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Abstract. A remarkable result of Guo [Linear Algebra Appl., 266:261–270, 1997] establishes that

if the list of complex numbers Λ = {λ1, λ2, . . . , λn} is the spectrum of an n× n nonnegative matrix,

where λ1 is its Perron root and λ2 ∈ R, then for any t > 0, the list Λt = {λ1+ t, λ2± t, λ3, . . . , λn} is
also the spectrum of a nonnegative matrix. In this paper it is shown that if λ1 > λ2 ≥ . . . ≥ λn ≥ 0,

then Guo’s result holds for positive stochastic, positive doubly stochastic and positive symmetric

matrices. Stochastic and doubly stochastic matrices are also constructed with a given spectrum and

with any legitimately prescribed elementary divisors.
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1. Introduction. The nonnegative inverse eigenvalue problem (hereafterNIEP)
is the problem of determining necessary and sufficient conditions for a list of complex
numbers Λ = {λ1, λ2, . . . , λn} to be the spectrum of an n× n entrywise nonnegative
matrix A. If there exists a nonnegative matrix A with spectrum Λ, we say that Λ is
realizable and that A is the realizing matrix. For n ≥ 5 the NIEP remains unsolved.
When the possible spectrum Λ is a list of real numbers we have the real nonnegative
inverse eigenvalue problem (RNIEP). A number of sufficient conditions or realizabil-
ity criteria for the existence of a solution for the RNIEP have been obtained. For a
comparison of these criteria and a comprehensive survey see [1], [7]. If we additionally
require that the realizing matrix to be symmetric, we have the symmetric nonneg-
ative inverse eigenvalue problem (SNIEP). Both problems, RNIEP and SNIEP are
unsolved for n ≥ 5. They are equivalent for n ≤ 4 (see [4]), but are different otherwise
(see [6]).

One of the most important contributions to the SNIEP is due to Fiedler, who
proved the following result:

Theorem 1.1. [2, Theorem 3.2] If Λ = {λ1, λ2, . . . , λn} is the spectrum of a
nonnegative symmetric matrix and if ε > 0, then Λε = {λ1 + ε, λ2, . . . , λn} is the
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spectrum of a positive symmetric matrix.

Let A ∈ Cn×n and let

J(A) = S−1AS =



Jn1(λ1)

Jn2(λ2)

. . .
0 Jnk(λk)




be the Jordan canonical form of A (hereafter JCF of A). The ni × ni submatrices

Jni(λi) =



λi 1

λi
. . .
. . . 1

λi


 , i = 1, 2, . . . , k

are called the Jordan blocks of J(A). Then the elementary divisors of A are the
polynomials (λ−λi)ni , that is, the characteristic polynomials of Jni(λi), i = 1, . . . , k.

The inverse elementary divisor problem (IEDP) is the problem of determining
necessary and sufficient conditions under which the polynomials
(λ−λ1)n1 , (λ−λ2)n2 , . . . , (λ−λk)nk , n1+ · · ·+nk = n, are the elementary divisors of
an n×n matrix A. In order that the problem be meaningful, the matrix A is required
to have a particular structure. When A has to be an entrywise nonnegative matrix,
the problem is called the nonnegative inverse elementary divisor problem (NIEDP)
(see [8], [9]). The NIEDP, which is also unsolved, contains the NIEP.

A matrix A = (aij)ni,j=1 is said to have constant row sums if all its rows add up

to the same constant α, i.e.
n∑

j=1

aij = α, i = 1, . . . , n. The set of all matrices with

constant row sums equal to α is denoted by CSα. It is clear that e = (1, 1, . . . , 1)T is
an eigenvector of any matrix A ∈ CSα, corresponding to the eigenvalue α. Denote by
ek the vector with 1 in the k− th position and zeros elsewhere. A nonnegative matrix
A is called stochastic if A ∈ CS1 and is called doubly stochastic if A,AT ∈ CS1. If
A ∈ CSα, we shall write that A is generalized stochastic, while if A,AT ∈ CSα, we
shall write that A is generalized doubly stochastic. We denote by Eij the n×n matrix
with 1 on the (i, j) position and zeros elsewhere.

