding with some related remarks.
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2. Proofs of the results. Let Pn and Kn denote the path graph and the complete graph on n vertices,

respectively. Every connected graph G with at least 3 vertices contains at least a path graph H = P3 or a

triangle H = K3 as an induced subgraph. By Theorem 1.4 in [8], HP3
= HK3

= [1,∞). Hence, HG ⊆ [1,∞).

Let a, b ≥ 0, (a, b) 6= (0, 0) and r ≥ 1. Then

(a+ b)r =

[
a

a+ b
(a+ b)r +

b

a+ b
(a+ b)r

]
≥
[

a

a+ b
(a+ b)

]r
+

[
b

a+ b
(a+ b)

]r
= ar + br.

Hence, the function f(x) = xr is superadditive on [0,∞) for r ≥ 1. We now prove our first result.

Proof of Theorem 1. Let r ∈ H′

G and A ∈ PG([0,∞)). Let I denote the identity matrix of order n. Since

A is PSD, there exists a sequence {Ak}k≥1 of PD matrices, where the matrices Ak = A + 1
k I ∈ P′

G([0,∞))

converges to A entrywise as k → ∞. Hence, the matrices A◦rk are PD for k ≥ 1, so their limit A◦r is PSD.

Hence, r ∈ HG.

Conversely, let r ∈ HG, then r ≥ 1. Let A ∈ P′

G([0,∞)). Let B = A − λI, where λ > 0 is the smallest

eigenvalue of A. Then B ∈ PG([0,∞)), so B◦r is PSD.

((B + λI)◦r −B◦r)ij =

{
(bii + λ)r − brii if i = j,

0 otherwise.

Since the function f(x) = xr is superadditive on [0,∞), we have (bii + λ)r − brii ≥ λr > 0. Hence, the

diagonal matrix (B + λI)◦r − B◦r is PD. Therefore, A◦r = ((B + λI)◦r − B◦r) + B◦r is PD, which gives

r ∈ H′

G. This completes the proof.

Definition 5. A graph G is called a chordal graph if every cycle of four or more vertices in it has a

chord.

Let K
(1)
n denote the complete graph on n vertices with one edge missing. By Theorem 1.4 in [8] and

Theorem 1, we have a combinatorial characterization of the critical exponent for any chordal graph:

Corollary 6. Let G be any chordal graph with at least 3 vertices and r be the largest integer such that

either Kr or K
(1)
r is a subgraph of G. Then H′

G = N ∪ [r − 2,∞).

We now return to the analysis of powers preserving the positivity of the matrices T and P , defined in

Equation (1). Let bj = 0 for some 1 ≤ j ≤ (n − 1). Then T becomes a block diagonal matrix having two

smaller diagonal blocks. Continuing this way with these smaller blocks and repeating the process, one can

see that T is a block diagonal matrix, where each diagonal block is a tridiagonal matrix with positive entries

on its upper and lower diagonals. Moreover, every such block of T is a PD matrix with positive entries on

the main, upper and lower diagonals, if T is PD.

To prove our next result, we will need the following theorems related to chain sequences.

Theorem 7 ([4, Theorem 5.7]). If {ak}nk=1 is a chain sequence and 0 < ck ≤ ak for k ≥ 1, then {ck}nk=1

is also a chain sequence.

Theorem 8 ([11, Theorem 3.2]). Let ai, bj > 0 for 1 ≤ i ≤ n, 1 ≤ j ≤ (n − 1). Then T is positive

definite if and only if
{

b2j
ajaj+1

}n−1

j=1
is a chain sequence.

We now prove our second result.
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Proof of Theorem 2. By Theorem 1, giving the proof for the PD case is sufficient. We first prove the ‘if

part’. It is enough to prove our result for the matrix T , where ai, bj > 0 for 1 ≤ i ≤ n, 1 ≤ j ≤ (n − 1).

By Theorem 8,
{

b2j
ajaj+1

}n−1

j=1
is a chain sequence. Let r > 1. Since T is PD, 0 <

b2j
ajaj+1

< 1, which gives

0 <
(

b2j
ajaj+1

)r
<

b2j
ajaj+1

. Thus by Theorem 7,
{

b2rj
ar
ja

r
j+1

}n−1

j=1
is also a chain sequence. Hence, by Theorem 8,

the matrix T ◦r is PD.

Now we prove the ‘only if’ part. Let 0 < r < 1. Consider the tridiagonal PD matrix

A(ε) =

1 1 0

1 (2 + ε) 1

0 1 1

 ,
where ε is any arbitrary positive number. For every 0 < ε < (2

1
r − 2), det(A(ε)◦r) = (2 + ε)r − 2 < 0, so

A(ε)◦r is not PD. Hence we are done.

A symmetric block diagonal matrix is PSD (PD) if and only if each block is PSD (PD). Let A be any

matrix of order n. For α = {α1, . . . , αk} ⊆ {1, 2, . . . , n}, where α1 < α2 < · · · < αk, let A[α] denote the

principal submatrix of A obtained by picking rows and columns indexed by α. A is PD if and only if all

its leading principal minors are positive. If A is PD, then all its principal submatrices are PD. For distinct

positive integers 1 ≤ i1, . . . , in ≤ n, let Perm(i1, . . . , in) denote the permutation matrix of order n, whose

kth row is the ikth row of the identity matrix of order n. If A is a PD (PSD) matrix of order n, then XAX∗

is PD (PSD) for any nonsingular matrix X of order n.

Our third result is as given below.

