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ADDITIVE RANK–ONE NONINCREASING MAPS ON HERMITIAN
MATRICES OVER THE FIELD GF (22)∗
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Abstract. A complete classification of additive rank–one nonincreasing maps on hermitian ma-

trices over Galois field GF (22) is obtained. This field is special and was not covered in a previous

paper. As a consequence, some known applications, like the classification of additive rank–additivity

preserving maps, are extended to arbitrary fields. An application concerning the preservers of her-

mitian varieties is also presented.
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1. Introduction. By definition, hermitian matrices X and Y are adjacent if
rk(X − Y ) = 1. Hua’s fundamental theorem of the geometry of hermitian matrices
(see e.g. [32, Theorem 6.4]) classifies all bijective maps Φ on hermitian matrices which
preserve adjacency in both directions, i.e., rk(X − Y ) = 1 iff rk(Φ(X) − Φ(Y )) = 1.
Recently, important generalizations of Hua’s theorem on hermitian matrices were
obtained. In [17, 13, 14] “the assumption of both directions” was reduced to one
direction only. In the case of hermitian matrices over complex or finite field even the
assumption of bijectivity was dropped [18, 27]. For fairly arbitrary division ring of
characteristic not two, such a result is known for 2× 2 matrices [16].

These and related problems arise also in algebraic combinatorics. More precisely,
in the study of association schemes and distance regular graphs. An association
scheme is a pair (X ,R) where X is a finite set andR = {R0, R1, . . . , Rd} is a partition
of X × X where relations Ri satisfy some additional properties (see [5, p. 43]). An
automorphism of an association scheme is a permutation Φ on X , for which (x, y) ∈ Ri

implies
(
Φ(x),Φ(y)

) ∈ Ri (the definition of an automorphism of an association scheme

slightly varies throughout literature). In the case of hermitian forms scheme, X is the
set of hermitian matrices over the Galois field of order q2 (q is a power of a prime), and
(X,Y ) ∈ Ri iff rk(X − Y ) = i. Hermitian forms graph is a distance regular graph
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obtained from hermitian forms scheme such that the set of vertices X is formed by
hermitian matrices, while edges are induced by the relation R1, i.e., X and Y are
adjacent iff rk(X − Y ) = 1. Consequently, an automorphism of the hermitian forms
graph is precisely a bijection which preserves adjacency (in both directions since X is

finite). Recall that such automorphisms are classified in Hua’s theorem. Moreover,
very recently it was shown in [27] that any endomorphism of the (finite) hermitian
forms graph is necessarily bijective and hence an automorphism. We refer to [1, 5]
for more on association schemes and distance regular graphs and to [21, 22, 31] for
more on hermitian forms schemes/graphs.

Hermitian forms graphs can also be used to construct (b; d)-disjunct matrices [19].
Such matrices are used to construct an error–tolerable pooling designs which are used
to identify the set of defective items in a large population of items. These designs
have applications also to the screening of DNA sequence. For more on (b; d)-disjunct
matrices and pooling designs see e.g. [15, 8, 33, 26].

We now turn the discussion to weak adjacency preservers (in one direction), i.e.,
to those maps Φ for which rk(X − Y ) = 1 implies rk(Φ(X) − Φ(Y )) ≤ 1. In the
language of graph theory, such maps are also called weak endomorphisms of the
(hermitian forms) graph (see e.g. [20, p. 25]). Although the definitions of preserving
adjacency/weak adjacency look similar, there is a fundamental difference between
them. When considering hermitian matrices over a finite field (i.e., when the hermitian

forms graph is finite), any adjacency preserver is bijective, provided that the involution
on the field is not the identity map [27]. Hence, any such map is of the form Φ(X) =
TXσT ∗+Y , where the matrix T is invertible, Y is hermitian, and the automorphism σ

is applied entrywise. On the contrary, the structure of weak adjacency preservers
seems much more complicated. Consider for example the map defined by Φ(A) = A if
rkA = 1 and Φ(A) = 0 otherwise. For another nonstandard example fix two hermitian
matrices M and N of rank one and define: Φ(A) = 0 if rkA is even; Φ(A) =M if the
number rkA equals 1 modulo 4; Φ(A) = N if the number rkA equals 3 modulo 4. At
the present time, we are not aware of any result that would classify all such maps.
However, if we add the additivity assumption on Φ then we could still hope for a
nice structural results. Nevertheless, we still can not expect to reduce the problem on
‘strong’ adjacency preservers, since e.g. the map Φ(X) = TXσT ∗ preserves adjacency
in the weak sense for any T , while to preserve adjacency in the “strong” sense T must
be invertible.

Note that under the additivity assumption, the adjacency/weak adjacency pre-
servers are precisely those maps, which preserve/do not increase rank–one. It is
common practice in solving additive preserver problems to reduce them to rank–one
preservers. Frequently, it is easier to check whether a given map does not increase
rank–one rather than to check if it does indeed preserve it (see e.g. [9, proof of The-
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orem 1.2] or [10, Theorem 2.1, proof of Theorem 2.2]). We refer to [12, 24] for a nice
survey of the methods and historical remarks about preserver problems.

Recently, additive maps on hermitian matrices that do not increase rank–one
were classified in [25]. The only essential assumption made in this article was that the
characteristic of the underlying field differs from two and from three. The classification
for these two characteristics was obtained by the present authors in [28]. However, the
field GF (22), the Galois field of order four, was not covered. Presently, we were able
to overcome even this. Our main result, together with [25] and [28, Main Theorem],
gives us a complete classification of additive rank–one nonincreasing maps. We will
see that the field GF (22) demands new techniques. Moreover, beside the maps given
in [25, 28] new nonstandard maps appear (see (iii) in Theorem 2.1). We use a Bose–
Chakravarti’s result [4] to classify them.

Before proceeding to Section 2, it is perhaps worthwhile to interpret the additivity
assumption also in terms of endomorphisms of the hermitian forms graph. To do this,
observe that the hermitian forms graph is the Cayley graph Cay(G,S), where G is
the additive group of all hermitian matrices and the set S consists of all hermitian
matrices of rank one (for the definition of the Cayley graph see e.g. [3, p. 106]). Hence,
additive rank–one nonincreasing maps are precisely those weak endomorphisms of
Cay(G,S), which are endomorphisms of the group G that satisfy Φ(S) ⊆ S ∪ {e}.
Here, e denotes the group identity, that is, the zero matrix in our case.

The rest of the paper is organized as follows. In Section 2 we recall the necessary
definitions and state the main result. In Section 3 the proofs are given, while in
Section 4 some applications of the main theorem are presented.

2. Preliminaries and statement of the main result. Throughout this pa-
per, the field GF (22) is shortly denoted by G. Recall that the characteristic of G,
charG, equals 2, and G = {0, 1, ı, 1+ ı} = {0, 1}⊕ ı{0, 1}, where the multiplication is
given by ı2 := 1+ ı. If not said otherwise, the symbol σ denotes a field automorphism
of G. Apart the identity map, id, there exists only one more automorphism : G → G

defined by ı := 1 + ı. Note that the automorphism is an involution, i.e., x = x for
all x ∈ G. Moreover, if x �= 0 then xx = 1, i.e., x−1 = x.

We use Gn to denote the space of all column–vectors of length n. Given a vec-
tor x ∈ Gn we can, and will do so, identify it with an n× 1 matrix. Let {e1, . . . , en}
be the standard basis of Gn, and let {E11, E12, . . . , Emn} be the standard basis in
the space Mm×n(G) of all rectangular m × n matrices with entries from G. When
matrices are quadratic, i.e, when m = n, we write shortly Mn(G).

Given a matrix X and an automorphism σ we let Xσ be the matrix obtained
from X by applying σ entry-wise. When σ = , we write X . The transpose of a
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matrix X is denoted by Xtr. A matrix X ∈ Mn(G) is hermitian if X∗ := X
tr
= X .