The following result, due to Johnson [5], shows that the problem of finding a
nonnegative matrix with spectrum Λ = {λ1, λ2, . . . , λn} is equivalent to the problem
of finding a nonnegative matrix in CSλ1 with spectrum Λ.

Lemma 1.2. [5] Any realizable list Λ = {λ1, λ2, . . . , λn} is realized in particular
by a nonnegative matrix A ∈ CSλ1 , where λ1 is its Perron root.
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In [3], Guo proves the following outstanding results:

Theorem 1.3. [3] If the list of complex numbers Λ = {λ1, λ2, . . . , λn} is re-
alizable, where λ1 is the Perron root and λ2 ∈ R, then for any t ≥ 0 the list
Λt = {λ1 + t, λ2 ± t, λ3, . . . , λn} is also realizable.

Corollary 1.4. [3] Let Λ = {λ1, λ2, . . . , λn} be a realizable list of real numbers.

Let t1 =
n∑

i=2

|ti| , with ti ∈ R, i = 2, . . . , n. Then

Λti = {λ1 + t1, λ2 + t2, . . . , λn + tn}
is also realizable.

Moreover Guo [3] sets the following question, which is of our interest in this paper:
For any list Λ = {λ1, λ2, . . . , λn} symmetrically realizable, and t > 0, whether or not
the list Λt = {λ1 + t, λ2 ± t, λ3, . . . , λn} is also symmetrically realizable.

In [10], in connection with the NIEP, Perfect showed that the matrix

A = Pdiag{1, λ2, λ3, . . . , λn}P−1,

where 1 > λ2 ≥ λ3 ≥ · · · ≥ λn ≥ 0 and

P =




1 1 1 · · · 1 1
1 1 1 · · · 1 −1
1 1 1 . . . −1 0
...

...
...

...
...

1 1 −1 · · · 0 0
1 −1 0 · · · 0 0



, (1.1)

is an n× n positive stochastic matrix with spectrum {1, λ2, . . . , λn}. This result was
used in [11] to completely solve the NIEDP for lists of real numbers λ1 > λ2 ≥ · · · ≥
λn ≥ 0. That is, for proving the existence of a nonnegative matrix A ∈ CSλ1 with
legitimately arbitrarily prescribed elementary divisors. In particular, for stochastic
matrices, we have the following result:

Theorem 1.5. [11] Let Λ = {1, λ2, . . . , λn} with 1 > λ2 ≥ · · · ≥ λn ≥ 0. There
exists a stochastic matrix A with spectrum Λ and arbitrarily prescribed elementary
divisors (λ− 1), (λ− λ2)n2 , . . . , (λ− λk)nk , n2 + · · ·+ nk = n− 1.

In this paper we show that Λ = {λ1, λ2, . . . , λn}, with
λ1 > λ2 ≥ . . . ≥ λn ≥ 0,

is always the spectrum of a positive stochastic, positive doubly stochastic, and positive
symmetric matrix. It is also shown that Λ admits negative numbers. Moreover, we
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show that the Guo result holds for this kind of matrices, that is, Λt = {λ1 + t, λ2 ±
t, λ3, . . . , λn} is also the spectrum of a positive stochastic, positive doubly stochastic,
and positive symmetric matrix. The examples in section 6 show that our results are
useful in the NIEP to decide if a given list Λ (including negative numbers) is realizable
by this kind of matrices.

The paper is organized as follows: In section 2 we show how to construct positive
stochastic and positive doubly stochastic matrices with a given spectrum and with
arbitrarily prescribed elementary divisors. In particular, for the stochastic case, we
improve, to a certain degree, the result of Theorem 1.5. The doubly stochastic case
has its merit in the construction of the matrix itself. In sections 3 and 4 we prove
that Theorem 1.3 holds, respectively, for positive generalized stochastic and positive
generalized doubly stochastic matrices with prescribed spectrum. In section 5 we
show that a list of nonnegative real numbers is always the spectrum of a positive
symmetric matrix and that {λ1 + t, λ2 ± t, λ3, . . . , λn}, t > 0, is also the spectrum
of a positive symmetric matrix. Finally, in section 6 we introduce examples, which
show that our results are useful to decide if a given list Λ is realizable by this kind of
matrices.

