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ALTERNATING SIGN AND SIGN-RESTRICTED MATRICES: REPRESENTATIONS

AND PARTIAL ORDERS∗

RICHARD A. BRUALDI† AND GEIR DAHL‡

Abstract. Sign-restricted matrices (SRMs) are (0,±1)-matrices where, ignoring 0’s, the signs in each column alternate

beginning with a +1 and all partial row sums are nonnegative. The most investigated of these matrices are the alternating

sign matrices (ASMs), where the rows also have the alternating sign property, and all row and column sums equal 1. We

introduce monotone triangles to represent SRMs and investigate some of their properties and connections to certain polytopes.

We also investigate two partial orders for ASMs related to their patterns alternating cycles and show a number of combinatorial

properties of these orders.
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1. Introduction. Matrices with constraints on the sign of entries, or the sum of entries, are of interest in

many settings. A sign-restricted matrix, or SRM, is an m×n (0,±1)-matrix A such that each partial column

sum, starting from row 1, equals 0 or 1, and each partial row sum, starting from column 1, is nonnegative,

see [11, 17]. The constraint on each column implies that its nonzeros alternate, starting with a +1. This

notion was introduced in [1] and it was shown that this class is in bijection with so-called semistandard

Young tableaux (see also [17]). An important subclass of SRMs is the alternating sign matrices (ASMs);

these are square SRMs where both the rows and columns are alternating starting and ending with a +1, see

[2, 3, 6, 8, 9, 10, 18]. We let Sm,n denote the class of m × n SRMs, abbreviated to Sn if m = n, and we

let An denote the class of n× n ASMs. ASMs arise in the study of crystals in physics. Examples of ASMs

are the permutation matrices; these are the ASMs without any −1’s. More generally, a (0, 1)-matrix with

at most one 1 in every column is an SRM. Row 1 and column 1 of an SRM can only contain 0s and +1s

and, in particular, column 1 can contain only one +1. The transpose of an ASM is another ASM, while the

transpose of an SRM need not be an SRM.

Our main goal is to continue the study of SRMs and ASMs and introduce some new notions of interest

for these matrix classes. The main contributions of this paper can be summarized as follows:

(i) It is known that monotone triangles represent ASMs (as discussed in section 2). We generalize this

notion to SRMs, and call them pseudo-monotone triangles. As with ASMs, we use the notion of the

partial-column-sums matrix. We show some properties of pseudo-monotone triangles in Section 3.

We also determine the maximum number of nonzero rows in an SRM in the case that each column

sum is 1.

(ii) Section 4 considers related polytopes, and we determine the convex hull of partial-column-sums

matrices of permutation matrices, and also the convex hull of all monotone triangles.

∗Received by the editors on August 5, 2021. Accepted for publication on September 3, 2021. Handling Editor: Zejun Huang.

Corresponding author: Geir Dahl.
†Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA (brualdi@math.wisc.edu).
‡Department of Mathematics, University of Oslo, Norway (geird@math.uio.no).

mailto:brualdi@math.wisc.edu
mailto:geird@math.uio.no


Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 37, pp. 613-639, September 2021.

R.A. Brualdi and G. Dahl 614

(iii) Section 5 considers other notions and questions concerning SRMs and ASMs. An expansion of an

SRM is to replace some zeros by nonzeros in such a way that a new SRM is obtained, and deflation

is the opposite operation. This leads to two different partial orders on the class of ASMs and we

establish a number of results on these orders in this section and the two final Sections 6 and 7. In

particular, we study minimal and maximal elements and relationships between the orders.

2. Monotone triangles and ASMs. In this section, we review briefly the equivalence of ASMs and

monotone triangles.

A triangle T of order n is a triangular array of integers with n rows. For example, with n = 5, we have

(2.1) T =

a11
a21 a22

a31 a32 a33
a41 a42 a43 a44

a51 a52 a53 a54 a55

.

By left-justifying the entries, we may also represent the triangle T by an n× n lower triangular matrix LT .

Thus, T in (2.1) becomes

(2.2) LT =


a11
a21 a22
a31 a32 a33
a41 a42 a43 a44
a51 a52 a53 a54 a55

 .

The rows of T are the rows of LT ; the descending diagonals of T are the descending diagonals of LT , and

the ascending diagonals of T are the ascending columns of LT . LT can also be obtained from T by rotating

its ascending diagonals by 90 degrees in a counterclockwise direction. We generally depict triangles as lower

triangular matrices with empty positions as in (2.2).

A triangle T of order n is a monotone triangle [12, 15], abbreviated to MT, provided its entries are from

the set {1, 2, . . . , n} and it has the properties that the entries are strictly increasing along the rows from

left to right, and weakly increasing on both the ascending and descending diagonals. Viewed as the lower

triangular matrix LT , an MT has the following properties:

(a) the rows are strictly increasing from left to right,

(b) the columns are weakly increasing from bottom to top, and

(c) the descending diagonals are weakly increasing from left to right.

The last row of an MT is 1, 2, . . . , n. In the case of n = 5, we have the following example in both forms:

T =

2

2 3

1 3 4

1 2 4 5

1 2 3 4 5

where LT =


2

2 3

1 3 4

1 2 4 5

1 2 3 4 5

 .
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Monotone triangles arise in the study of alternating sign matrices (ASMs) [14] which are now reviewed.

The partial-column-sums matrix, abbreviated to PCSM, of an m × n matrix A = [aij ] is the m × n matrix

A∗ = [a∗ij ] where a∗ij =
∑i
k=1 akj , the sum of the entries in column j of A down to row i. For example, an

ASM A is given below along with its PCSM A∗:

A =


1

1

1 −1 1

1 −1 1

1

↔ A∗ =


1

1 1

1 1 1

1 1 1 1

1 1 1 1 1

 .

(We usually denote a zero in a position by leaving the position empty.) As in the example the alternating

property of the rows and columns implies that the PCSM of an ASM is a (0, 1)-matrix with row sums

1, 2, . . . , n. As shown below, replacing the 1’s by the column number in which they appear gives the matrix

A∗∗ of column numbers of the 1’s of A∗ resulting in the corresponding monotone triangle:


2

2 3

1 3 4

1 2 4 5

1 2 3 4 5

↔
2

2 3

1 3 4

1 2 4 5

1 2 3 4 5

↔


2

2 3

1 3 4

1 2 4 5

1 2 3 4 5

 .

As seen in this example, our way to denote an MT amounts to left-justifying the nonzeros of the matrix A∗∗ of

column numbers giving a classical Ferrers diagram. The set An of n×n ASMs is in bijective correspondence

with the set Mn of monotone triangles of order n. The arrows are in both directions since it is easy to

reverse the constructions

A→ A∗ → A∗∗ → T → LT .

In summary, via its PCSM, an n×n ASM A uniquely corresponds to an n×n (0,1)-matrix A∗ with k 1’s in

row k for k = 1, 2, . . . , n and, by replacing the 1’s of A∗ with their column numbers to get A∗∗, A∗∗ uniquely

corresponds to a MT in either one of our two forms.

Permutation matrices P being ASMs give MTs from which the corresponding permutation can be easily

read off: the PCSM matrix of an n×n permutation matrix corresponds to a saturated chain in the partially

ordered set of subsets of {1, 2, . . . , n}: S0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sn where |Si| = i for i = 1, 2, . . . , n. For

example, the permutation π = (3, 1, 4, 2, 5) gives:


1

1

1

1

1

↔


1

1 1

1 1 1

1 1 1 1

1 1 1 1 1

↔


3

1 3

1 3 4

1 2 3 4

1 2 3 4 5

 ,
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and then

T =

3

1 3

1 3 4

1 2 3 4

1 2 3 4 5

and LT =


3

1 3

1 3 4

1 2 3 4

1 2 3 4 5

 .
First occurrences from top to bottom of 1, 2, 3, 4, 5 are in boldface and give the permutation π. This

property of the PCSM of a permutation matrix is not generally satisfied by ASMs. It is reflected in the

corresponding MT by the property that the integers in row i are contained in the integers of row i + 1

(1 ≤ i ≤ n− 1).