Let Hn(G) be the set of all such matrices. Likewise we denote by Hn(K) the set of
all hermitian matrices with entries from a field K possessing an involution ̂, which
is assumed to be nonidentical (b �= id) unless otherwise stated. Note that Hn(G) is a
vector space over the subfield {x ∈ G|x = x} = {0, 1} =: Z2. A map Φ : Hn(G) →
Hm(G) is additive if Φ(X+Y ) = Φ(X)+Φ(Y ) for all X,Y ∈ Hn(G), and is rank–one
nonincreasing if rkX = 1 implies rkΦ(X) ≤ 1. Note that for any X ∈ Hn(G) of
rank r there exists an invertible matrix Q ∈ Mn(G) such that X = Q(

∑r
j=1 Ejj)Q∗

(see e.g. [4, Theorem 4.1]). Consequently, any additive rank–one nonincreasing map
Φ : Hn(G) → Hm(G) is also rank–r nonincreasing for any r, i.e., rkX = r implies
rkΦ(X) ≤ r. It also follows that any rank–one matrix M ∈ Hn(G) can be written as
M = xx∗ for some nonzero x ∈ Gn.

To shorten writings, we define x2 := xx∗ and x•y := xy∗ + yx∗. Given vectors
x1, . . . ,xr ∈ Gn let 〈x1, . . . ,xr〉 be their G-linear span, and let 〈x1, . . . ,xr〉(2) be the
Z2-subspace in Hn(G) generated by matrices x2 and x•y ; x,y ∈ 〈x1, . . . ,xr〉. It is
easily checked that if x1, . . . ,xr are G-linearly independent then matrices x2

1, . . . ,x
2
r

together with xj •xk and ıxj •xk (1 ≤ j < k ≤ r) form a Z2-basis of 〈x1, . . . ,xr〉(2).
If we replace matrices xj •xk and ıxj •xk by (xj + xk)2 and (ıxj + xk)2 then we
obtain an additive basis formed by rank–one matrices. We want to point out that
if x1,x2 are linearly independent then there are precisely five rank–one matrices in
〈x1,x2〉(2). Namely: x2

1,x
2
2, (x1+x2)2, (ıx1+x2)2, (ıx1+x2)2. Note that their sum is

zero. Though being obvious, it is perhaps worthwhile to mention that if x1 = e1 and
x2 = e2 are standard vectors then 〈x1,x2〉(2) = H2(G)⊕ 0n−2 and the five rank–one
matrices are: E11, E22, E11 + xE12 + xE21 + E22 (x = 1, ı, ı).

If σ ∈ {id, } then we say that an additive map g : 〈x1, . . . ,xr〉 → Gm is σ-
semilinear if g(xx) = σ(x)g(x) holds for all x ∈ G and all x ∈ 〈x1, . . . ,xr〉. Any
such g induces an additive map P(g) : 〈x1, . . . ,xr〉(2) → Hm(G) having the prop-
erty P(g)(x2) = g(x)2 and P(g)(x•y) = g(x)•g(y) for all x,y ∈ 〈x1, . . . ,xr〉. If
〈x1, . . . ,xr〉 = Gn then P(g)(X) = TXσT ∗, where m × n matrix T is defined by
Tej := g(ej) for j = 1, . . . , n.

We are now ready to state the main theorem of this paper.

Theorem 2.1. If n,m ≥ 2 are integers then a map Φ : Hn(G) → Hm(G) is
additive rank–one nonincreasing if and only if it takes one of the following forms:

Φ(X) = TXσT ∗,(i)

Φ(X) = s(H ◦X) ·M,(ii)

Φ(X) = P
(
([QXQ∗]11 + [QXQ∗]22)E11 + ([QXQ∗]12 + [QXQ∗]21)E22

)
P ∗.(iii)

Here, T ∈ Mm×n(G), σ ∈ {id, }, M ∈ Hm(G) is of rank one, H ∈ Hn(G), ◦ denotes
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the Schur (i.e., entrywise) product, s(Y ) is the sum of all entries of the matrix Y ,
P ∈ Mm(G) and Q ∈ Mn(G) are invertible, while [QXQ∗]jk is the (j, k)–entry of
the matrix QXQ∗.

We call the maps of the form (i) standard, while those of the forms (ii)–(iii)
nonstandard.

Remark 2.2. Note that in (ii), the map f(X) := s(H ◦ X) is just an additive
functional f : Hn(G) → Z2 (see Lemma 3.9).

Remark 2.3. It follows immediately from Theorem 2.1 that, in the case m = n,
the semigroup of additive rank–one nonincreasing maps is generated by standard
maps, maps of the form Φ(X) = f(X)E11, where f is an additive functional, and by
the map Φ(X) = ([X ]11 + [X ]22)E11 + ([X ]12 + [X ]21)E22.

Remark 2.4. Let K be a field and ̂ an involution on it (we do not assume that

b �= id). If an additive rank–one nonincreasing map Φ : Hn(G) → Hm(K) has in its
image a matrix of rank at least 3 then it can be shown that it is of the standard form,
i.e., Φ(X) = ξTXσT ∗, where ξ = ξ̂ is a scalar and σ : G → K is a field homomorphism
which intertwines the two involutions, i.e., σ̂(x) = σ(x) for all x ∈ G. In particular̂ �= id, since σ̂(ı) = σ(ı) �= σ(ı). Moreover, the additivity of Φ forces that charK = 2.
To keep the paper concise we will not prove this here.

Example 2.5. It already follows from Theorem 2.1 that the conclusion in Re-
mark 2.4 does not hold if max(rkΦ(X)) ≤ 2. However, if K �= G then there exist
different nonstandard additive rank–one nonincreasing maps Φ : Hn(G) → Hm(K).
Consider the field K := GF (42) = {0, 1, a2+a, a2+a+1}⊕a · {0, 1, a2+a, a2+a+1}
where the multiplication and the involution is given by the rule a4 = a+ 1 = â. The
additive map τ : G → GF (42) defined by τ(1) := 1 and τ(ı) := a2 + a is a field ho-
momorphism, though it does not intertwine the two involutions. In fact, τ̂(ı) �= τ(ı),
since τ̂(ı) = â2 + a = (â)2 + â = (a + 1)2 + (a + 1) = a2 + 3a + 2 = a2 + a, while
τ(ı) = τ(ı+1) = τ(ı) + τ(1) = a2 + a+1. Note that the map x �→ x2 is additive in a
field of characteristic two. Hence, the map Φ : H2(G) → H2(K) defined by

Φ
([

α1 x

x α2

])
:=

[
τ(α1 + x2 + ıx) τ(x) + aτ(x2)
τ̂(x) + âτ̂(x2) τ(α2)

]

is additive as well. We claim that it does not increase rank–one. Recall that E11,
E22, E11 + xE12 + xE21 + E22 (x = 1, ı, ı) are the only rank–one matrices in H2(G).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 482-499, August 2009



ELA

Additive Rank–one Nonincreasing Maps on Hermitian Matrices 487

The determinants of their Φ-images[
1 0
0 0

]
,

[
0 0
0 1

]
,

[
a2 + a a+ 1
a 1

]
,(2.1) [

1 a3

a3 + a2 + a+ 1 1

]
,

[
a2 + a a3 + a+ 1

a3 + a2 + 1 1

]
all vanish, since a4 = a+ 1. Hence, all of the above matrices are of rank one indeed.
Note that Φ is neither of the form (ii), since its image contains a matrix of rank
two, nor of the form (i), since in this case Φ(Eii) = Eii (i = 1, 2) would imply
T = t1E11 + t2E22, and consequently the matrix Φ(E12 +E21) would have zero entry
at position (1,1), which is a contradiction. The map Φ is also completely different
from the map (iii), because its image contains more than two linearly independent
matrices (see e.g. the matrices in (2.1)).