2. Stochastic and doubly stochastic matrices with prescribed elemen-
tary divisors. In this section we prove that Theorem 1.5 still holds for a list of real
numbers Λ = {1, λ1, . . . , λn−1} containing negative numbers. For that, let us express
the matrix P given in (1.1) as:

P =



F1

...
Fn


 and P−1 =

[
C1 · · · Cn

]

with rows

F1 = (1, 1, . . . , 1)

Fk+2 =


 1, . . . , 1︸ ︷︷ ︸,

n−k−1 ones

− 1, 0, . . . , 0︸ ︷︷ ︸
k zeros


 , k = 0, 1, ..., n− 2.

and columns

CT
1 =

(
1

2n−1
,

1
2n−1

,
1

2n−2
,

1
2n−3

, . . . ,
1
22
,
1
2

)

CT
j =


 1
2n−(j−1)

,
1

2n−(j−1)
,

1
2n−j

,
1

2n−(j+1)
, . . . ,

1
22
,−1

2
, 0, . . . , 0︸ ︷︷ ︸
j−2 zeros


 ,
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j = 2, . . . , n. Then the following Lemma is straightforward.

Lemma 2.1. Let D = diag{1, λ1, . . . , λn−1} ⊂ R. The entries of the matrix
B = (bij) = PDP−1 satisfy the following relations:

b11 = b22
b12 = b21
b(k+2)1 = b(k+2)2, 1 ≤ k ≤ n− 2

b1(k+2) = b2(k+2) = · · · = b(k+1)(k+2), 1 ≤ k ≤ n− 2

b(k+2)j = 1
2k b1(k+2), j = 1, 2, 1 ≤ k ≤ n− 2

b(k+2)j = 1
2k−(j−2) b1(k+2), 2 ≤ k ≤ n− 2, 3 ≤ j ≤ k + 1.

Lemma 2.2. If Λ = {1, λ1, λ2, ..., λn−1} ⊂ R satisfies

|λr| < 1
2r−1

(
1 +

r−1∑
p=1

2p−1λp

)
, r = 1, . . . , n− 1; (2.1)

with
0∑

p=1
2p−1λp = 0, then B = PDP−1, where D = diag {1, λ1, . . . , λn−1} , is a

positive stochastic diagonalizable matrix with spectrum Λ.

Proof. It is easy to see that

1 +
r−1∑
p=1

2p−1λp > 0.

Since PDP−1e = PDe1 = Pe1 = e, then B is quasi-stochastic. Hence, it only
remains to show that B is positive. From Lemma 2.1, we only need to prove the
positivity of

b1(k+2) and b(k+2)(k+2), k = 0, 1, . . . , n− 2.

Observe that for k = 0, 1, . . . , n− 2, the condition (2.1) is equivalent to

|λn−k−1| < 1
2n−k−2

(
1 +

n−k−2∑
p=1

2p−1λp

)

�
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− 1
2n−k−2

(
1 +

n−k−2∑
p=1

2p−1λp

)
< λn−k−1 <

1
2n−k−2

(
1 +

n−k−2∑
p=1

2p−1λp

)

�

1
2n−k−2

+
n−k−2∑

p=1

λp

2n−k−p−1
+ λn−k−1 > 0 and

1
2n−k−2

+
n−k−2∑

p=1

λp

2n−k−p−1
− λn−k−1 > 0

�

1
2n−k−1

+
n−k−2∑

p=1

λp

2n−k−p
+
λn−k−1

2
> 0 and

1
2n−k−1

+
n−k−2∑

p=1

λp

2n−k−p
− λn−k−1

2
> 0

�

b(k+2)(k+2) = Fk+2DCk+2 > 0,

b1(k+2) = F1DCk+2 > 0.

Thus, from Lemma 2.1 all entries bij are positive and B is a positive stochastic
diagonalizable matrix with spectrum Λ.

The following result shows that Lemma 2.2 contains the result of Perfect [10,
Theorem 1] mentioned in section 1, and the inclusion is strict.

Proposition 2.3. If 1 > λ1 ≥ · · · ≥ λn−1 ≥ 0, then

|λr| < 1
2r−1

(
1 +

r−1∑
p=1

2p−1λp

)
, r = 1, 2, . . . , n− 1.