3. Pseudo-monotone triangles and SRMs. We consider the construction of a partial-column-sums

matrix and a monotone triangle for sign-restricted matrices (SRMs) obtaining what we call a pseudo-

monotone triangle, abbreviated to PMT. Recall that an SRM is an m × n (0,±1)-matrix such that all

partial-column-sums (from top to bottom) are 0 or 1, and all partial row sums (from left to right) are only

nonnegative. Without any real loss of generality, we may assume that the full column sums of an SRM all

equal 1, as with ASMs, since otherwise we may include additional rows at the bottom with all 0’s except

for a single 1. We call these normalized SRMs. Recall that Sm,n denotes the set of m× n SRMs. Let S+m,n
denote the set of m×n normalized SRMs. We also denote by S++

m,n the set of normalized SRMS without any

−1’s (so exactly one 1 in every column). Then PMTs of matrices in SR++
m,n correspond to chains of length m

S0 = ∅ ⊆ S1 ⊆ S2 ⊆ · · · ⊆ Sm = {1, 2, . . . , n},

in the partially ordered set of subsets of {1, 2, . . . , n} with repeats allowed.

With an SRM A, we can associate a PCSM using the same construction as with an ASM. Because the

partial-column-sums of an SRM are 0 or 1, its PCSM is also a (0, 1)-matrix. Then the PMT corresponding

to A is obtained from the PCSM exactly as the MT in the case of an ASM (but it need not be a triangle)

giving a left-justified diagram whose set of entries is {1, 2, . . . , n}. The last row of an PMT of a normalized

SRM is 1, 2, . . . , n.

Example 3.1. Consider the SRM below and the resulting PCSM and PMT:
1 1

1 −1 1 −1

1 −1 1

1

↔


1 1

1 1

1 1 1

1 1 1 1

↔


2 4

1 3

1 2 4

1 2 3 4

↔


2 4

1 3

1 2 4

1 2 3 4

 .
The arrows are in both directions since, as with ASMs, it is easy to reverse these constructions. �

The PCSM provides the transition between ASMs and MTs and also between SRMs and PMTs. We

now study properties of these matrices in detail.

Let Mm,n denote the linear space of real m × n matrices. Let Sm,n : Mm,n → Mm,n be the linear

transformation that maps A = [aij ] ∈ Mm,n into the partial-column-sums matrix Sm,n(A) = A∗ = [a∗ij ] ∈
Mm,n where

(3.3) a∗ij =

i∑
k=1

akj (i ≤ m, j ≤ n).
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Sm,n is an isomorphism, and its inverse is given by S−1m,n(A∗) = A where

(3.4) aij = a∗ij − a∗i−1,j (i ≤ m, j ≤ n),

and a∗0j := 0 (j ≤ n). We use the abbreviations Mn and Sn in case m = n.

Let A = [aij ] be an m × n SRM, and let A∗ = [a∗ij ] = Sm,n(A) be its PCSM. The property of SRMs

that all column sums equal 0 or 1 implies that Sm,n(A) is a (0, 1)-matrix. Let i ≤ m and let ri(A
∗) be the

i’th row sum in of its PCSM A∗, that is the number of ones in row i of A∗. If A is an ASM, then ri(A
∗) = i

(i ≤ n). For normalized SRMs, the property that all row sums are nonnegative implies that

0 ≤ r1(A∗) ≤ r2(A∗) ≤ · · · ≤ rm(A∗) = n.

For example, we have

A =


1 1

1 −1 1 −1

1 −1 1

1 1

↔ A∗ =


1 1

1 1

1 1

1 1 1

1 1 1 1 1

 .

Let A be an arbitrary (0,±1)-matrix of size m× n with PCSM A∗ = [a∗ij ]. A 2× k matrix of the form[
0 1 0 · · · 1 0

1 0 1 · · · 0 1

]
,

will be called a zig-zag matrix. Note that k must be odd, and the matrix has (k− 1)/2 ones in the first row,

and (k+1)/2 ones in the second row. We say that A∗ has the zig-zag property if for each i < n the submatrix

A′ of A∗, obtained from rows i and i+ 1 by deleting each column with two equal entries, is a zig-zag matrix.

We next characterize the partial-column-sums matrices of ASMs and of normalized SRMs. The charac-

terization given for ASMs is equivalent to the well-known characterization of the corresponding MTs.

Theorem 3.2. Let A = [aij ] be a (0,±1)-matrix of size m× n, and let A∗ = [a∗ij ] be its partial-column-

sums matrix. Then

(i) A is an ASM if and only if m = n, A∗ is a (0, 1)-matrix with k ones in row k (k ≤ n), and A∗ has

the zig-zag property.

(ii) A is a normalized SRM if and only if A∗ is a (0, 1)-matrix with only ones in the last row and

(3.5)

k∑
j=1

a∗i+1,j ≥
k∑
j=1

a∗ij (k ≤ n, i < m).

Proof. If A is an SRM, then each column is alternating, so that A∗ is a (0, 1)-matrix, and, if A is also

normalized, then the last row in A∗ is all ones.

(i) Assume that A is an ASM. Then m = n, and A has i ones in row i (i ≤ n) . Let i < n and consider

row i+ 1 of A. Since this row is alternating, by deleting its zeros we obtain[
1 −1 1 −1 · · · 1

]
.
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Note that for each j with ai+1,j = 0, we have a∗ij = a∗i+1,j . Moreover, if ai+1,j = 1, then a∗ij = 0 and

a∗i+1,j = 1. Similarly, if ai+1,j = −1, then a∗ij = 1 and a∗i+1,j = 0. This means that rows i and i + 1 satisfy

the zig-zag property. Conversely, if the zig-zag property holds, then all the just mentioned properties of A

and A∗ in rows i and i + 1 hold, which means that row i + 1 is alternating. Note that the first rows of A

and A∗ coincide and equal a (0, 1)-vector with exactly one 1.

(ii) Assume first that A is a normalized SRM. It remains to prove (3.5) holds. Let i < m. Then

(3.6)

k∑
j=1

a∗i+1,j −
k∑
j=1

a∗i,j =

k∑
j=1

(a∗i+1,j − a∗i,j) =

k∑
j=1

ai+1,j ≥ 0 (k ≤ n),

by the SRM property in row i + 1. Conversely, assume A∗ is a (0, 1)-matrix with only ones in the last row

and that (3.5) holds. Then each column is alternating and has sum 1. Also, by (3.6), the partial row sums

are nonnegative in each row i ≥ 2. The same holds in the first row because this row coincides in A and A∗,

and A∗ is a (0, 1)-matrix. So, A is a normalized SRM.

Let A(k) denote the submatrix of A consisting of its k first columns (k ≤ n). Then, condition (3.5) for

SRMs is equivalent to saying that A(k) has weakly increasing row sums (k ≤ n).

For an ASM A, the zig-zag property of the previous theorem may be expressed differently. For i ≤ m

and k ≤ ri(A∗), let ξk(A∗; i) denote the column of A∗ containing the k’th 1 in row i. It follows from part (i)

of Theorem 3.2 that

(3.7) ξk(A∗; i+ 1) ≤ ξk(A∗; i) ≤ ξk+1(A∗; i+ 1) (k ≤ i, i < n),

implying the known monotonicity properties of MTs of ASMs, namely that the rising and falling diagonals

are weakly increasing (that the rows are strictly increasing is trivial).

We next turn to a characterization of PMTs of matrices A = [aij ] ∈ S++
m,n; thus, A is a (0, 1)-matrix with

exactly one 1 in every column. First note that A may be uniquely reconstructed from its PMT by letting,

for each j ≤ n, aij = 1 for the row i in which the topmost j occurs; all the other entries in column j are set

equal to 0.

Let m,n ≥ 1 and 1 ≤ i1, i2, . . . , in ≤ m be n integers. Define an m × n matrix B = [bij ] recursively as

follows:

1. Initially, let B = O.

2. for j = 1, 2, . . . , n,

for i = ij , ij + 1, . . . ,m,

let k be the column of the leftmost 0 in row i of B and define bik = j. �

The resulting matrix B will also be denoted as Bi1,...,in . Then bij ∈ {0, 1, . . . , n} (i ≤ m, j ≤ n) and

each row consists of strictly increasing positive entries followed by zeros. We call B a skew-interval matrix

since once an integer occurs in a row, it occurs in each of the following rows in a left-to-right pattern. For

instance

B4,3,3,1 =


4∗

4

2∗ 3∗ 4

1∗ 2 3 4

1 2 3 4

 ,
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where the entries in boldface indicate the skew-interval for j = 3, and the entries with a ∗ are the topmost

in each interval (and zeros are not shown).

Lemma 3.3. Let B be an m× n matrix. Then, B is the PMT of some matrix in S++
m,n if and only if B

is a skew-interval matrix.

Proof. It is easy to check that: (i) if A ∈ S++
m,n has a 1 in position (ij , j) (j ≤ n), then the PMT of A is

Bi1,...,in , and, conversely, (ii) a skew-interval matrix Bi1,...,in is the PMT of the matrix A ∈ S++
m,n with a 1

in position (ij , j) (j ≤ n).

For instance, the matrix A reconstructed from the matrix B4,3,3,1 above is

A =


1

1 1

1

 .