Example 2.6. In the case max(rkΦ(X)) ≤ 2 we have new nonstandard additive
rank–one nonincreasing maps Φ : Hn(G) → Hm(K) even when (K,̂ ) = (G, id), i.e.,
when the codomain Hm(K) is the set Sm(G) of all symmetric m ×m matrices over
the field G. The map Φ : H2(G) → S2(G) defined by

Φ
([

α1 x

x α2

])
:=

[
α1 + x x+ x

x+ x α2 + x

]
is additive and rank–one nonincreasing. It is not of the forms (i), (ii), (iii) since the
same arguments as in Example 2.5 apply.

3. Proofs. Throughout this section, n,m ≥ 2 are integers and Φ : Hn(G) →
Hm(G) is an additive rank–one nonincreasing map.

3.1. Standard maps. We start with lemmas needed to classify maps, which
turn out to be standard. The proof of the first of them can be easily deduced from
[28, Lemma 3.1] and will not be given here.

Lemma 3.1. Let r be an integer and suppose that rk(
∑r

j=1 y2
j ) = r. If a hermitian

rank–one matrix M satisfies M /∈ 〈y1, . . . ,yr〉(2) then rk(
∑r

j=1 y2
j +M) = r + 1.

Lemma 3.2. Let r be an integer and suppose that rkΦ(
∑r

j=1 x2
j ) = r. Then, the

image ImΦ|〈x1,...,xr〉(2) is contained in 〈y1, . . . ,yr〉(2), where Φ(x2
j ) =: y

2
j . Moreover,

for arbitrary 1 ≤ j < k ≤ r, the set
{
Φ

(
(xj + xk)2

)
,Φ

(
(ıxj + xk)2

)
,Φ

(
(ıxj + xk)2

)}
equals {(yj + yk)2, (ıyj + yk)2, (ıyj + yk)2} or {0,y2

j ,y
2
k}.

Proof. As Φ is rank nonincreasing, ImΦ|〈x1,...,xr〉(2) contains only matrices of
rank ≤ r. Since the space 〈x1, . . . ,xr〉(2) is additively spanned by rank–one matrices,
the first conclusion, i.e., ImΦ|〈x1,...,xr〉(2) ⊆ 〈y1, . . . ,yr〉(2) follows by Lemma 3.1.
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Consequently, since rkΦ(x2
j + x2

k) = 2, we have also ImΦ|〈xj,xk〉(2) ⊆ 〈yj ,yk〉(2) for
arbitrary 1 ≤ j < k ≤ r. In particular,

{
Φ

(
(xj + xk)2

)
,Φ

(
(ıxj + xk)2

)
,Φ

(
(ıxj +

xk)2
)} ⊆ {0,y2

j ,y
2
k, (yj + yk)2, (ıyj + yk)2, (ıyj + yk)2}. The rest follows from the

equation

0 = Φ(0) = Φ
(
x2

j + x2
k + (xj + xk)2 + (ıxj + xk)2 + (ıxj + xk)2

)
= y2

j + y2
k +Φ

(
(xj + xk)2

)
+Φ

(
(ıxj + xk)2

)
+Φ

(
(ıxj + xk)2

)
.(3.1)

The next lemma can be proved via [27, Theorem 3.1], however we give a self-
contained proof which is not much longer.

Lemma 3.3. Let r ∈ {2, 3} and x1, . . . ,xr ∈ Gn. If Φ|〈x1,...,xr〉(2) preserves rank–
one and rkΦ(

∑r
j=1 x2

j ) = r then Φ|〈x1,...,xr〉(2) = P(g) for some σ-semilinear map
g : 〈x1, . . . ,xr〉 → Gm.

Proof. By the assumption, Φ|〈x1,...,xr〉(2) preserves rank–one, i.e., it can not anni-
hilate rank–one matrices. Hence, if we denote Φ(x2

j ) =: y
2
j then Lemma 3.2 implies{

Φ
(
(xj+xk)2

)
,Φ

(
(ıxj+xk)2

)
,Φ

(
(ıxj+xk)2

)}
= {(yj+yk)2, (ıyj+yk)2, (ıyj+yk)2}

for arbitrary 1 ≤ j < k ≤ r. In other words, Φ
(
(xxj + xk)2

)
=

(
νjk(x)yj + yk

)2

for some function νjk : G → G which satisfies νjk(0) = 0 and νjk(x) �= 0 whenever
x �= 0. Moreover, from (3.1) we deduce that νjk(1) + νjk(ı) + νjk(ı) = 0. Therefore,
if σjk : G → G is defined by σjk(x) := νjk(x)

νjk(1) then 1 + σjk(ı) + σjk(ı) = 0, i.e.,
{σjk(ı), σjk(ı)} = {ı, ı}. Consequently, σjk ∈ {id, }.

If r = 2 then rkΦ(
∑2

j=1 x2
j ) = 2, so y1 and y2 as well as x1 and x2 are linearly

independent. Define first g(x1) := ν12(1)y1 and g(x2) := y2, and then extend the
map g, on whole 〈x1,x2〉, σ12-semilinearly. Since ν12(1)ν12(1) is nonzero, it equals 1,
so we deduce that Φ|〈x1,x2〉(2) = P(g).

If r = 3 we proceed similarly. Vectors y1,y2,y3 as well as x1,x2,x3 are linearly
independent. If an invertible matrix P ∈ Mm(G) is such that Pyj = ej for all j and
if x, y �= 0 then any 2× 2 minor of the rank–one matrix

PΦ
(
(xx1 + x2 + yx3)2

)
P ∗ = P

(
Φ(x2

1) + Φ(x2
2) + Φ(x2

3)+

+ Φ
(
(xx1 + x2)2

)
+Φ

(
(xyx1 + x3)2

)
+Φ

(
(yx2 + x3)2

))
P ∗

vanishes. From the minor at positions (1, 2), (1, 3), (2, 2), and (2, 3) we deduce that

(3.2) ν12(1)ν23(1)σ12(x)σ23(y) = ν13(1)σ13(xy).

Recall that σjk(1) = 1. Hence, by evaluating (3.2) at x = 1 = y we obtain
ν12(1)ν23(1) = ν13(1). Moreover, νjk(1) is nonzero, so equation (3.2) implies that
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σ12(x)σ23(y) = σ13(xy). By choosing x = 1 or y = 1 we deduce that σ12 = σ13 = σ23.
Therefore, if σ12-semilinear map g is defined on the basis by g(x1) := ν12(1)y1,
g(x2) := y2, and g(x3) := ν23(1)y3 then Φ|〈x1,x2,x3〉(2) = P(g).

Lemma 3.4. Suppose that rkΦ(x2
1 + x2

2) = 2 and P(g) = Φ|〈x1,x2〉(2) = P(g′) for
some σ-semilinear map g : 〈x1,x2〉 → Gm and σ′-semilinear map g′ : 〈x1,x2〉 → Gm.
Then g′ = t · g for some nonzero t ∈ G.

Proof. For j = 1, 2 the equation g(xj)2 = Φ(x2
j ) = g′(xj)2 implies that g′(xj) =

tjg(xj) for some nonzero tj ∈ G. Consequently,(
σ(x)g(x1)

)•g(x2) = Φ
(
(xx1)•x2

)
=

(
σ′(x)g′(x1)

)•g′(x2)

=
(
σ′(x)t1g(x1)

)•(
t2g(x2)

)
(x ∈ G).

Since g(x1) and g(x2) are linearly independent, we deduce that σ(x) = σ′(x)t1t2.
Hence, σ = σ′ and t1t2 = 1 = t1t1, i.e., t1 = t2 =: t. This ends the proof.