Proof. For r = 1, 2, . . . , n− 1, we have

λr < 1,

λr ≤ λp, p = 1, 2, ..., r − 1.
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Then, by adding the inequalities

λr < 1,

2p−1λr ≤ 2p−1λp, p = 1, 2, ..., r − 1.

we obtain

(1 + 1 + 2 + 22 + 23 + · · ·+ 2r−2)λr < 1 +
r−1∑
p=1

2p−1λp

(1 + (2r−1 − 1))λr < 1 +
r−1∑
p=1

2p−1λp

2r−1λr < 1 +
r−1∑
p=1

2p−1λp

λr <
1

2r−1

(
1 +

r−1∑
p=1

2p−1λp

)
.

Since λr ≥ 0, then the result follows.

Theorem 2.4. If Λ = {1, λ1, . . . , λn−1} ⊂ R satisfies

|λr| < 1
2r−1

(
1 +

r−1∑
p=1

2p−1λp

)
, r = 1, 2, . . . , n− 1,

with
0∑

p=1
2p−1λp = 0, then there exists an n × n positive stochastic matrix A with

spectrum Λ and with arbitrarily prescribed elementary divisors.

Proof. Let D = diag {1, λ1, . . . , λn−1} . From Lemma 2.2 there exists an n ×
n positive stochastic matrix B = PDP−1 with spectrum Λ and linear elementary
divisors (λ−1), . . . , (λ−λn−1). Let K ⊂ {2, 3, . . . , n−1} and C =

∑
t∈K

Et,t+1, in such

a way that D + C is the desired JCF . Then

A = PDP−1 + εPCP−1,

where ε > 0 is such that (PDP−1)ij + ε(PCP−1)ij > 0, i, j = 1, . . . , n, is posi-
tive with spectrum Λ, and since D + εC and D + C are diagonally similar (with
diag{1, ε, ε2, . . . , εn−1}), then A has JCF equal to D+C. Since Pe1 = e and P−1e =
e1 then PCP−1e = 0 and Ae = e. Thus A ∈ CS1 and A has the desired elementary
divisors.

Remark 2.5. We observe that the real numbers 1, λ1, . . . , λn−1 are considered
not ordered. This allows us, if the list 1 > λ1 ≥ · · · ≥ λn−1 does not satisfy the
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condition (2.1) of Lemma 2.2, to arrange the list in such a way that, eventually, it
satisfies the condition.

We now construct a positive doubly stochastic matrix A, with prescribed real
spectrum and arbitrarily prescribed elementary divisors. Consider the n× n nonsin-
gular matrix

R =




1 1 1 · · · 1 1
1 1 1 · · · 1 −1
1 1 1 · · · −2 0
...

...
...

...
...

1 1 −(n− 2) · · · 0 0
1 −(n− 1) 0 · · · 0 0




(2.2)

Then

R =




G1

...
Gn


 and R−1 =

[
H1 · · · Hn

]

have, for k = 2, . . . , n, respectively, rows

G1 = (1, 1, . . . , 1)

Gk =


 1, 1, . . . , 1︸ ︷︷ ︸

n−(k−1) ones

,−(k − 1), 0, . . . , 0︸ ︷︷ ︸
k−2 zeros





 (2.3)

and columns

HT
1 =

(
1
n ,

1
n(n−1) ,

1
(n−1)(n−2) , . . . ,

1
3∗2 ,

1
2∗1

)

HT
k =


 1

n ,
1

n(n−1) ,
1

(n−1)(n−2) , . . . ,
1

(k+1)k ,− 1
k , 0, . . . , 0︸ ︷︷ ︸

k−2 zeros






. (2.4)

Then the following Lemma is straightforward:

Lemma 2.6. Let D = diag{1, λ1, . . . , λn−1} ⊂ R. Then the entries of the matrix
B = RDR−1 = (bij) satisfy the following relations

b11 = b22
b12 = b21
bk1 = bk2 = · · · = bk(k−1) = b1k = b2k = · · · = b(k−1)k,




k = 3, . . . , n.
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The following result gives a sufficient condition for the existence of a positive
symmetric doubly stochastic matrix with prescribed spectrum.