Proof of Theorem 3. We first show the if part. Let A∗l = P [β] and A∗∗m = P [γ], where β = {1, 3, . . . , (2l−
1)}, γ = {2, 4, . . . , 2m} for 1 ≤ l,m ≤ k if n = 2k and 1 ≤ l ≤ (k + 1), 1 ≤ m ≤ k if n = 2k + 1. One can

observe that the principal submatrices A∗l and A∗∗m of P are tridiagonal with the upper and lower diagonal

entries belonging to the set {yi}(n−2)i=1 , and the main diagonal entries belonging to the set {xi}ni=1 as given

below:

A∗l =



x1 y1 · · · 0 0

y1 x3 y3 0 0
... y3

. . .
. . .

...

0 0
. . . x2l−3 y2l−3

0 0 · · · y2l−3 x2l−1


l×l

and A∗∗m =



x2 y2 · · · 0 0

y2 x4 y4 0 0
... y4

. . .
. . .

...

0 0
. . . x2m−2 y2m−2

0 0 · · · y2m−2 x2m


m×m

.

Also note that for every r > 0, P ◦r is congruent to the block matrix M◦r via a permutation matrix X

of order n, i.e., M◦r = XP ◦rX∗ for r > 0, where

X =

{
Perm(1, 3, . . . , (2k − 1), 2, 4, . . . , 2k) if n = 2k,

Perm(1, 3, . . . , (2k + 1), 2, 4, . . . , 2k) if n = 2k + 1
and M =



[
A∗k 0

0 A∗∗k

]
if n = 2k,

[
A∗k+1 0

0 A∗∗k

]
if n = 2k + 1.

(2)
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We prove the required results for the case when n is even (the case when n is odd can be proved

analogously). Let r > 1 and n = 2k. If P is PD (PSD), then because M = XPX∗, M is PD (PSD). So A∗k
and A∗∗k are PD (PSD) matrices. Hence, (A∗k)◦r and (A∗∗k )◦r are PD (PSD), which gives M◦r is PD (PSD).

But then P ◦r = X−1M◦rX is PD (PSD).

For the ‘only if’ part of the PSD case, the following example is sufficient. Let

P =


1 0 1 0 0

0 2 0 1 0

1 0 2 0 1

0 1 0 1 0

0 0 1 0 1

 .
The matrix P is PSD, but det(P◦r) = 2 − 3(2r) + 4r < 0 for any 0 < r < 1. Hence, P◦r is not PSD for

any 0 < r < 1. Since P is the limit of a sequence of PD pentadiagonal matrices (in the form given in

Equation (1)), the ‘only if’ part of the PD case is also done. This completes the proof.

Each principal submatrix of A is ID if A is ID. Every PSD matrix of order 2 is ID. We now discuss the

infinite divisibility of the matrices T and P .

Lemma 9. Let A =

a1 b1 0

b1 a2 b2
0 b2 a3

 be a PSD matrix of order 3. Then A is ID if and only if b1b2 = 0.

Proof. Let A be ID and C = limr→0+ A
◦r. Since the matrix C is the limit of a sequence of PSD

matrices, it is PSD. Let b1 and b2 be positive. Since A is PSD, a1, a2 and a3 are positive. This gives that

C =

1 1 0

1 1 1

0 1 1

. Hence, C is not PSD, which is not true. So b1b2 = 0. Conversely, if b1b2 = 0, then

det(A◦r) ≥ 0 for r > 0. Hence, A is ID.

In our final result, we give a characterization for the matrix T in Equation (1) to be infinitely divisible.

Proof of Theorem 4. Let T be ID. Let bkbk+1 > 0, for some 1 ≤ k ≤ (n − 2), then by Lemma 9, the

principal submatrix ak bk 0

bk ak+1 bk+1

0 bk+1 ak+2


of T is not ID. Thus, T is not ID, which contradicts the hypothesis. Hence, bibi+1 = 0 for every i ∈
{1, 2, . . . , n − 2}. Conversely, if bibi+1 = 0 for every i ∈ {1, 2, . . . , n − 2}, then A becomes a block diagonal

matrix, where each non-zero diagonal block is a PSD matrix of order 1 or 2. Hence, T is ID. This completes

the proof.

Corollary 10. The matrix P in (1) is ID if and only if P is PSD and the sequences {y2i}i≥1 and

{y2i−1}i≥1 have no two consecutive positive entries. Hence, for n = 3 and 4, the matrix P is ID if and only

if P is PSD.

Proof. From Equation (2), we have M◦r = XP ◦rX∗ for every r > 0. So P is ID if and only if M is ID.

Hence the result holds by Theorem 4.

We end with a few related remarks.
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Remark 11. From Theorem 4, the matrix T is ID if and only if T is a block diagonal matrix, where

each non-zero diagonal block is a PSD matrix of order 1 or 2.

In general, ID matrices are not closed under addition and multiplication. For example, let X = [xixj ],

where x1, . . . , xn are distinct positive real numbers and Jn be the matrix of order n with each of its entries

equals to 1, then X and Jn are both ID, but their sum is not ID (see [12, Theorem 1.1]). The Cauchy

matrix C = [cij ] =
[

1
i+j

]
, 1 ≤ i, j ≤ 3 is ID (see [1]), but its square C2 is not ID because det(C2)◦

1
4 =

det
[(

1
i+j

) 1
4

]
< 0. We say that two block diagonal matrices are of the same structure if their corresponding

blocks are square matrices of the same order. The set of block diagonal matrices of the same structure is

closed under addition, multiplication and multiplication by a nonnegative scalar. Hence, by Remark 11, we

get the following.

Remark 12. Let m ≥ 1 and ak ≥ 0 for all 0 ≤ k ≤ m. Let T 0 = T ◦0 = I. If the tridiagonal matrix T

(as in Equation (1)) is ID, then the matrices f(T ) =
∑m

k=0 akT
k and f [T ] =

∑m
k=0 akT

◦k are ID.
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