Lemma 3.5. Let x1,x2,x3 ∈ Gn be linearly independent. If Φ|〈x1,x2〉(2) = P(g)
for some σ-semilinear map g : 〈x1,x2〉 → Gm, and rkΦ(x2

1 + x2
2) = 2, then g can be

σ-semilinearly extended on 〈x1,x2,x3〉 such that Φ|〈x1,x2,x3〉(2) = P(g).
Proof. We separate two cases.

Case 1. Assume first that ImΦ|〈x1,x2,x3〉(2) �= ImΦ|〈x1,x2〉(2) . Then there exists ẋ3 ∈
〈x1,x2,x3〉 such that Φ(ẋ2

3) /∈ ImΦ|〈x1,x2〉(2) and 〈x1,x2, ẋ3〉 = 〈x1,x2,x3〉. By the
assumption, ImΦ|〈x1,x2〉(2) = 〈g(x1), g(x2)〉(2), so Lemma 3.1 implies that rkΦ(x2

1 +
x2

2 + ẋ2
3) = 3.

We will show that Φ|〈x1,x2,ẋ3〉(2) preserves rank–one, i.e., Φ((x1x1+x2x2+x3ẋ3)2) �= 0
for any nonzero tuple (x1, x2, x3) of scalars. This clearly holds if x3 = 0 and (x1, x2) �=
(0, 0) or if x1 = 0 = x2 and x3 �= 0. To deal with other cases denote Φ(ẋ2

3) =: y2
3

and choose an invertible matrix P such that Pg(x1) = e1, Pg(x2) = e2, and Py3 =
e3. By Lemma 3.2, the set

{
Φ

(
(xj + ẋ3)2

)
,Φ

(
(ıxj + ẋ3)2

)
,Φ

(
(ıxj + ẋ3)2

)}
equals

{(g(xj) + y3)2, (ıg(xj) + y3)2, (ıg(xj) + y3)2} or {0, g(xj)2,y2
3} for j = 1, 2. Assume

erroneously that Φ((x1x1 + x3ẋ3)2) = 0 for some nonzero x1 and x3. We can choose
x ∈ {1, ı, ı} such that either PΦ((xx2 + ẋ3)2)P ∗ = P (g(x2) + y3)2P ∗ = (e2 + e3)2 or
PΦ((xx2 + ẋ3)2)P ∗ = 0. In both cases the matrix

PΦ((x1x3x1 + xx2 + ẋ3)2)P ∗ =

= P
(
Φ((x1x3x1)•(xx2)) + Φ(ẋ2

3) + Φ((x1x1 + x3ẋ3)2) + Φ((xx2 + ẋ3)2)
)
P ∗

=
(
σ(x1x3)e1

)•(
σ(x)e2

)
+ e2

3 + PΦ((xx2 + ẋ3)2)P ∗

has rank ≥ 2, which is a contradiction. Hence, Φ((x1x1 + x3ẋ3)2) �= 0. In the same
way we show that Φ((x2x2 + x3ẋ3)2) �= 0 whenever x2 �= 0 �= x3. Lastly, let all
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x1, x2, x3 be nonzero. Then, Φ((x1x1 + x2x2 + x3ẋ3)2) �= 0 since the matrix

PΦ((x1x1 + x2x2 + x3ẋ3)2)P ∗ =

=
(
σ(x1)e1

)•(
σ(x2)e2

)
+ e2

3 + PΦ((x1x3x1 + ẋ3)2)P ∗ + PΦ((x2x3x2 + ẋ3)2)P ∗

has nonzero entry at position (1, 2). Consequently, Φ|〈x1,x2,ẋ3〉(2) = Φ|〈x1,x2,x3〉(2)
preserves rank–one as claimed.
By Lemma 3.3 applied at r = 3, there exists a σ′-semilinear map g′ : 〈x1,x2,x3〉 →
Gm such that Φ|〈x1,x2,x3〉(2) = P(g′). By Lemma 3.4, g′|〈x1,x2〉 = t ·g for some nonzero
t. Hence, if we σ-semilinearly extend g by g(x3) := tg′(x3) then Φ|〈x1,x2,x3〉(2) = P(g).
Case 2. Assume now that ImΦ|〈x1,x2,x3〉(2) = ImΦ|〈x1,x2〉(2) . We claim that in
this case there exists ẍ3 ∈ {x3,x1 + x3, ıx1 + x3, ıx1 + x3} such that Φ(ẍ2

3) ∈
{g(x1)2, g(x2)2}. Otherwise Φ(ẍ2

3) ∈
{
0,

(
g(x1)+g(x2)

)2
,
(
ıg(x1)+g(x2)

)2
,
(
ıg(x1)+

g(x2)
)2} for all such ẍ3, so if an invertible matrix P satisfies Pg(x1) = e1 and

Pg(x2) = e2 then

0 = PΦ(0)P ∗ = PΦ
(
x2

1 + x2
3 + (x1 + x3)2 + (ıx1 + x3)2 + (ıx1 + x3)2

)
P ∗(3.3)

= E11 +A+B + C +D,(3.4)

where A,B,C,D ∈ {0} ∪ {E11 + xE12 + xE21 + E22 |x = 1, ı, ı}. However, this
is not possible, since the matrix in (3.4) has a nonzero diagonal for any choice of
matrices A,B,C,D. Hence, Φ(ẍ2

3) ∈ {g(x1)2, g(x2)2} for some ẍ3. Moreover, we
may assume that

(3.5) Φ(ẍ2
3) = g(x1)2

(otherwise permute the indices 1 and 2 from the beginning). Now, if in (3.3) we replace
x3 by ẍ3 then we deduce that Φ

(
(x1 + ẍ3)2

)
+Φ

(
(ıx1 + ẍ3)2

)
+Φ

(
(ıx1 + ẍ3)2

)
= 0.

Since all three matrices are in ImΦ|〈x1,x2,x3〉(2) = 〈g(x1), g(x2)〉(2) and are of rank
≤ 1, this is possible only if there exists x ∈ {1, ı, ı} such that

(3.6) Φ
(
(xx1 + ẍ3)2

)
= 0 and Φ

(
(ıxx1 + ẍ3)2

)
= Φ

(
(ıxx1 + ẍ3)2

)
.

Since rkΦ(x2
2 + ẍ2

3) = 2, Lemma 3.2 implies that the set
{
Φ

(
(x2 + ẍ3)2

)
,Φ

(
(ıx2 +

ẍ3)2
)
,Φ

(
(ıx2 + ẍ3)2

)}
equals {(g(x1)+ g(x2)

)2
,
(
ıg(x1)+ g(x2)

)2
,
(
ıg(x1)+ g(x2)

)2}
or {0, g(x1)2, g(x2)2}. Actually, the last is not an option, since for y �= 0, the matrix

Φ
(
(x1 + yx2 + xẍ3)2

)
=

(3.7)

= Φ
(
x2

1 + x2
2 + ẍ2

3 + (yx1 + x2)2 + (xx1 + ẍ3)2 + (yxx2 + ẍ3)2
)

= Φ(x2
1) + Φ(x2

2) + Φ(ẍ2
3) + Φ

(
(yx1 + x2)2

)
+Φ

(
(xx1 + ẍ3)2

)
+Φ

(
(yxx2 + ẍ3)2

)
= g(x1)2 + g(x2)2 + g(x1)2 +

(
σ(y)g(x1) + g(x2)

)2 + 0 + Φ
(
(yxx2 + ẍ3)2

)
= g(x2)2 +

(
σ(y)g(x1) + g(x2)

)2 +Φ
(
(yxx2 + ẍ3)2

)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 482-499, August 2009



ELA

Additive Rank–one Nonincreasing Maps on Hermitian Matrices 491

is of rank ≤ 1 and consequently Φ
(
(yxx2 + ẍ3)2

) �= 0. So, Φ
(
(yxx2 + ẍ3)2

) ∈
{(g(x1) + g(x2)