We remark that Lemma 3.3 gives a characterization of PMTs of matrices in S++
m,n, although it is not given in

terms of simple inequalities between its entries. Still, it can be checked in polynomial time if a given integral

matrix B with entries in {0, 1, . . . , n} is a skew-interval matrix. First, check that the last row is (1, 2, . . . , n),

and then, for j = 1, 2, . . . , n, check that the entries equal to j determine a skew-interval (as required in the

definition).

Next, consider a general SRM A ∈ Sm,n. The PMT of A is monotone as described before (strictly

increasing in rows etc.). The situation is then almost as above for S+m,n, except that the skew-intervals

for each integer is broken into subintervals (due to −1’s in A). There is additional structure (apart from

monotonicity) on the PMT due to monotone partial row sums and this can be expressed in a more technical

manner. Moreover, based on a given monotone PMT, we can use reconstruction as in the algorithm above,

and find the unique underlying A. Then we can check if A is an SRM.

We know that there is a bijection between ASMs and monotone triangles (of the same size n). It is

natural to ask for a characterization of the MTs of permutation matrices in the above terms; the next

corollary provides this.

Corollary 3.4. A monotone triangle L of an ASM is the MT of a permutation matrix if and only if

L is skew-interval matrix.

Proof. The monotone triangle L is the MT of a unique ASM A, so L = L(A). Since A = [aij ] is an

ASM, A is a permutation matrix if and only if it has no negative entries. Moreover, there is a negative entry

in position (i, k) if and only if A∗ = [a∗pq] contains, in column k, at least one 1 above row i and at least one

1 below i, and a∗ik = 0 (by the ASM property of A). This, again, is equivalent to L having the skew-interval

property.

In Corollary 3.4 we start with the set of MTs of an ASM and characterize the set of MTs of permutation

matrices within this set. In the next corollary, we start with the set of PMTs of SRMs and characterize the

set of PMTs of matrices in S++
m,n within this set. The proof is similar.

Corollary 3.5. A PMT L of an SRM is the PMT of a matrix in S++
m,n if and only if L has the

skew-interval property.
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A normalized SRM has all column sums equal to 1 but may have zero rows; the last row does not contain

any −1’s. Let Ŝm,n denote the subset of Sm,n consisting of those matrices without any zero rows.

Theorem 3.6. Given a positive integer n, the maximum integer m such that Ŝm,n 6= ∅ equals
(
n+1
2

)
.

Proof. Let A be a matrix in Ŝm,n. Since the column sums of A all equal 1 and the row sum vector of

A is nonnegative, the sum of all the entries of A equals n and the row sum vector of A contains at least

max{m − n, 0} 0’s. The facts that the first nonzero in each row is a 1 and that the column sums equal 1

implies that the maximum number of nonzeros in columns 1, 2, 3, . . . , n is, respectively, 1, 3, 5, . . . , 2n − 1.

Hence A contains at most 1 + 3 + 5 + · · · + (2n − 1) = n2 nonzeros. Let α be the set of rows with sum 0,

and let β be the remaining rows so that |β| ≤ n. Each row in α contains the same number of 1’s and −1’s,

with at least one −1 and at least one 1 and so at least two nonzeros. Each row in β contains at least one 1.

Thus A contains at least 2|α| + |β| nonzeros and so 2|α| + |β| ≤ n2. Summing this inequality and |β| ≤ n

gives 2|α|+ 2|β| ≤ n2 + n so

|α|+ |β| ≤ n2 + n

2
=

(
n+ 1

2

)
.

Thus m ≤
(
n+1
2

)
.

Equality can always be attained as we illustrate below for n = 5 and m = 15:

1

1 −1

1 −1

1 −1

1 −1

1

1 −1

1 −1

1 −1

1

1 −1

1 −1

1

1 −1

1



.(3.8)

4. Related polytopes. It is proved in [10] that an n × n ASM is the ±1 sum of at most 2n − 1

permutation matrices. This implies that the partial-column-sums matrix (respectively, monotone triangle)

of an ASM is a ±1 linear combination of the partial-column-sums matrices (respectively, monotone triangles)

of at most 2n− 1 permutation matrices.

Consider the partial-columns-sums matrix Cσ corresponding to a permutation σ = (i1, i2, . . . , in). The

column sum vector of Cσ is the permutation

σ̂ = (n+ 1, n+ 1, . . . , n+ 1)− (j1, j2, . . . , jn),
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where σ−1 = (j1, j2, . . . , jn). For example, let n = 8 and σ = (3, 6, 4, 1, 7, 8, 2, 5) where σ−1 = (4, 7, 1, 3, 8, 2,

5, 6). Then

Cσ =



1

1 1

1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1


,

with column sum vector equal to

(5, 2, 8, 6, 1, 7, 4, 3) = (9, 9, 9, 9, 9, 9, 9, 9)− (4, 7, 1, 3, 8, 2, 5, 6).

Now instead of considering the convex hull of monotone triangles, we can consider the equivalent (since

the partial-column-sums matrix determines the corresponding monotone triangle) convex hull of the partial-

column-sums matrices for both permutation matrices and ASMs. As mentioned, since an ASM is a ±1 linear

combination of permutation matrices, the partial-column-sums matrices of ASMs are ±1 linear combinations

of partial-column-sums matrices of permutation matrices.

We study polytopes related to these matrix classes. Recall the linear map Sm,n defined in (3.3), and we

abbreviate Sn,n to Sn.

For a matrix class H ⊆Mn define

Sn(H) = {Sn(H) : H ∈ H}.

If H is a polytope, so is Sn(H). We now consider this construction for the ASM polytope Γn and its

subpolytope Ωn of n × n doubly stochastic matrices (the Birkhoff polytope). The advantage of considering

Sn(Γn) instead of Γn is that Sn(Γn) consists of nonnegative matrices while matrices in Γn, may have negative

entries.

Theorem 4.1. (i) Sn(Ωn) equals the set of matrices B = [bij ] ∈Mn satisfying

(4.9)

bij ≥ bi−1,j (i, j ≤ n),∑n
j=1(bij − bi−1,j) = 1 (i ≤ n),

bnj = 1 (j ≤ n),

where we define b0j = 0 (j ≤ n).

(ii) Sn(Γn) equals the set of matrices B = [bij ] ∈Mn satisfying

(4.10)

0 ≤
∑j
j′=1(bij′ − bi−1,j′) ≤ 1 (i, j ≤ n),

0 ≤ bij ≤ 1 (i, j ≤ n),∑n
j=1(bij − bi−1,j) = 1 (i ≤ n),

bnj = 1 (j ≤ n).
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Proof. (i) We have B ∈ Sn(Ωn) if and only if A = S−1n (B) ∈ Ωn. Then the result is obtained by inserting

the expression for A in (3.4) into the linear inequalities/equations defining Ωn; namely nonnegativity and

that each line sum is 1. (ii) This is obtained similarly, using the partial sum inequalities defining the ASM

polytope.

Since the extreme points of Γn are the n×n ASMs, the extreme points of Sn(Γn) are the partial-column-

sums matrices of the n× n ASMs and thus are (0, 1)-matrices.

We next consider a polytope associated with monotone triangles (MTs) viewed, as we have previously,

as Ferrers diagrams. An MT consists of positive integers associated with each position in the set V = {(i, j) :

1 ≤ j ≤ i, 1 ≤ i ≤ n}. Let D = (V,E) be the digraph where, in view of the monotonicity properties of MTs,

the edges indicate (i) successors in rows, (ii) successors in falling diagonals, and (iii) successors upward in

columns. Thus, E consists of the directed edges

(i) ((i, j), (i, j + 1)) for j = 1, 2, . . . , i− 1 and i = 1, 2, . . . , n,

(ii) ((i+ k − 1, k), (i+ k, k + 1)) for k = 1, 2 . . . , n− i and i = 1, 2, . . . , n,

(iii) ((n+ k − 1, i+ k − 1), (n− k − 2, i+ k − 1)) for k = 1, 2 . . . , n− i and i = 1, 2, . . . , n.

The digraph D is clearly acyclic. The set Eh of edges in (i) consists of the horizontal edges of D. The

set Ed of edges in (ii) consists of the diagonal edges, and the set Ev of edges in (iii) consists of the vertical

edges.

LetMn denote the convex hull of all monotone triangles of size n. This is a polytope in the vector space

Tn of all triangles of size n, i.e., functions T : V → R. A triangle in Tn will be denoted by T = [tv] where

the subscript runs through V .