Lemma 2.7. If Λ = {1, λ1, . . . , λn−1} ⊂ R satisfies

−n− r + 1
n− r

Sr−1(λp) < λr < (n− r + 1)Sr−1(λp), (2.5)

where

Sr−1(λp) =

(
1
n
+

r−1∑
p=1

λp

(n− (p− 1))(n− p)

)
,

r = 1, 2, . . . , n− 1, with S0(λp) = 1
n , then B = RDR−1, where

D = diag {1, λ1, . . . , λn−1} ,

is a positive symmetric doubly stochastic matrix with spectrum Λ.

Proof. Since Re1 = e and R−1e = e1 then Be = RDR−1e = e. Moreover
RTe = ne1 and BT e = (RDR−1)T e = e. So, B is a doubly quasi-stochastic matrix.
In addition, from Lemma 2.6, B is also symmetric. To show the positivity of B we
only need to prove that b1k > 0, bkk > 0, k = 2, 3, . . . , n. Observe that (2.5) is
equivalent to

− k

k − 1
Sn−k(λp) < λn−k+1 < kSn−k(λp), k = 2, 3, . . . , n.

�

1
n
+

n−k∑
p=1

λp

(n− (p− 1))(n− p)
+
k − 1
k

λn−k+1 > 0 (2.6)

and

1
n
+

n−k∑
p=1

λp

(n− (p− 1))(n− p)
− λn−k+1

k
> 0, (2.7)

k = 2, 3, . . . , n. It is clear, from (2.3) and (2.4), that bkk = GkDHk is the left side of
(2.6), while b1k = G1DHk is the left side of (2.7), k = 2, 3, . . . n. Hence, the result
follows.

Theorem 2.8. If Λ = {1, λ1, . . . , λn−1} ⊂ R satisfies

−n− r + 1
n− r

Sr−1(λp) < λr < (n− r + 1)Sr−1(λp), (2.8)
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where

Sr−1(λp) =

(
1
n
+

r−1∑
p=1

λp

(n− (p− 1))(n− p)

)
,

r = 1, 2, . . . , n − 1, with S0(λp) = 1
n , then there exists a positive doubly stochastic

matrix with spectrum Λ and with arbitrarily prescribed elementary divisors.

Proof. Let D = diag {1, λ1, . . . , λn−1} and let R be the nonsingular matrix in
(2.2). Then from Lemma 2.7, B = RDR−1 is a positive symmetric doubly stochastic
matrix with spectrum Λ. Now, from a result of Minc [9, Theorem 4], there exists
an n × n positive doubly stochastic matrix A with spectrum Λ and with arbitrarily
prescribed elementary divisors.

Proposition 2.9. If 1 > λ1 ≥ λ2 ≥ . . . ≥ λn−1 ≥ 0, then (2.8) is satisfied.

Proof. The proof is similar to the proof of Proposition 2.3.

We observe that the real numbers 1, λ1, . . . , λn−1 need not to be ordered. By
a straightforward calculation we may prove the following result, which shows that
Theorem 2.8 contains Theorem 2 in [9].

Corollary 2.10. Let λ1 = λ2 = · · · = λn−1. Then for r = 1, 2, . . . , n − 1,
equation (2.8) is equivalent to

− 1
n− 1

< λr < 1.

Corollary 2.11. The list Λ = {1, α, α, . . . , α}, α ∈ R, is the spectrum of an
n× n positive symmetric doubly stochastic matrix if and only if − 1

n−1 < α < 1.

Proof. Let A be an n × n positive symmetric doubly stochastic matrix with
spectrum Λ. Then 1 + (n − 1)α > 0 and − 1

n−1 < α with |α| < 1. Therefore,
− 1

n−1 < α < 1. Now, suppose − 1
n−1 < α < 1. Then from Corollary 2.10 and Lemma

2.7, Λ is the spectrum of an n× n positive symmetric doubly stochastic matrix.

3. Guo perturbations for positive generalized stochastic matrices. In
this section we show that if a list of real numbers Λ = {λ1, λ2, . . . , λn}, λ1 > 0, is
the spectrum of a positive generalized stochastic matrix A, then the modified list
Λt = {λ1 + t, λ2 ± t, λ3, . . . , λn}, t ≥ 0, is also the spectrum of a positive generalized
stochastic matrix with arbitrarily prescribed elementary divisors.