)2
,
(
ıg(x1) + g(x2)

)2
,
(
ıg(x1) + g(x2)

)2} for all nonzero y. Actually,

(3.8) Φ
(
(yxx2 + ẍ3)2

)
=

(
σ(y)g(x1) + g(x2)

)2

is the only possibility for the matrix in (3.7) to be of rank≤ 1. Consequently, if in (3.7)
we replace x by ıx and ıx respectively then we deduce that rk

(
g(x2)2 +

(
σ(yz)g(x1)•

g(x2)
)2 +M

) ≤ 1 for z = ı, ı, where M := Φ
(
(ıxx1 + ẍ3)2

)
= Φ

(
(ıxx1 + ẍ3)2

)
. The

only such matrix M of rank ≤ 1 in ImΦ|〈x1,x2,x3〉(2) = 〈g(x1), g(x2)〉(2) is g(x1)2.
Therefore,

(3.9) Φ
(
(ıxx1 + ẍ3)2

)
= g(x1)2 = Φ

(
(ıxx1 + ẍ3)2

)
holds for x which is defined in (3.6). Now, we σ-semilinearly extend g on 〈x1,x2, ẍ3〉 =
〈x1,x2,x3〉 by g(ẍ3) := σ(x)g(x1). Since matrices (yxx1 + ẍ3)2 and (yxx2 + ẍ3)2;
(y ∈ G), together with matrices from 〈x1,x2〉(2), additively span 〈x1,x2, ẍ3〉(2) =
〈x1,x2,x3〉(2), we infer from (3.5), (3.6), (3.8), and (3.9) that Φ|〈x1,x2,x3〉(2) = P(g).

3.2. Nonstandard maps. We proceed with lemmas related to nonstandard
maps. Recall that given a matrix H ∈ Hn(G) its hermitian variety is defined by
VH = {〈x〉|xtrHx = 0,x �= 0}. Here, 〈x〉 is the 1–dimensional space generated by the
vector x, i.e., a point in the projective space PG(n− 1, 22) := {〈x〉 |x ∈ Gn\{0}}.

The next lemma follows immediately from Bose and Chakravarti [4, Theorem 8.1
and its Corollary]. We give an alternative proof for the sake of completeness.

Lemma 3.6. The number of points on variety VH in PG(n− 1, 22) equals

|VH | = 22n−1 − 1 + (−1)rk H · 22n−rkH−1

3
.

Proof. Choose an invertible Q ∈ Mn(G) such that H = QtrDQ, where D =∑r
j=1 Ejj and r = rkH . Then the map VH → VD defined by 〈x〉 �→ 〈Qx〉 is bijective,

i.e., |VH | = |VD|. Since xx equals 1 for x �= 0 and 0 otherwise, the number of
x = (x1, . . . , xn)tr ∈ Gn with 0 = xtrDx = x1x1+. . .+xrxr equals 4n−r ·∑t

j=0

(
r
2j

)
32j

where 2t ≤ r < 2t+ 2. Note that
∑t

j=0

(
r
2j

)
32j =

∑r
k=0

(
r
k

)
3k 1+(−1)k

2 = 1
2

(
(3 + 1)r +

(−3 + 1)r
)
= 22r−1 + (−1)r · 2r−1. Since |G\{0}| = 3 and, by the definition of the

variety, 〈0〉 /∈ VD, it follows that

|VH | = |VD| = 4n−r · (22r−1 + (−1)r · 2r−1)− 1
3

=
22n−1 − 1 + (−1)r · 22n−r−1

3
.

The lemma below will be crucial to classify nonstandard maps.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 482-499, August 2009



ELA

492 M. Orel and B. Kuzma

Lemma 3.7. Suppose matrices H,G ∈ Hn(G) are both nonzero. If the union
VH ∪ VG contains all points of PG(n − 1, 22), i.e., xtrHxxtrGx = 0 for all vectors
x ∈ Gn then there exist an invertible matrix Q such that H = Q(E11 + E22)Q∗ and
G = Q(E12 + E21)Q∗.

Proof. Let x be an arbitrary vector. Then,

(xtr(H +G)x)2 = (xtrHx)2 + (xtrGx)2.

Hence, VH ∩ VG ⊆ VH+G. Now, if 〈x〉 ∈ VH+G then, since charG = 2, xtrHx =
xtrGx. Consequently, (xtrHx)2 = (xtrGx)2 = xtrHxxtrGx = 0, i.e., 〈x〉 ∈ VH ∩ VG.
Therefore VH ∩ VG = VH+G which further implies

(3.10) |PG(n− 1, 22)|+ |VH+G| = |VH ∪ VG|+ |VH ∩ VG| = |VH |+ |VG|.

Here, |PG(n−1, 22)| denotes the number of all 1–dimensional subspaces in Gn. Hence,
|PG(n−1, 22)| = (|G|n−1)/(|G|−1) = (22n−1)/3. We obtain the numbers |VH |, |VG|,
and |VH+G| from Lemma 3.6. Then, routine calculations derive from (3.10) the equa-
tion

(3.11) 1 +
(−1)rk(H+G)

2rk(H+G)
=

(−1)rk H

2rk H
+

(−1)rk G

2rk G
.

Since rkH, rkG ≥ 1 by the assumption, the right side of (3.11) is ≤ 1. Hence,
rk(H + G) is odd and in particular ≥ 1. By rearranging equation (3.11) such that
the second summand on the left side goes to the right side and the first or the second
summand on the right side goes to the left side, we deduce that rkH and rkG are
even and in particular ≥ 2. Consequently, 1 = 1/2rkH + 1/2rkG + 1/2rk(H+G) and
this equation is satisfied precisely when the rank–values are minimal, i.e., rkH = 2 =
rkG and rk(H + G) = 1. Therefore, there exists an invertible matrix Q1 such that
H = Q1(E11 + E22)Q∗

1. Write G = Q1(M1 +M2)Q∗
1 where rkM1 = 1 = rkM2 and

rk(M1+M2) = 2. Assume erroneously thatM1 /∈ H2(G)⊕0n−2. Then, by Lemma 3.1,
rk(E11 +E22 +M1) = 3. Consequently, 1 = rk(H +G) = rk(E11 +E22 +M1+M2) ≥
rk(E11 +E22 +M1)− rk(M2) = 2, a contradiction. Hence, M1 ∈ H2(G)⊕ 0n−2. The
same argument implies thatM2 ∈ H2(G)⊕0n−2. Since rk(E11+E22+(M1+M2)) = 1
and rk(M1 + M2) = 2 we easily check that M1 + M2 = xE12 + xE21 for some
x ∈ {1, ı, ı}. We now replace Q1 by Q := Q1diag(1, x, 1, . . . , 1). Since xx = 1, it
follows that H = Q(E11 + E22)Q∗ and G = Q(E12 + E21)Q∗.

Remark 3.8. If (K,̂ ) is any field with nonidentical involution, but distinct
from G, then the identity xtrHx̂xtrGx̂ = 0 implies that at least one of hermitian
matrices H = Ĥtr or G = Ĝtr must be zero. To see this we define an additive map on
Hn(K), using the notations from Theorem 2.1, by Φ : X �→ s(H◦X)E11+s(G◦X)E22.
It is rank–one nonincreasing since s(H ◦αxx̂tr) ·s(G◦αxx̂tr) = α2 ·xtrHx̂ ·xtrGx̂ = 0.
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However, if H and G are both nonzero then Φ does not fit the forms obtained in [28,
Main Theorem], a contradiction.

The next lemma classifies additive functionals on Hn(G).

Lemma 3.9. Let f : Hn(G) → Z2 be an additive map. Then there exists H ∈
Hn(G) such that f(X) = s(H ◦X) for all X ∈ Hn(G).