Theorem 4.2. Mn equals the set of triangles T = [tv] satisfying

(4.11)

tv ≥ 0 (v ∈ V ),

tv ≥ tu + 1 ((u, v) ∈ Eh),

tv ≥ tu ((u, v) ∈ Ed),

tv ≥ tu ((u, v) ∈ Ev),

tni = i (i = 1, 2, . . . , n).

Proof. Let P ⊆ Tn be the polyhedron consisting of all real triangles T = [tv] satisfying the linear system

in (4.11). This polyhedron is bounded as 0 ≤ tv ≤ n for each v ∈ V when T = [tv] satisfies (4.11). Therefore,

P is a polytope, i.e., the convex hull of a finite set of points.

Consider the linear system (4.11), and choose some ordering of the variables tv (v ∈ V ), and let t denote

the corresponding vector. Then the subsystem consisting of the second, third, and fourth inequalities (those

that have two variables) may be written as At ≥ b where A is a matrix whose rows are indexed by the edges

in E = Eh ∪Ed ∪Ev, and the columns are indexed by the vertex set V . Every row in A has two nonzeros, a

1 and a −1. The vector b contains the right-hand sides in the inequalities, so each component is 0 or 1. The

properties of the matrix A means that it is the transpose of the vertex-edge incidence matrix of the digraph

D defined above. Therefore, A is totally unimodular (see [16]) and, as all right-hand sides are integral, by

general theory, the polytope P is integral. This means that each of its vertices (extreme points) has only

integral components.
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Consider an integral vector T = [tv] satisfying (4.11). Then T is nonnegative, strictly increasing in each

row, and weakly increasing in each rising and falling diagonal. Moreover, the last row is (1, 2, . . . , n). Thus,

all integral vectors in the polyhedron P are MTs. Since we just showed that all vertices of P are integral, it

follows that P =Mn, as desired.

Note that the proof actually reveals more on the polytope Mn. The matrix A in the proof is the

transpose of the incidence matrix of the digraph D. By network flow theory, it follows that all vertices ofMn

correspond to spanning trees of the corresponding undirected graph. There is a one-to-one correspondence

between the n × n ASMs An and the set of the MTs of order n. Thus, the convex hull of An corresponds

to the convex hull Mn of the MTs of order n, and Theorem 4.2 describes Mn. Since the set An of n × n
alternating sign matrices is the set of extreme points of their convex hull, the set of extreme points of Mn

is the set of MTs of ASMs of order n.

We refer to [9, 11, 18] for more on polytopes related to ASMs and SRMs.

5. Expansions and deflations of SRMs and ASMs. Given an m × n normalized SRM A, we

consider the possibility of an expansion of A to another SRM A′ of the same size (possibly an ASM if

m = n) by changing one or more 0’s to ±1. If A is already an n× n ASM, the result could be an ASM with

a larger number of ±1’s; but it may also be a SRM that is not an ASM. For example, the ASM I3 can be

expanded to an SRM as shown below: 1

1

1

→
 1 1

1 −1

1

 .
If A is an SRM but not an ASM, we consider in addition the possibility of inserting new rows and columns

anywhere throughout the matrix so that the resulting t × t ASM A′ has A as a submatrix. The minimum

such t we call the expansion parameter ε(A) of the SRM A. If A is an n × n ASM, we also consider the

possibility of changing certain ±1’s to 0’s resulting in an ASM with fewer ±1’s, a deflation of A to another

ASM.

Example 5.1. The 1× 3 SRM A of all 1’s can be expanded to the 5× 5 diamond ASM as shown,

A =
[

1 1 1
]
→


1

1 −1 1

1 −1 1 −1 1

1 −1 1

1

 ,

by inserting two new columns and four new rows. It’s expansion parameter ε(A) is clearly 5. The 1×5 SRM

A1 =
[

1 0 1 0 1
]
,

can also be expanded to the same ASM by including four new rows and changing its two 0’s to −1’s. We

also have ε(A1) = 5. The SRM A in (3.8) can be expanded to the 15 × 15 ASM A′ by inserting 10 new

columns as shown below:
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A′ =



1

1 −1 1

1 −1 1

1 −1 1

1 −1 1

1

1 −1 1

1 −1 1

1 −1 1

1

1 −1 1

1 −1 1

1

1 −1 1

1



.

Its expansion parameter equals 15 since ten more columns are required to have a square matrix. �

Example 5.2. Consider the two 5× 5 ASMs

A′ =


1

1 −1 1

1 −1 1 −1 1

1 −1 1

1

 and A =


1

0 0 1

1 0 0 −1 1

1 −1 1

1

 .

Then A′ is an expansion of A obtained by replacing the four specified 0’s of A as shown with ±1’s. Likewise

A is a deflation of A′. �

Example 5.2 motivates consideration of the following properties. An ASM A is maximal1 provided that

it is not possible to change a nonempty set of its 0’s to ±1’s and obtain another ASM. The ASM A′ in

Example 5.2 is maximal, indeed, every diamond ASM (of which this is an example for n = 5) is maximal as

it contains the largest number of ±1’s for its size. The matrix A is not maximal. In the other direction, an

ASM is minimal provided that it is not possible to replace a nonempty set of ±1’s with 0’s to obtain another

ASM. In Example 5.2, A is minimal as is easily checked. Every permutation matrix is minimal.

An alternating cycle in an SRM is a cycle of rook-wise connected positions alternating between rows

and columns whose entries also alternate between 1 and −1. An alternating cycle in an SRM is a special

alternating cycle provided its consecutive positions of 1’s and −1’s in the same row, and similarly in the same

column, have only 0’s (possibly none) between them. In Example 5.2, A is obtained from A′ by replacing

the ±1’s of a special alternating cycle of four positions with 0’s.

Let A = [aij ] be an m× n SRM. Define a graph G∗A = (V,E) associated with A as follows. The vertex

set consists of the set V ⊆ {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} of the positions of the matrix A containing a 1 or

−1. Each edge is a pair of vertices (positions of ±1’s), in the same row or the same column, such that the

two entries are 1 and −1 (in any order) without any ±1’s in between them. (If one omits the last condition

1Later we introduce a more precise terminology using partial orders.
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for edges one obtains another graph GA, which is of interest, although we do not consider it here.) The

graph G∗A has some special properties. First, G∗A is bipartite with color classes I and J where I consists

of vertices (i, j) containing a 1 and J consists of the vertices (i, j) containing a −1. If A is an ASM, each

vertex in I has degree equal to 0, 1, 2, 3, or 4; each vertex in J has degree equal to 4. An alternating cycle

in G∗A is a cycle where consecutive vertices alternate between being in the same row or column. There is a

one-to-one correspondence between the alternating cycles of G∗A and the special alternating cycles of A.

Example 5.3. Let

A =



1

1 −1 1

1 −1 1 −1 1

1 −1 1

1 −1 1

1


.

Then there are vertices of G∗(A) corresponding to the 1’s having each of the degrees 1, 2, 3, and 4. �

The connected components C1, C2, . . . , Ck (k ≥ 1) of G∗(A) determine corresponding ASMs which may

be interspersed within the rows and columns.

Example 5.4. Let

A =



1

1 −1 1

1

1 −1 1

1

1


,

where the two connected components of G∗(A) are given by the light and dark shadings. �

Lemma 5.5. Let A be an n×n ASM (resp. m×n SRM) and assume A′ is obtained from A by replacing

all entries in a special alternating cycle in A with zeros. Then A′ is also an ASM (resp. SRM).

Proof. With the ASM assumption, this is clear as we delete from a row (respectively, a column) a 1

and a −1 with only 0’s in-between: if a 1 from the special alternating cycle is followed by a −1, then

there is a first 1 after that −1 keeping the alternating property of rows and columns. If a −1 from the

special alternating cycle is followed by a 1, then there is a first 1 preceding the −1 keeping this alternating

property.

Next, let A = [aij ] be an SRM. The previous argument shows that every column of A′ is alternating.

Next, consider a row in A. Then a similar argument for the sums in the previous paragraph can be used to

show that the partial row sums in A′ are nonnegative. Thus, A′ is an SRM.

Example 5.6. Consider the 7 × 7 diamond ASM, where we have shaded the positions of a special

alternating cycle which is easily traced out (there are not any 0’s between consecutive ±1’s):
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

1

1 −1 1

1 −1 1 −1 1

1 −1 1 −1 1 −1 1

1 −1 1 −1 1

1 −1 1

1


.

Replacing its entries in the shaded positions with 0’s, we obtain the ASM deflation given by

1

1

1

1 −1 1

1

1

1


.