Remark 3.1. It is clear that a list Λ = {λ1, λ2, . . . , λn}, whose normalized
version Λ′ = {1, λ′1, . . . , λ′n−1}, with λ′i = 1

λ1
λi+1, i = 1, . . . , n− 1, satisfies the con-
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dition (2.1) of Lemma 2.2, is always the spectrum of a positive generalized stochastic
matrix.

Here, our interest is to show an easy way to construct directly this kind of ma-
trices. We shall need the following result given in [11]:

Theorem 3.2. [11] Let A ∈ CSλ1 be an n×n diagonalizable positive matrix with
complex spectrum. Then there exists an n × n positive matrix B ∈ CSλ1 , with the
same spectrum as A and with prescribed elementary divisors.

Theorem 3.3. Let Λ = {λ1, λ2, . . . , λn} be a list of real numbers, whose normal-
ized version satisfies the condition (2.1) of Lemma 2.2 (in particular, Λ satisfying
λ1 > λ2 ≥ . . . ≥ λn ≥ 0). Then for every t > 0, the list Λt = {λ1+t, λ2±t, λ3, . . . , λn}
is the spectrum of a positive generalized stochastic matrix B, with arbitrarily prescribed
elementary divisors.

Proof. Let P be the matrix given in (1.1) and let D = diag {λ1, λ2, . . . , λn} . Then
from Lemma 2.2 and Remark 3.1, A = PDP−1 ∈ CSλ1 is positive with spectrum Λ.
For

C = tE11 − tE22

=




t

−t
0

. . .
0


 , t > 0,

we have

PCP−1 =




t

t
...
...
t

t
1

2n−2 t
1

2n−2 t
1

2n−3 t · · · · · · 1
4 t

1
2 t 0



.

Since

1
2
+
1
4
+ · · ·+ 1

2n−2
= 1− 1

2n−2
,

then the last row of PCP−1 sums to t, and PCP−1 ∈ CSt. Similarly, for
C = tE11 + tE22, PCP

−1 ∈ CSt and it is nonnegative. Let B′ = A+ PCP−1. Then
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B′ is positive, B′ ∈ CSλ1+t and B′ has JCF

P−1B′P = P−1AP + C = D + C.

Then, from Theorem 3.2 there exists a positive generalized stochastic matrix B with
spectrum Λt and with arbitrarily prescribed elementary divisors.

4. Guo perturbations for positive generalized doubly stochastic matri-
ces. In this section we prove alternative results to Theorem 1.3 and Corollary 1.4, for
positive symmetric generalized doubly stochastic matrices. These results are useful
to decide the realizability of a list Λ by this kind of matrices.

Remark 4.1. It is clear that a list Λ = {λ1, λ2, . . . , λn}, whose normalized
version Λ′ = {1, λ′1, . . . , λ′n−1}, with λ′i =

1
λ1
λi+1, i = 1, . . . , n − 1, satisfies the

condition (2.5) of Lemma 2.7 (in particular, Λ satisfying λ1 > λ2 ≥ . . . ≥ λn ≥ 0), is
always the spectrum of a positive symmetric generalized doubly stochastic matrix.

We shall need the following result given in [9]:

Theorem 4.2. [9] Let A be an n × n diagonalizable, positive doubly stochastic,
matrix with real eigenvalues. Then there exists a positive doubly stochastic matrix
with the same spectrum as A and any prescribed elementary divisors.

Theorem 4.3. Let Λ = {λ1, λ2, . . . , λn} be a list of real numbers, whose normal-
ized version satisfies the condition (2.5) of Lemma 2.7 (in particular, Λ satisfying
λ1 > λ2 ≥ . . . ≥ λn ≥ 0). Then for

0 < t <
1

n− 2
(λ1 + (n− 1)λ2), (4.1)

the list Λ−
t = {λ1 + t, λ2 − t, λ3, . . . , λn} is the spectrum of a positive symmetric

generalized doubly stochastic matrix, while for all

t > 0, the list Λ+
t = {λ1 + t, λ2 + t, λ3, . . . , λn}

is also the spectrum of a positive symmetric generalized doubly stochastic matrix. In
both cases, Λ−

t and Λ+
t are also the spectrum of a positive generalized doubly stochastic

matrix with arbitrarily prescribed elementary divisors.