Proof. It is easy to see that any additive map c : Z2 → Z2 is of the form
c(x) = hx for some h ∈ Z2. Similarly, any additive map c : G → Z2 is of the form
c(x) = hx + hx for some h ∈ G. Hence, there exist hjj ∈ Z2 and hjk ∈ G such that
f(X) =

∑n
j=1 hjj [X ]jj +

∑
j<k hjk[X ]jk + hjk[X ]jk, i.e., f(X) = s(H ◦X), where H

is defined by [H ]jk := hjk for j ≤ k and [H ]jk := hkj for j ≥ k.

3.3. Proof of the main result. We are now ready to prove Theorem 2.1.

Proof. First we prove the “if” part. It is obvious that the maps of the forms (i)–
(ii) do not increase rank–one. If Φ is of the form (iii) then, for any rank–one hermitian
matrix x2, the upper–left 2× 2 minor of P−1Φ(x2)(P−1)∗ equals

([Qx2Q∗]11 + [Qx2Q∗]22)([Qx2Q∗]12 + [Qx2Q∗]21) = (z1z1 + z2z2)(z1z2 + z1z2),

where (Qx)tr = (z1, . . . , zn). If z1 and z2 are both nonzero then z1z1+z2z2 = 1+1 = 0.
Otherwise, z1z2 + z1z2 = 0. Consequently, rkΦ(x2) ≤ 1.

To prove the “only if” part let Φ be an additive rank–one nonincreasing map. We
separate two cases. The maps from the first case turn out to be nonstandard, while
those from the second case turn out to be standard.

Case 1. Suppose that for any triple of rank–one matrices M1, M2, M3 their images
Φ(M1), Φ(M2), Φ(M3) are linearly dependent over Z2.
Then, since rank–one matrices additively span Hn(G), we can easily see that ImΦ =
{0,Φ(M1),Φ(M2),Φ(M1) + Φ(M2)} for some M1 and M2. If matrices Φ(M1) and
Φ(M2) are equal, or some of them is zero, then obviously Φ(X) = f(X)M for some
additive functional f and rank–onematrixM . Consequently, we deduce by Lemma 3.9
that Φ is of the form (ii). If Φ(M1) and Φ(M2) are nonzero and distinct then
rk

(
Φ(M1) + Φ(M2)

)
= 2, so there exists an invertible P such that Φ(Mi) = PEiiP

∗

(i = 1, 2). Then, Φ(X) = P
(
h(X)E11 + g(X)E22

)
P ∗ for some nonzero additive func-

tionals h, g : Hn(G) → Z2. By Lemma 3.9, h(X) = s(H ◦X) and g(X) = s(G◦X) for
some nonzero hermitian matricesH and G. Since rkΦ(x2) ≤ 1 for all x, it follows that
s(H◦x2)·s(G◦x2) = 0. This equation can be rewritten as xtrHxxtrGx = 0. Hence, we
can invoke Lemma 3.7 to deduce that H = Q(E11+E22)Q∗ and G = Q(E12+E21)Q∗

for some invertible matrix Q. Note that, for arbitrary matrices X,Y,A,B of ap-
propriate dimensions, the scalars s

(
(AY B) ◦X)

and s
(
(AtrXBtr) ◦ Y )

equal. Con-
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sequently, h(X) = s(H ◦ X) = [QtrXQ]11 + [QtrXQ]22 and g(X) = s(G ◦ X) =
[QtrXQ]12 + [QtrXQ]21, that is, Φ is of the form (iii).
Case 2. Suppose lastly that there exist three rank–one matrices M1,M2,M3 such
that Φ(M1),Φ(M2),Φ(M3) are linearly independent over Z2.
Assume erroneously that any such triple satisfies

(3.12) rk(M1 +M2 +M3) = 3.

Denote one of these triples by x2
1,x

2
2,x

2
3, that is, rk(x2

1 + x2
2 + x2

3) = 3, while ma-
trices Φ(x2

j ) =: y2
j (j = 1, 2, 3) are linearly independent over Z2. Note that linear

independence implies

(3.13) rk
(
Φ(x2

j ) + Φ(x2
k)

)
= 2 (1 ≤ j < k ≤ 3)

as well as

(3.14) rk
(
Φ(x2

1) + Φ(x2
2) + Φ(x2

3)
) ≥ 2.

To clarify the last inequality consider first the case when y2
3 /∈ 〈y1,y2〉(2). Then the

matrix in (3.14) is of rank three by Lemma 3.1. Otherwise y2
3 ∈ 〈y1,y2〉(2) and (3.13)

implies that y2
3 /∈ {0,y2

1,y
2
2}. Consequently, y2

3 ∈ {(y1+y2)2, (ıy1+y2)2, (ıy1+y2)2},
so the matrix in (3.14) is of rank two. Now, equation (3.13) together with Lemma 3.2
implies that the set

{
Φ

(
(xj + xk)2

)
,Φ

(
(ıxj + xk)2

)
,Φ

(
(ıxj + xk)2

)}
equals {(yj +

yk)2, (ıyj+yk)2, (ıyj +yk)2} or {0,y2
j ,y

2
k} for all 1 ≤ j < k ≤ 3. However, the first is

not possible by the assumption (3.12), since matrices (yj+yk)2, (ıyj+yk)2, (ıyj+yk)2

are linearly independent, while rk
(
(xj +xk)2+(ıxj +xk)2+(ıxj +xk)2

)
= 2. Hence,

as a set,
{
Φ

(
(xj + xk)2

)
,Φ

(
(ıxj + xk)2

)
,Φ

(
(ıxj + xk)2

)}
= {0,y2

j ,y
2
k}. Now, choose

nonzero y, z ∈ G such that Φ
(
(yx1 + x3)2

)
= 0 = Φ

(
(zx2 + x3)2

)
. The matrix

Φ
(
(yx1 + zx2 + x3)2

)
=

= Φ
(
x2

1 + x2
2 + x2

3 + (yx1 + x3)2 + (zx2 + x3)2 + (yzx1 + x2)2
)

= Φ(x2
1) + Φ(x2

2) + Φ(x2
3) + Φ

(
(yzx1 + x2)2

)
should be of rank ≤ 1, however Φ

(
(yzx1 + x2)2

) ∈ {0,Φ(x2
1),Φ(x

2
2)}, so the above

matrix is of rank ≥ 2 by (3.13) and (3.14). This is a contradiction, so the assump-
tion (3.12) was wrong.
Hence, there exists a triple M1,M2,M3 such that Φ(M1),Φ(M2),Φ(M3) are linearly
independent over Z2 and rk(M1 +M2 + M3) = 2. Note that linear independence
implies that rkΦ(M1 +M2) = 2 = rk(M1 +M2). Similarly as above denote Mj =: x2

j

and Φ(Mj) =: y2
j . Then we infer from Lemma 3.1 that M3 = x2

3 ∈ 〈x1,x2〉(2), i.e.,
x2

3 ∈ {(x1 + x2)2, (ıx1 + x2)2, (ıx1 + x2)2}. Since Φ(M1) = Φ(x2
1) = y2

1, Φ(M2) =
Φ(x2

2) = y2
2, and Φ(M3) = Φ(x2

3) are linearly independent over Z2, we deduce from
Lemma 3.2 that the set

{
Φ

(
(x1+x2)2

)
,Φ

(
(ıx1+x2)2

)
,Φ

(
(ıx1+x2)2

)} � Φ(x2
3) equals
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{(y1 + y2)2, (ıy1 + y2)2, (ıy1 + y2)2}. Therefore, Φ|〈x1,x2〉(2) preserves rank–one, so
Lemma 3.3, applied at r = 2, implies that Φ|〈x1,x2〉(2) = P(g) for some σ-semilinear
map g : 〈x1,x2〉 → Gm. Now, extend vectors x1,x2 to a basis x1,x2, ẋ3, . . . , ẋn of Gn.
By Lemma 3.5, we can σ-semilinearly extend g on whole Gn such that Φ|〈x1,x2,ẋj〉(2) =
P(g); j = 3, . . . , n. Note that Φ(ẍ2