�

There is a well-known partial order on the set An of n × n ASMs, the Bruhat order �B . This partial

order is the Dedekind–MacNeille (minimal lattice) completion of the partial order defined on the set Pn of

n × n permutation matrices by transpositions. We have that for A1, A2 ∈ An, A1 �B A2 if and only if A1

can be obtained from A2 by a sequence of transformations obtained by adding[
1 −1

−1 1

]
,

to 2×2 submatrices with all intermediate matrices contained in An. Here we define two more natural partial

orders on An.

The pattern of a matrix A is the set Patt(A) of positions of its nonzeros. If A is an SRM or ASM, its

pattern uniquely determines A, since the nonzeros in the columns of an SRM and ASM alternate between 1

and −1 starting with a 1 (the same property holds for the rows of ASMs but not necessarily for SRMs). Let

A1 and A2 be two n× n ASMs. Then the pattern partial order �p on An is defined by A1 �p A2 provided

that Patt(A1) ⊆ Patt(A2). The pattern-plus partial order �pp on An is defined by A1 �pp A2 provided that

every nonzero entry of A1 equals the corresponding entry of A2; thus the ASM A2 is an expansion of the

ASM A1 and A1 is a deflation of A2 (possibly A1 = A2). Note that if A1 �pp A2, then Patt(A1) ⊆ Patt(A2)

and hence A1 �p A2. Thus, the pattern-plus partial order is a refinement of the pattern partial order. The

subset Pn of An consisting of the n× n permutation matrices is a set of unrelated elements in both of these

partial orders.

Example 5.7. Let

A2 =


1

1 −1 1

1 −1 1

1

 and A1 =


1

1

1

1

 .
Then A1 �p A2 and A1 �pp A2. �
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Example 5.8. Let

A2 =



1

1 −1 1

1 −1 1 −1 1

1 −1 1 −1 1 −1 1

1 −1 1 −1 1 −1 1

1 −1 1 −1 1

1 −1 1

1


,

an 8× 8 diamond ASM, and let

A1 =



1

1

1

1 −1 1

1 −1 1 −1 1

1 −1 1

1

1


.

Then A1 is an ASM with Patt(A1) ⊆ Patt(A2) but A1 does not agree with A2 everywhere on Patt(A1).

Thus, A1 �p A2 but A1 6�pp A2. Thus, not surprisingly, the pattern-plus partial order is, in general, more

restrictive than the pattern partial order. �

As usual we write A1 ≺p A2 (resp. A1 ≺pp A2) if A1 �p A2 (resp. A1 �pp A2) and A1 6= A2. We

determine the cover relation in the pattern-plus partial order which then determines uniquely the pattern-

plus partial order. If a matrix A1 is obtained from an ASM A2 by replacing with 0’s all the ±1’s of a special

alternating cycle of A2, then by Lemma 5.5, A1 is an ASM and A1 ≺pp A2. We shall show that this property

leads to a characterization of the cover relation of the pattern-plus partial order.

Lemma 5.9. Let A1 and A2 be n × n ASMs with A1 �pp A2. Then A2 − A1 is a (0,±1)-matrix whose

rows and columns sum to 0 and with the ±1’s in each row and column alternating. Moreover, A2 − A1 =

C1 + C2 + · · ·+ Ck where the Ci are special alternating cycles with pairwise disjoint patterns.

Proof. Let S be the set of positions in A2 where the corresponding entry in A2 is nonzero and the

corresponding entry in A1 is zero. For i ≤ n, let Si be the intersection of S with row i. Then, for some k,

S = Si1 ∪ Si2 ∪ · · · ∪ Sik where 1 ≤ i1 < i2 < · · · < ik ≤ n and each such Sij consists of a positive even

number of consecutive nonzero positions with zeros between. This follows from the fact that both A1 and

A2 are ASMs. Thus, in the graph G∗A2
, we get a number of pairs in S where there is an edge between the

first and the second position in S, an edge between the third and the fourth position etc. We call these

edges horizontal. A similar property holds in every column, and the corresponding edges of G∗A2
are called

vertical. This proves the first part of the lemma. Next, assuming A1 6= A2, choose a horizontal edge and

for one of its end vertices choose an incident vertical edge. Then choose a horizontal edge incident to the

previous vertex and continue like this until a special alternating cycle C1 is formed. We now remove C1 and

repeat the overall argument for the new ASM and continue until eventually the horizontal and vertical edges

are partitioned into special alternating cycles and A1 is obtained.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 37, pp. 613-639, September 2021.

R.A. Brualdi and G. Dahl 628

The following two examples give some insight in the present discussion.

Example 5.10. Consider the ASM

A =



1

1

1 −1 1 −1 1

1 −1 1

1

1


.

Then A has an alternating cycle (as shaded) but it is not a special alternating cycle. In fact, it is easy to

check (using the fact that there are six 1’s in A which are the only nonzeros in their row or column) that an

ASM B such that B �p A implies B = A. Thus, A is minimal in the pattern partial order and hence in the

pattern-plus partial order. This example also shows that removing an alternating cycle which is not special

may lead to a non-ASM. The ASM A′ in Example 5.2 covers the ASM A in the pattern partial order, but

the ASMs in Example 5.6 do not satisfy a cover relation in the pattern partial order. �

Example 5.11. Consider the ASM

A =



1

1 −1 1

1 −1 1

1 −1 1

1 −1 1

1


.

Then the variously shaded squares form a special alternating cycle and the darker squares form a special

alternating cycle within it. Deleting this smaller alternating cycle, we obtain

1

1 −1 1

1

1

1 −1 1

1


,

which now contains another special alternating cycle. Deleting it we obtain the permutation matrix

1

1

1

1

1

1


.

Note that the second special alternating cycle is initially not a special alternating cycle. �

A minimal special alternating cycle is a special alternating cycle whose set of positions does not properly

contain the set of positions of another special alternating cycle. By removing a special alternating cycle we

mean replacing the ±1’s in its positions with 0’s.
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Theorem 5.12. Let A1 and A2 be two n×n ASMs. Then A2 covers A1 in the pattern-plus partial order

if and only if A1 can be obtained from A2 by removing a minimal special alternating cycle.

Proof. First assume that A1 is obtained from A2 by removing a minimal special alternating cycle C:

A2 −C = A1. Suppose that there is an ASM B 6= A1, A2 such that B is an expansion of A1 and a deflation

of A2: A1 ≺ B ≺ A2. Then by Lemma 5.9 B −A1 contains a special alternating cycle C ′ which is a proper

subset of the alternating cycle C, contradicting the minimality of C.

Now suppose that A2 covers A1 in the pattern-plus partial order. Then by Lemma 5.9, A2 − A1 =

C1 + C2 + · · ·+ Ck where k ≥ 1 and the Ci are special alternating cycles with pairwise disjoint patterns. If

k > 1, then clearly A2 does not cover A1. Hence, k = 1 and the cycle C1 must clearly be minimal, and the

lemma follows.

We now briefly turn to the cover relation for the stricter pattern partial order �p. If A1 and A2 are two

n × n ASMs, then since A1 �pp A2 implies that A1 �p A2, it follows that if A2 covers A1 in the pattern

partial order �p and A1 �pp A2, then A2 covers A1 in the pattern-plus partial order �pp. However, the

cover relation in the pattern partial order is more complicated than in the pattern-plus partial order (see

the characterization in Theorem 5.12). The following example illustrates this complexity.

Example 5.13. Consider the following two ASMs

A1 =



1

1

1

1

1

1


, A2 =



1

1 −1 1

1 −1 1

1 −1 1

1 −1 1

1


.

Then A1 ≺p A2 since Patt(A1) ⊂ Patt(A2). Note that the entries in positions (3, 3) and (4, 4) in A1 equal 1

while the corresponding entries in A2 equal −1. Thus, A1 6≺pp A2. We now prove that A2 covers A1 in the

pattern partial order. Assume A = [aij ] is an ASM with A1 �p A �p A2. Clearly, a12 = a21 = a56 = a65 = 1.

Consider first the case when a22 = 0. Then a2i = ai2 = 0 for i = 3, 4, 5, 6, and therefore a33 (which must be

nonzero) equals 1. This again implies a3i = ai3 = 0 for i = 4, 5, 6. Then a similar argument gives a44 = 1,

and eventually that A = A1. Next, consider the remaining case when a22 is nonzero, so a22 = −1. Then

a23 = a32 = 1. Next, a33 must be nonzero, and it equals −1. This implies a34 = a43 = 1. Similarly, a44
must be nonzero, and therefore a44 = −1 and a45 = a54 = 1, a55 = −1, so A = A2. This shows that A2

covers A1 in the pattern partial order.

The previous example, and the argument for the cover property, can be extended to tridiagonal dia-

mond ASMs of order n. Note that in Example 5.13 one may obtain A1 from A2 by adding three matrices

corresponding to 4-cycles in the bipartite graph of A2.