Proof. Let D = diag{λ1, λ2, . . . , λn} and let R be the nonsingular matrix given in
(2.2). From Remark 4.1 and Lemma 2.7, there exists a positive symmetric generalized
doubly stochastic matrix A = RDR−1 (A,AT ∈ CSλ1). Now, we pay attention to the
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entry in position (n, n) of RDR−1, which is

GnDHn = (1,−(n− 1), 0, . . . , 0)




1
nλ1

− 1
nλ2

0
...
0


 =

λ1 + (n− 1)λ2

n
.

Let C = tE11 − tE22, t > 0. Then,

RCR−1 =




(n−2)t
n(n−1) · · · (n−2)t

n(n−1)
2t
n

(n−2)t
n(n−1) · · · (n−2)t

n(n−1)
2t
n

...
...

...
...

(n−2)t
n(n−1) · · · (n−2)t

n(n−1)
2t
n

2t
n · · · 2t

n
−(n−2)t

n



.

Since RCR−1e = (RCR−1)T e = te, then RCR−1 is an n× n symmetric generalized
doubly stochastic matrix. Observe that RCR−1 has all its entries positive, except the
entry in position (n, n), which is −n−2

n t. Then, from (4.1) we have

λ1 + (n− 1)λ2

n
− n− 2

n
t > 0

and the matrix

B′ = RDR−1 +RCR−1

is positive symmetric generalized doubly stochastic with Jordan canonical form

R−1B′R = D + C.

Thus B′ has spectrum Λ−
t . For C = tE11 + tE22, t > 0, we have that

RCR−1 =
t

n− 1
eeT ⊕ t,

where e ∈ R
n−1, is an n × n nonnegative generalized doubly stochastic matrix and

B′ = RDR−1 + RCR−1 is positive symmetric generalized doubly stochastic with
Jordan canonical form D + C. Thus B′ has spectrum Λ+

t . Then, in both cases, from
Theorem 4.2, there exists a positive generalized doubly stochastic matrix B with
spectrum Λ−

t (Λ+
t ) and with arbitrarily prescribed elementary divisors.
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Corollary 4.4. Let Λ = {λ1, λ2, . . . , λn} be a list of real numbers, whose nor-
malized version satisfies the condition (2.5) of Lemma 2.7 (in particular, Λ satisfying
λ1 > λ2 ≥ . . . ≥ λn ≥ 0). Then for every t > 0, the list

Λt = {λ1 + (n− 1)t, λ2 − t, λ3 − t, . . . , λn − t}

is the spectrum of a positive symmetric generalized doubly stochastic matrix, and Λt

is also the spectrum of a positive generalized doubly stochastic matrix with arbitrarily
prescribed elementary divisors.

Proof. Let D = diag{λ1, λ2, . . . , λn} and let R be the nonsingular matrix given in
(2.2). Then, from Remark 4.1 and Lemma 2.7, A = RDR−1 is a positive symmetric
generalized doubly stochastic matrix in CSλ1 . Let

C =




(n− 1)t
−t

−t
. . .

−t


 , t > 0.

From Lemma 2.6, to compute the matrix RCR−1 we only need to compute the entries
in positions (1, k) and (k, k), k = 2, . . . , n. That is,

(RCR−1)1k = G1CHk =
n− 1
n

t+
(
1
n
− 1
k

)
t+

1
k
t = t

and

(RCR−1)kk = GkCHk =
n− 1
n

t+
(
1
n
− 1
k

)
t− k − 1

k
t = 0,

Then,

RCR−1 = teeT − tI.

Thus, RCR−1 is a nonnegative symmetric generalized doubly stochastic matrix and
B′ = RDR−1 + RCR−1 is positive symmetric generalized doubly stochastic matrix
with JCF equal toD+C, and hence B′ has the spectrum Λt.Moreover, from Theorem
4.2, there exists a positive generalized doubly stochastic B, with spectrum Λt and with
arbitrarily prescribed elementary divisors.