j ) �= 0 for at least one vector ẍj ∈ {ẋj ,x1+ ẋj ,x2+
ẋj ,x1 + x2 + ẋj}. Otherwise we would deduce that 0 = Φ(x1 •x2) = g(x1)•g(x2),
which is a contradiction, since g(x1) and g(x2) are linearly independent. Clearly,
x1,x2, ẍ3, . . . , ẍn is still a basis and 〈x1,x2, ẍj〉 = 〈x1,x2, ẋj〉, i.e., Φ|〈x1,x2,ẍj〉(2) =
P(g) holds for all j = 3, . . . , n. To complete the proof it only remains to see that
Φ|〈ẍj ,ẍk〉(2) = P(g)|〈ẍj,ẍk〉(2) , for then, Φ = P(g), and therefore, Φ(X) = TXσT ∗ for
a matrix T , defined by Tej := g(ej), as anticipated.
Now, fix j, k ≥ 3 and choose x ∈ {x1,x2,x1 + x2} such that g(x), g(ẍj) as well
as g(x), g(ẍk) are linearly independent. Then, rkΦ(x2 + ẍ2

j) = 2 so Lemma 3.5
applied on vectors x, ẍj , ẍk gives Φ|〈x,ẍj,ẍk〉(2) = P(g′), where σ-semilinear map g′

is defined on 〈x, ẍj , ẍk〉 and extends g|〈x,ẍj〉. Since rkΦ(x2 + ẍ2
k) = 2, Lemma 3.4

implies that g′|〈x,ẍk〉 = t · g|〈x,ẍk〉. Obviously, t = 1. Hence, g′ = g|〈x,ẍj,ẍk〉, and so
Φ|〈x,ẍj,ẍk〉(2) = P(g′) = P(g)|〈x,ẍj,ẍk〉(2) , as anticipated.

4. Applications. Here we recall some known applications of rank–one nonin-
creasing maps and extend them to arbitrary field. We also consider the preservers of
hermitian varieties.

Let K be a field and ̂ : K → K a nonidentical involution on it, i.e., ̂ �= id.
Recall that the set Hn(K) of all hermitian matrices over (K,̂ ) consists of all those
n × n matrices X with entries from K that satisfy X∗ := X̂tr = X . The set Hn(K)
is a vector space over the field F := {x ∈ K| x̂ = x}, which is the fixed field of
the involution. A map Φ : Hn(K) → Hn(K) preserves rank–additivity if rk

(
Φ(X) +

Φ(Y )
)
= rkΦ(X) + rkΦ(Y ) whenever rk(X + Y ) = rkX + rkY .

As far as we know, the importance of linear maps which preserve rank additivity
was first emphasized in [2]. Later, linear maps which preserve rank additivity on
matrices over general field with sufficiently many elements were classified in [11], with
applications to order preserving linear bijections. The main idea was the reduction to
singularity preservers. It was since observed in many papers that additive preservers
of rank–additivity can also be characterized via the classification of rank–one non-
increasing maps (see e.g. [25, 34, 6, 29, 30, 23]). In the case of hermitian matrices we
are now able to give a classification of additive rank–additivity preserving maps for
any field K. The main part of the proof for n ≥ 3 is very similar to the proof of [35,
Lemma 6].

Theorem 4.1. Let (K,̂ ) be a field with nonidentical involution and n ≥ 2 an
integer. An additive map Φ : Hn(K) → Hn(K) preserves rank–additivity if and only
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if it is of the form

(4.1) Φ(X) = ξTXσT ∗,

where T is invertible, ξ = ξ̂ is a (possibly zero) scalar, and σ is a field homomorphism
that commutes with ̂, that is, σ(x̂) = σ̂(x).

Proof. The “if” part is obvious. We prove the “only if” part.

Case 1. Let n = 2. We claim that Φ does not increase rank–one. Otherwise,
rkΦ(X) = 2 for some rank–oneX . If Y /∈ FX is of rank one then, as Φ preserves rank–
additivity, 2 ≥ rkΦ(X + Y ) = rkΦ(X) + rkΦ(Y ) ≥ rkΦ(X) = 2. Hence, Φ(Y ) = 0.
Recall that a rank–one matrix X is of the form X = αWE11W

∗ = αWe2
1W

∗ for some
nonzero scalar α and an invertible matrix W .
Now, if charK �= 2 then 2X = 2αWe2

1W
∗ = −2αWe2

2W
∗ + αW (e1 + e2)2W ∗ +

αW (e1 − e2)2W ∗ and we get a contradiction as 0 �= 2Φ(X) = Φ(−2αWe2
2W

∗) +
Φ(αW (e1 + e2)2W ∗) + Φ(αW (e1 − e2)2W ∗) = 0 + 0 + 0 = 0. If charK = 2 then
there exists  ∈ K such that ̂ = 1 +  (see e.g. [28, Lemma 2.2]). Hence, X =
αWe2

2W
∗ + αW (e1 + e2)2W ∗ + αW (e1 +  e2)2W ∗ + αW (e1 + ̂ e2)2W ∗ and we

get a contradiction as before. Hence, rkΦ(X) ≤ 1 for any rank–one X .
If Φ �≡ 0 then Φ(X) �= 0 for some rank–one X and ImΦ must contain some matrix
of rank > 1. In fact, the opposite would imply 1 ≥ rkΦ(X + Y ) = rkΦ(X) +
rkΦ(Y ) ≥ rkΦ(X) ≥ 1 for any Y /∈ FX of rank one. So Φ(Y ) = 0 and we get
a contradiction as above. Consequently, Φ is not of the form (ii) from [28, Main
Theorem] or from Theorem 2.1, when K = G. In the case of this field Φ can not be of
the form (iii) from Theorem 2.1 either, since such maps Ψ satisfy Ψ

(
Q−1E11(Q−1)∗

)
+

Ψ
(
Q−1E22(Q−1)∗

)
= 0 and rkΨ

(
Q−1E11(Q−1)∗

)
= 1 = Ψ

(
Q−1E22(Q−1)∗

)
, so they

do not preserve rank–additivity. Therefore, Φ is of the form (i) from [28, Main
Theorem]/Theorem 2.1, that is, Φ is as in (4.1). Since ImΦ contains a matrix of rank
two, the matrix T must be invertible.
Case 2. Let n ≥ 3. Pick any rank–one hermitian matrix X . As before, write it
as X = αWe2

1W
∗ for some invertible W , and define Xi := αWe2

iW
∗ (then, X1 =

X). Clearly, rk
∑n

i=1 Xi =
∑n

i=1 rkXi. Since Φ preserves rank–additivity, a simple
induction argument gives

n∑
i=1

rkΦ(Xi) = rk
n∑

i=1

Φ(Xi) ≤ n.

Consequently, if it can be shown that rkΦ(Xi) = rkΦ(Xj) for each i, j, then the
above identity implies rkΦ(X) = rkΦ(X1) ≤ 1, and we could use [28, Main Theorem]
and Theorem 2.1 again. The form (ii) of [28, Main Theorem]/Theorem 2.1 and the
form (iii) of Theorem 2.1 are excluded as in Case 1. Moreover, if rkΦ(X) = 1 for at
least some X of rank one then rk

∑
i Φ(Xi) = n. Thus, we can only have (i) of [28,

Main Theorem]/Theorem 2.1 with T invertible.
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It hence remains to see that rkΦ(Xi) = rkΦ(Xj). Let i, j, k be all distinct. Denote
A1 := Xi = αWe2

iW
∗, B1 := αW (e2

j + ei • ej + ej • ek)W ∗, A2 := αW (ej • ek)W ∗,
and B2 := αW (ei + ej)2W ∗. Then A1 +B1 = A2 +B2, rk(A1 +B1) = rkA1 +rkB1,
and rk(A2 +B2) = rkA2 + rkB2. Hence,

(4.2) rkΦ(A1) + rkΦ(B1) = rkΦ(A2) + rkΦ(B2).