We conclude this section with the following property of the pattern partial order.

Theorem 5.14. Let A1 and A2 be two n× n ASMs such that A1 ≺p A2 but A1 6≺pp A2. Then

|Patt(A2)| − |Patt(A1)| ≥ 6.

Proof. Suppose that A1 and A2 differ in position (i, j) where A2 has a 1 and A1 has a −1. Since the

±1’s in each row and column of an ASM alternate and since Patt(A1) ⊆ Patt(A2), A1 has at least one more
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zero than A2 in the positions in the partial columns above and below position (i, j) and at least one more

zero than A2 in the positions in the rows to the left and the right of position (i, j). Let j1 and j2 be the

columns of the two last mentioned zeros. Then each of columns j1 and j2 contains at least one more position

where A1 contains a zero while A2 contains a nonzero (since the number of nonzeros in a column an ASM is

odd). So, |Patt(A2)| − |Patt(A1)| ≥ 6. A similar argument works if A2 has a −1 and A1 has a 1 in position

(i, j).

6. Minimal and maximal elements. We study the minimal and maximal elements in the previously

defined partial orders, and we start with some results for the pattern-plus partial order.

The following corollary follows immediately from Theorem 5.12 and Lemma 5.9.

Corollary 6.1. An n× n ASM is a minimal element in the pattern-plus partial order if and only if it

does not contain a special alternating cycle, i.e., G∗A is acyclic.

Considering again Example 5.10, we note that the graph G∗A is acyclic and this proves that A is minimal

in the pattern-plus partial order. As a consequence of Corollary 6.1 one can check efficiently if a given

ASM A is minimal in the pattern partial order: this is done by breadth-first-search, which determines the

connected components of G∗A and for each component decides if a cycle exists.

Let A be an n × n ASM. We describe an expansion of A into an (n + 2) × (n + 2) ASM A′. First

add as last columns two unit vectors −ei and ei for some i ≤ n. Then add a row on top and one at

the bottom, both unit vectors with a 1 in column n + 1, the same column as the new −1. The resulting

matrix A′ is also an ASM. A similar expansion exists by initially adding two new initial columns, or by

similar operations for rows first. We call every such A′ a 2-expansion of A. Thus, there are 4n such 2-

expansions of A. For instance, the diamond ASM of order 3 is a 2-expansion of the 1 × 1 permutation

matrix.

Lemma 6.2. Let A be an n×n ASM. Assume that A is minimal in the pattern-plus partial order. Then

every 2-expansion A′ of A is also minimal in the pattern-plus partial order.

Proof. The graph G∗A′ is obtained G∗A by adding vertices corresponding to the four new nonzeros, and

four new edges, each incident to the position where the −1 was added. Thus, these edges constitute a 4-star

where one pendant vertex of the star is identified with a vertex in G∗A. By Corollary 6.1 G∗A is acyclic, and

by these remarks, G∗A′ is also acyclic, so A′ is minimal in the pattern-plus partial order.

From this it is clear how to construct large classes of pattern-plus minimal matrices: one starts with an

pattern-plus minimal matrix, e.g., a permutation matrix of some order, and successively makes 2-expansions.

All the constructed matrices are then minimal in the pattern-plus partial order.

Let τ(A) be the number of nonzeros in a matrix A, and let τp(n) be the maximum number of nonzeros

in an n× n ASM that is minimal in the pattern partial order.

Theorem 6.3. (i) For n odd, τp(n) = 2n− 1. An ASM is minimal in the pattern-plus partial order and

satisfies τ(A) = 2n− 1 if and only if G∗A is a (spanning) tree.

(ii) For n even, τp(n) = 2n− 2.

Proof. Let n ≥ 1, and let A be an minimal ASM in the pattern-plus partial order. By Corollary 6.1,

G∗A is acyclic. The horizontal edges in G∗A join two consecutive nonzero entries in a row, so the number

of horizontal edges in a row is one less than its number of nonzeros. Therefore, the number of horizontal
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edges is τ(A)− n. Similarly, the number of vertical edges in G∗A is τ(A)− n, and the total number of edges

is 2(τ(A) − n). Note that τ(A) also equals the number of vertices of G∗A. Since G∗A is acyclic, its number

of edges is at most τ(A) − 1. This proves that 2(τ(A) − n) ≤ τ(A) − 1. Therefore, τ(A) ≤ 2n − 1 and

τp(n) ≤ 2n− 1. Moreover, it follows that τ(A) = 2n− 1 if and only if G∗A is a (spanning) tree.

Now, let n be odd, say n = 2k + 1. Let A(n) = [aij ] be an ASM with row k + 1 having no zeros (so its

entries are 1, −1, . . ., 1), and where the j’th column, for j even, contains two ones, one in a row < k + 1

and the other in a row > k + 1. All these ones are placed in different rows, and all other entries are zero.

Then A(n) has τ = 2n− 1 nonzeros and G∗
A(n) is a tree, so this matrix is minimal in the pattern-plus partial

order, and τ(A) = 2n− 1, as desired. Below we show A(5)

A(5) =


1

1

1 −1 1 −1 1

1

1

 .

Next we consider n even. Then τp(n) ≤ 2n − 1 as the proof above also works for n even. Let A be an

ASM of size n × n. Every line in A has an odd number of nonzeros, and as n is even, it follows that the

number τ(A) of nonzeros in A is an even number. But then τ(A) cannot be equal to the odd number 2n−1.

This proves that τp(n) ≤ 2n − 2. Let A be the direct sum A = A(n−1) ⊕ J1 where J1 is the 1 × 1 matrix

with entry 1. Then τ(A) = (2(n− 1)− 1) + 1 = 2n− 2, and (ii) follows.

Theorem 6.4. The pattern partial order and pattern-plus partial order on the set An have the same set

of minimal elements.

Proof. Clearly every minimal ASM in the pattern partial order is also minimal in the pattern-plus partial

order. Now assume that A is an n×n minimal ASM in the pattern-plus partial order and that A′ is an n×n
ASM with Patt(A′) ⊆ Patt(A). Let S = Patt(A) \ Patt(A′). We show that S = ∅, which means that A and

A′ have the same pattern and therefore are equal. So, assume S 6= ∅. By the ASM property every line in

A contains an even number of elements in S. We choose an element v1 ∈ S and another element v2 ∈ S in

the same row. Then choose v3 ∈ S in the same column as v2. Continuing like this, alternating with rows

and columns, we obtain a cycle C of positions in A. Note that the subgraph of G∗A induced by the nonzero

positions in a row (or column) is a path, where edges connect consecutive nonzero positions. Each pair of

consecutive vertices of the cycle C is in the same row or column of A, so therefore they may be connected

by some edges in the paths just mentioned for G∗A. As a result, we obtain a cycle in G∗A. Since A is minimal

in the pattern-plus partial order, G∗A is acyclic and so we have a contradiction. This shows that S = ∅, as

desired.

While all permutation matrices are minimal in both the pattern and pattern-plus partial orders, they

are not all maximal. For instance

P =


1

1

1

1

 ,
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is not maximal in either of these partial orders as the ASM below shows:

A =


1

1 −1 1

1 −1 1

1

 .
Example 6.5. Consider the n× n identity matrix In and its pattern Patt(In). Let A be an n× n ASM

with Patt(In)⊆ Patt(A). Then A must have 1’s in both positions (1, 1) and (n, n), and hence A has 0’s in

all other positions in rows and columns 1 and n. Crossing out rows and columns 1 and n of A, we are left

with an ASM A′ with Patt(In−2)⊆ Patt(A′). Continuing like this we conclude that A = In. Thus, In is a

maximal element in the pattern partial order, and hence in the pattern-plus partial order. �

We can generalize the construction in the previous example to get a class of permutation matrices that

are maximal in these partial orders. In an n×n matrix let its corner positions be the positions (1, 1), (1, n),

(n, 1), and (n, n). Let P be a permutation matrix of order n constructed as follows: (i) put a 1 in one of

its corner positions and (ii) strike out the corresponding row and column and repeat the procedure for the

remaining matrix of order n− 1, etc. We call P a corner permutation matrix. An example is

P =


1

1

1

1

1

 ,

where we constructed P by adding ones in the positions (1, 5), (5, 4), (2, 1), (3, 3), (4, 2); each being corner

positions of the respective matrices.

Lemma 6.6. Let P be a corner permutation matrix. Then P is a maximal element in both the pattern

and pattern-plus partial orders.

Proof. Let A be an ASM with P �p A. We prove that A = P , by induction on n. For n = 1, this is

trivial. Since P is a corner permutation matrix it has a 1 in some corner position (i, j), and then A also

has a 1 in the same position. This is due to the ASM property and the assumption Patt(P ) ⊆ Patt(A).

Moreover, the other entries in row i and column j are zero, in both P and A. Striking out row i and column

j, gives matrices P ′ and A′ of order n− 1, obtained from P and A, respectively. Then Patt(P ′) ⊆ Patt(A′),

so by induction A′ = P ′, and therefore A = P . So P is maximal in both the pattern and pattern-plus partial

orders.

Next we characterize the permutation matrices that are maximal in the pattern-plus partial order on

An.

Theorem 6.7. Let P be a permutation matrix of order n, and let the corresponding permutation be

σ = (i1, i2, . . . , in). Then P is maximal in the pattern-plus partial order in An if and only if there is no

subsequence ik1 , ik2 , ik3 , ik4 with the same relative relations as 3, 4, 1, 2, or as 2, 1, 4, 3, that is, σ is 3412-

avoiding and 2143-avoiding.

Proof. Assume that P is maximal in the pattern-plus partial order. Then there cannot exist a subse-

quence ik1 , ik2 , ik3 , ik4 with the same relative relations as 3, 4, 1, 2, or as 2, 1, 4, 3. This is because we can

then add a special alternating cycle with four elements, as in the example above.
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To prove the converse, assume that P is not maximal in the pattern-plus partial order. Then we can

add a special alternating cycle C to P and obtain an ASM A = [aij ] with P ≺p A. We say that an entry in

C with aij = −1 is NE (north-east) if its two adjacent positions in C (both with a 1) are to the left in the

same row, and below in the same column. Similarly we define the notions NW (north-west), SE (south-east),

and SW (south-west); all these only refer to positions where A has a −1. Let i1 be the first row in A that

contains an element in C, and let (i1, j1) and (i1, j2) be two consecutive elements in C with j1 < j2 (so they

are adjacent in G∗P ); see the figure below.

j1 j2 . . .

i1 + −

+

i2 + −
+ −

Assume ai1j2 = −1; the opposite case may be treated with similar arguments. Then (i1, j2) is a NE

position. Let i2 be such that (i2, j1) is adjacent to (i1, j1) in C. So then i2 > i1, ai1j1 = 1 and ai2j1 = −1.

Consider first the case when (i2, j1) is a SW position. Then P contains a 1 to the left of (i2, j1) in the same

row, and also a 1 below (i2, j1) in the same column. Similarly, as (i1, j2) is a NE position, P contains a

1 to the right of (i1, j2) in the same row, and also a 1 above (i1, j2) in the same column. These four 1’s

correspond to a subsequence of the permutation with the relative pattern 3, 4, 1, 2, as desired.

It remains to consider the case when (i2, j1) is not a SW position. Then it must be a SE position. In

order to return to column j2 the cycle C must contain a NW or SW position. If it contains a SW position, we

are done because this position and position (i1, j2) leads to a relative pattern 3, 4, 1, 2 as above. Alternatively,

C contains a NW position, but in that case this position must be “north-east” of an SE position (see figure),

and this means that the permutation has a relative pattern 2, 1, 4, 3, which proves the theorem.

Now let A be an SRM. Assume G∗A has k vertex-disjoint cycles C1, C2, . . . , Ck. Then the principal order

ideal IA of A in the pattern-plus partial order, consisting of all SRMs B with B �c A, contains at least

2k SRMs. Indeed, by removing any subset of the corresponding alternating cycles one obtains 2k distinct

SRMs in IA.

In [7] it is shown that an n× n (0,−1)-matrix of the form

0 0 · · · 0 0

0 0
... −Pn−2

...

0 0

0 0 · · · 0 0


,

where Pn−2 is an (n − 2) × (n − 2) permutation matrix, (such matrices are called bordered-permutation

(0,−1)-matrices in [7]) can always be completed to an ASM by changing certain 0’s (necessarily 2(n− 1) of

them) to 1’s; moreover, the inductive proof shows (although not stated there) that the resulting ASM has

(n − 2) rows and (n − 2) columns with 3 nonzero entries where the first and last rows and columns have

exactly one 1.
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Example 6.8. Below is a bordered-permutation (0,−1)-matrix and two completions to an ASM:


−1

−1

−1

−1


→ A1 =



1

1 −1 1

1 −1 1

1 −1 1

1 −1 1

1


, and

A2 =



1

1 −1 1

1 −1 1

1 −1 1

1 −1 1

1


.

Considering, e.g., A1, we see that there are two permutation matrices P ≤ A1, namely



1

1

1

1

1

1


and



1

1

1

1

1

1


,

and both of these are covered by A1 in the pattern and pattern-plus partial orders. In contrast,

A3 =



1

1 −1 1

1 −1 1

1 −1 1

1 −1 1

1


covers P =



1

1

1

1

1

1


,

in the pattern partial order but not in the pattern-plus partial order. However, P is covered by



1

1 −1 1

1 −1 1

1 −1 1

1 −1 1

1


,

in the pattern-plus partial order. �
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The previous example shows some ASMs with three nonzeros in every row and column, except the first

and last. This is an interesting class of ASMs, and we now consider some properties of this class involving

the pattern partial order. Consider the diamond ASM of order 2

D2 =

 1

1 −1 1

1

 .
Its term rank is 2, and there is no permutation matrix P with P �p A. We show that this is the only matrix

with this property among ASMs with three nonzeros in all lines expect the first and last row and column.

Theorem 6.9. Let n ≥ 3, and let A be an n× n ASM with exactly three nonzeros in rows and columns

2, 3, . . . , n− 1. Then A is a completion of a bordered-permutation (0,−1)-matrix, and there is a permutation

matrix P with P �p A if and only if n ≥ 4; moreover, this permutation matrix P contains exactly (n − 4)

−1’s and these occur in rows and columns 2, 3, . . . , n− 1.

Proof. First, if n = 3, the only candidate is the diamond D2 and, as remarked above, there is no

permutation matrix P with P �p A. So, assume n ≥ 4. We shall prove that A has term rank n.

Claim 1: The ones in the first and last rows are in different columns. Also the ones in the first and last

columns are in different rows.

Proof of Claim 1: Assume that A = [aij ] satisfies a1j = anj = 1 for some j (so then 2 ≤ j ≤ n− 1). The

only possible position for the −1 in row 2 is in column j (otherwise there would be another 1 in the first

row), so a2j = −1. For the same reason, by considering row n− 1, we obtain an−1,j = −1. But then column

j has two −1’s, a contradiction. Therefore, the ones in the first and last rows must be in different columns.

Similarly, the ones in the first and last columns must be in different rows. This proves Claim 1.

Let I be a set of rows in A = [aij ], and define JI as the set of those columns j for which aij is nonzero

for some i ∈ I.

Claim 2: |JI | ≥ |I|.

Proof of Claim 2: Consider first the case when I is nonempty and does not contain the first or last row.

Then each row in I contains a −1 and these −1’s are in different columns (as there are three nonzeros in such

columns). Thus, A is a completion of a bordered-permutation (0,−1)-matrix. Moreover, the first and last 1

in these rows are in two different columns from where the −1’s are. Therefore |JI | ≥ |I|+ 2. This inequality

implies that |JI | ≥ |I| for any set I of rows as long as I contains at least one of the rows 2, 3, . . . , n− 1. If

I contains only the first or last row, then |JI | = |I| = 1. Finally, if I consists of the first and the last row,

then, by Claim 1, the two ones are in different columns, so |JI | = |I| = 2. This proves Claim 2.

Then, it follows from Hall’s theorem ([4, 13]), that the bipartite graph of A contains a perfect matching,

and there is a permutation matrix P with P �p A with the desired properties.

The theorem assures that each of the matrices A1 and A2 in Example 6.8 has a permutation matrix that

is smaller in the pattern order.

7. Coda. In this final section, we briefly consider chains in the pattern-plus partial order or, for brevity,

pp-chains, and then return briefly to SRMs.
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Observation 7.1. Let n be odd. Then the maximum cardinality of a pp-chain is

(a)
⌊
(n−1)2

8

⌋
+ 1 if n ≡ 3 mod 4, and

(b)
⌊
(n−1)2

8

⌋
if n ≡ 1 mod 4.

In both cases, equality is attained by the diamond ASM Dn by deleting alternating cycles of length 4.

To see this, consider the diamond ASM A = Dn in An. It has the maximum number of nonzeros in

that class; A has (1/4)(n− 1)2 negative entries (and n more than this positive entries). Also, in an pp-chain

every matrix is obtained from the previous matrix by removing an alternating cycle, and this cycle has at

least 2 negative entries. Thus, an upper bound on the cardinality of a pp-chain in An is

b(1/2)(1/4)(n− 1)2c+ 1 = b(n− 1)2/8c+ 1.