If A′
1 := A1, B′

1 := −A2, A′
2 = B2, and B′

2 := −B1 then we deduce that

(4.3) rkΦ(A′
1) + rkΦ(B′

1) = rkΦ(A′
2) + rkΦ(B′

2)

in the same way as (4.2). Since Φ(−Z) = −Φ(Z) and rk(−Φ(Z)) = rkΦ(Z), we infer
from equations (4.2)–(4.3) that rkΦ(A1) = rkΦ(B2), i.e., rkΦ(Xi) = rkαW (ei +
ej)2W ∗. If we permute the indices i and j then we deduce that rkΦ(Xi) = rkΦ(Xj).

Remark 4.2. Let (K,̂ ) be a field with nonidentical involution and let n ≥ 2.
It can be shown that a nonzero additive map Φ : Hn(K) → Hn(K) preserves the
Jordan triple product X · Y := XYX (i.e., Φ(XY X) = Φ(X)Φ(Y )Φ(X)) if and only
if it is of the form (4.1), where T satisfies ξT ∗T = ±I. Here, I denotes the identity
matrix. To see this, follow the arguments in the proof of [34, Theorem 4.1] and use
Theorem 4.1.

If K is a finite field with nonidentical involution ̂ then the cardinality of K is
a square, i.e., |K| = q2 and the involution is given by x̂ := xq (see e.g. [7, Proof of

Theorem 2]), where q is a power of a prime. Given a matrix H ∈ Hn(K) a hermitian
variety VH is defined as in the case K = G.

Theorem 4.3. Let (K,̂ ) be a finite field with a nonidentical involution and
n ≥ 2. Then the following three assertions are equivalent for an additive map Φ :
Hn(K) → Hn(K).

|VΦ(X)| = |VX | for all X,(a)

|VΦ(X)| ≤ |VX | for all X of rank one,(b)

Φ(X) = TXσT ∗ for all X.(c)

In (c), T is invertible and σ is a nonzero field homomorphism that commutes with ̂.

Proof. Clearly, (a) implies (b). To see that (c) implies (a) note that K is finite,
so σ is invertible. Hence, 〈x〉 �→ 〈(T−1)trxσ〉 is a bijection from VX to VΦ(X), that is,
|VX | = |VΦ(X)| for all X . It remains to prove that (b) implies (c). Let |K| = q2. It
follows immediately from [4, Theorem 8.1 and its Corollary] that rkX = r implies

v(r) := |VX | = q2n−1 + (−1)r(q − 1)q2n−r−1 − 1
q2 − 1

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 482-499, August 2009



ELA

498 M. Orel and B. Kuzma

(this is a generalization of Lemma 3.6). Note that

v(0) > v(2) > v(4) > . . . > v

(
n− 1− (−1)n

2

)
>

> v

(
n− 1 + (−1)n

2

)
> . . . > v(5) > v(3) > v(1).(4.4)

Now, if |VΦ(X)| ≤ |VX | for X of rank one then it follows from (4.4) that rkΦ(X) = 1.
Consequently, any Z andW with rk(Z−W ) = 1 satisfy rk

(
Φ(Z)−Φ(W )

)
= rkΦ(Z−

W ) = 1. By [27, Theorem 3.1], Φ is of the form Φ(X) = TXσT ∗ + Y , where T and
σ are as in (c), while Y ∈ Hn(K). However, 0 = Φ(0) = Y since Φ is additive.

Acknowledgment. The authors are thankful to Professor Chih-wen Weng and
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[9] A. Fošner and P. Šemrl. Additive maps on matrix algebras preserving invertibility or singularity.

Acta Math. Sin. (Engl. Ser.), 21:681–684, 2005.

[10] A. E. Guterman. Monotone additive transformations of matrices. (Russian) Mat. Zametki,

81:681–692, 2007; translation in Math. Notes, 81:609–619, 2007.

[11] A. E. Guterman. Linear preservers for matrix inequalities and partial orderings. Linear Algebra

Appl., 331:75–87, 2001.

[12] A. E. Guterman and A. V. Mikhalev. General algebra and linear transformations preserving

matrix invariants. Fundam. Prikl. Mat., 9:83–101, 2003; translation in J. Math. Sci.,

128:3384–3395 2005.

[13] L.-P. Huang. Adjacency preserving bijection maps of Hermitian matrices over any division ring

with an involution. Acta Math. Sin. (Engl. Ser.), 23:95–102, 2007.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 482-499, August 2009



ELA

Additive Rank–one Nonincreasing Maps on Hermitian Matrices 499

[14] L.-P. Huang. Geometry of n × n (n ≥ 3) Hermitian matrices over any division ring with an

involution and its applications. Comm. Algebra, 36:2410–2438, 2008.

[15] T. Huang and C.-W. Weng. Pooling spaces and non-adaptive pooling designs. Discrete Math.,

282:163–169, 2004.

[16] W.-L. Huang. Adjacency preserving mappings of 2×2 Hermitian matrices. Aequationes Math.,

75:51–64, 2008.
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[20] W. Imrich and S. Klavžar. Product graphs, structure and recognition. Wiley-Interscience Series

in Discrete Mathematics and Optimization, Wiley-Interscience, NewYork, 2000.

[21] A. A. Ivanov and S. V. Shpectorov. A characterization of the association schemes of Hermitian

forms. J. Math. Soc. Japan, 43:25–48, 1991.

[22] A. A. Ivanov and S. V. Shpectorov. Characterization of the association schemes of Hermitian

forms over GF(22). Geom. Dedicata, 30:23–33, 1989.

[23] B. Kuzma and M. Orel. Additive mappings on symmetric matrices. Linear Algebra Appl.,

418:277–291, 2006.

[24] C.-K. Li and S. Pierce. Linear preserver problems. Amer.Math. Monthly, 108:591–605, 2001.

[25] M.-H. Lim. Additive mappings between Hermitian matrix spaces preserving rank not exceeding

one. Linear Algebra Appl., 408:259–267, 2005.

[26] A. J. Macula. Error-correcting nonadaptive group testing with de-disjunct matrices. Discrete

Appl. Math., 80:217–222, 1997.

[27] M. Orel. A note on adjacency preservers on hermitian matrices over finite fields. Finite Fields

Appl., 15:441–449, 2009.

[28] M. Orel and B. Kuzma. Additive maps on hermitian matrices. Linear Multilinear Algebra,

55:599–617, 2007.

[29] X.-M. Tang. Additive rank-1 preservers between Hermitian matrix spaces and applications.

Linear Algebra Appl., 395:333–342, 2005.

[30] X.-M. Tang and C.-G. Cao. Linear maps preserving pairs of Hermitian matrices on which the

rank is additive and applications. J. Appl. Math. Comput., 19:253–260, 2005.

[31] P. Terwilliger. Kite-free distance-regular graphs. European J. Combin., 16:405–414, 1995.

[32] Z.-X. Wan. Geometry of matrices. In memory of Professor L. K. Hua (1910–1985). World

Scientific, Singapore, 1996.

[33] W. Wu, C. Li, X. Wu, and X. Huang. Decoding in pooling designs. J. Comb. Optim., 7:385–388,

2003.

[34] H. You and X.-M. Tang. Additive preservers of rank-additivity on the spaces of symmetric and

alternate matrices. Linear Algebra Appl., 380:185–198, 2004.

[35] X. Zhang. Linear preservers of rank-sum-maximum, rank, rank-subtractivity, and rank-sum-

minimum on symmetric matrices. Linear Multilinear Algebra, 53:153–165, 2005.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 482-499, August 2009