First suppose that n ≡ 3 mod 4. We only illustrate a construction for n = 11 which generalizes for all

n ≡ 3 mod 4: 

1

a −a 1

1 −a a −b b

c −c d −d b −b 1

1 −c c −d d −e e −f f

1 −g g −h h −1 e −e f −f 1

g −g h −h i −i j −j 1

1 −k k −i i −j j

k −k l −l 1

1 −l l

1



,

where a = b = c = d = e = f = g = h = i = j = k = l = 1.

Now suppose that n ≡ 1 mod 4. Then row (n+ 1)/2 contains (n+ 1)/2 1’s and (n− 1)/2 (−1)’s. Then

considering row (n − 1)/2 and row (n + 3)/2, we see that there do not exist pairwise disjoint alternating

cycles of length 4 that include all the −1’s. It follows that the value given by (a) cannot be attained in this

case and hence the value in (b) is an upper bound. Again we only illustrate a construction for n = 9 to

achieve the value in (b) which generalizes for all n ≡ 1 mod 4:



1

a −a 1

1 −a a −b b

c −c d −d b −b 1

1 −c c −d d −1 e −e 1

1 −f f −g g −e e

f −f g −g 1

1 −1 1

1


where a = b = c = d = e = f = g = 1.
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Observation 7.2. Let n be even. Then the maximum cardinality of a pp-chain is (n−2)(n−4)
4 + 1.

To see this, again consider the diamond Dn which, now because n is even (so (n − 1) is odd) has

(n− 2)(n− 4)/2 negative entries. Rows (n/2) and ((n+ 2)/2) have (n− 1) nonzeros of which (n− 2)/2 are

−1’s. If there were pairwise disjoint alternating cycles of length 4 that included all the −1s of Dn, then the

−1’s in each of these rows would have to be paired up and each pair in an alternating cycle of length 4. It

is easy to see that this is impossible.

There are alternating cycles of length 4 that contain all the −1s and hence the maximum cardinality of

a chain is as given. We illustrate a construction for n = 10:

1

a −a 1

1 −a a −b b

c −c d −d b −b 1

1 −c c −d d −e e −f f

1 −g g −1 e −e f −f 1

g −g 1 −1 h −h 1

1 −i i −h h

i −i 1

1


,

where a = b = c = d = e = f = g = h = i = 1. Since there are only two −1’s that are not part of the

alternating cycles of length 4, the number 9 of these alternating cycles is maximum.

We now briefly turn to the set Sm,n of m× n SRMs.

For a given m × n SRM A define t(A) as the minimum t such that A is a submatrix of a t × t ASM.

Also, for given m and n, let

t(Sm,n) = max{t(A) : A ∈ Sm,n}.

Similarly, define

t(S+m,n) = max{t(A) : A ∈ S+m,n} and t(S++
m,n) = max{t(A) : A ∈ S++

m,n}.

Thus, any normalized SRM of size m×n (with no zero rows) can be extended to an ASM by adding at most

t(Sm,n) lines.

Theorem 7.3. Let m and n be positive integers with m ≤ n. Let A ∈ SR+
m,n have m − k zero rows

where 0 ≤ k < m. Then t(A) ≤ 2n+m− 2k.

Proof. Suppose that A contains rows with l1, l2, . . . , lk 1’s, respectively, where the li are positive (but the

1’s in a row need not be consecutive), and since every column contains a 1, l1 + l2 + · · ·+ lk = n. With each

row of A with li ≥ 1 1’s we can build a (2li − 1)× (2li − 1) diamond ASM by inserting (li − 1) new columns

and 2(li − 1) new rows. The number of nonzero rows of the resulting matrix is k +
∑k
i=1 2(li − 1) = 2n− k;

the number of columns equals n +
∑k
i=1(li − 1) = n + n − k = 2n − k. This gives a p × p ASM A′ with

p = 2n− k. This is clearly the minimum if A does not have any zero rows, that is, if k = m.

If k < m, so that A has m − k rows of all 0’s, then we can add m − k new columns which are all zero

except that the intersection with these m − k rows is Ik thereby giving a (2n + m − 2k) × (2n + m − 2k)

ASM A∗.
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We note the following. If there are zero rows of A, we can use them in the building of the ASM to

construct A∗, thereby decreasing the size of A∗. We illustrate this in the next example.

Example 7.4. Consider the 5× 6 SRM

A =

 1 1 1

1 1 1

 .
Then we construct the 10× 10 ASM

A∗∗ =



1

1 −1 1

1

1 −1 1

1 −1 1 −1 1

1 −1 1

1

1 −1 1 −1 1

1 −1 1

1


,

containing A as a submatrix. Here we have taken advantage of zero rows of A in inserting the appropriate

diamond ASMs. �

In particular, when m = n, since there are no zero rows, every matrix in SRn,n is a permutation matrix

and then clearly t(S+n,n) = n = 2n− n. We remark that the ASM constructed in the proof of Theorem 7.3,

after suitable line permutations, is a direct sum of diamond ASMs.

Example 7.5. The construction in the previous proof is illustrated in two cases:

(i) m = 1, n = 3, t(S+1,3) = 5:

A =
[

1 1 1
]
→ D5 =


+

+ − +

+ − + − +

+ − +

+

 .

(ii) m = 2, n = 5, t(S+2,5) = 8:

A =

[
1 0 0 1 1

0 1 1 0 0

]
→ B =



+

+ − +

+ − + − +

+ − +

+

+

+ − +

+


.
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We conclude with some discussion concerning further research.

(i) In Theorem 5.12, we characterized the cover relation in the pattern-plus partial order, and in The-

orem 6.7 we characterized the permutation matrices that are maximal in the pattern-plus partial

order. The analogues of these characterizations for the pattern partial order have eluded us thus

far.

(ii) Theorem 6.4 asserts that the pattern and pattern-plus partial orders have the same minimal elements.

Theorem 6.9 concerns the interesting class A(3)
n of ASMs in which all rows and columns other than

the first and last have exactly three nonzeros. An ASM that covers a permutation matrix in the

pattern partial order may necessarily belong to this class. Regarding this, it is interesting to ask

which signed permutation matrices with at least one −1 can be extended to an ASM by changing

some 0’s to ±1 and if this can be done, is there always such an ASM in A(3)
n ?

(iii) Finally, there are several natural questions for SRMs, along the lines of our results for ASMs in the

second part of the paper.

Acknowledgments. The authors thank a referee for careful reading of the paper and useful comments.

REFERENCES

[1] J.C. Aval, Keys and alternating sign matrices. Smin. Lothar. Comb. 59:B59F, 2007/2010.

[2] R.E. Behrend and V.A. Knight. Higher spin alternating sign matrices. Electron. J. Combin. 14:#1, 2007.

[3] D. Bressoud. Proofs and Confirmations. The Story of the Alternating Sign Matrix Conjecture. MAA Spectrum, Math.

Assoc. America. Cambridge Univ. Press, Washington, DC, 1994.

[4] R.A. Brualdi and H.J. Ryser. Combinatorial Matrix Theory. Cambridge University Press, 1991.

[5] R.A. Brualdi. Combinatorial Matrix Classes. Cambridge University Press, 2006.

[6] R.A. Brualdi, K.P. Kiernan, S.A. Meyer, and M. W. Schroeder. Patterns of alternating sign matrices. Linear Algebra

Appl. 438:3967–3990, 2013.

[7] R.A. Brualdi and H.K. Kim. Completions of alternating sign matrices. Graphs Combin. 3:507–522, 2015.

[8] R.A. Brualdi and M.W. Schroeder. Alternating sign matrices and their Bruhat order. Discrete Math. 340:1996–2019, 2017.

[9] R.A. Brualdi and G. Dahl. Alternating sign matrices, extensions and related cones. Adv. Appl. Math. 86:19–49, 2017.

[10] R.A. Brualdi and G. Dahl. Alternating sign matrices and hypermatrices, and a generalization of Latin squares. Adv. Appl.

Math. 95:116–151, 2018.

[11] R.A. Brualdi and G. Dahl. Sign-restricted matrices of 0’s, 1’s, and −1’s. Linear Algebra Appl. 615:77–103, 2021.

[12] J. Engbers and A. Hammett. Trivial meet and join within the lattice of monotone triangles. Electron. J. Combin. 21(3),

Research paper 31, 15pp, 2014.

[13] L. Lovász and M.D. Plummer. Matching Theory. North-Holland, Amsterdam, 1986..
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