5. Guo perturbations for positive symmetric matrices. In this section we
answer the question of Guo, mentioned in section 1, for positive symmetric matrices
with nonnegative spectrum. That is, if the nonnegative list Λ = {λ1, λ2, . . . , λn} is
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realized by a positive symmetric matrix, then {λ1 + t, λ2 ± t, λ3, . . . , λn}, t > 0, is
also realized by a positive symmetric matrix.

Theorem 5.1. Let Λ = {λ1, λ2, . . . , λn} be a list of real numbers with λ1 > λ2 ≥
· · · ≥ λn, λ1 > |λi| , i = 2, . . . , n. If there exists a partition Λ = Λ1 ∪ Λ2 · · · ∪ Λn

2
if n

is even, or Λ = Λ1 ∪ Λ2 · · · ∪ Λn+1
2

if n is odd, with

Λ1 = {λ1, λ2}, Λk = {λk1, λk2}, λk1 ± λk2 ≥ 0,

k = 2, 3, . . . , n
2 (n+1

2 ), then Λ is the spectrum of an n× n positive symmetric matrix
A. Besides,

Λt = {λ1 + t, λ2 ± t, λ3, . . . , λn}, t > 0

is also the spectrum of a positive symmetric matrix.

Proof. Consider the auxiliary list Γ−
t = {µ+t, λ2−t, λ3, . . . , λn}, where µ = λ1−ε

for 0 < ε ≤ λ1 −max2≤i≤n{|λi|}. The matrices

A1 =
[ µ+λ2

2
µ−λ2+2t

2
µ−λ2+2t

2
µ+λ2

2

]
and Ak =

[ λk1+λk2
2

λk1−λk2
2

λk1−λk2
2

λk1+λk2
2

]
,

with An+1
2

=
[
λn+1

2 1

]
if n is odd, are nonnegative symmetric with spectrum Λ′

1 =

{µ+ t, λ2 − t} and Λk, k = 2, 3, . . . , n
2 (n+1

2 ), respectively. Then the n× n matrix

B =



A1

A2

. . .
An

2


 (5.1)

if n is even, or

B′ =



A1

A2

. . .
An+1

2




if n is odd, is nonnegative symmetric with spectrum Γt. It is clear that Γ+
t = {µ +

t, λ2 + t, λ3, . . . , λn} is also the spectrum of a nonnegative symmetric matrix. Now,
from Theorem 1.1 we have that

Λt = {µ+ t+ ε, λ2 ± t, λ3, . . . , λn} = {λ1 + t, λ2 ± t, λ3, . . . , λn}

is the spectrum of a positive symmetric matrix. For t = 0, Λt = Λ.
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The following Corollary is straightforward.

Corollary 5.2. Let Λ = {λ1, λ2, . . . , λn} be a list of real numbers with λ1 >

λ2 ≥ · · · ≥ λn, λ1 > |λi| , i = 2, . . . , n. If there exists a partition Λ = Λ1 ∪Λ2 · · · ∪Λn
2

if n is even, or Λ = Λ1 ∪ Λ2 · · · ∪ Λn+1
2

if n is odd, with

Λk = {λk1, λk2}, λk1 ± λk2 ≥ 0, k = 1, 2, . . . ,
n

2
(
n+ 1
2

),

then Λ is the spectrum of an n× n positive symmetric matrix A.

Corollary 5.3. Let Λ = {λ1, λ2, . . . , λn} be a list of nonnegative real numbers
with λ1 > λ2 ≥ · · · ≥ λn ≥ 0 and let t1 ≥ t2 ≥ · · · tn

2
(tn+1

2
) ≥ 0. The list

Λt = {λ1 + t1, λ2 − t1, λ3 + t2, λ4 − t2, . . . , λn−1 + tn
2
, λn − tn

2
},

if n is even, or the list

Λt = {λ1 + t1, λ2 − t1, λ3 + t2, λ4 − t2, . . . , λn−2 + tn−1
2
, λn−1 − tn−1

2
, λn + tn+1

2
}

if n is odd, is the spectrum of a positive symmetric matrix.

Proof. Consider the auxiliary list

Γt = {λ2 + t1, λ2 − t1, λ3 + t2, λ4 − t2, . . . , λn−1 + tn
2
, λn − tn

2
}

with

Γ
′
t = {λ2 + t1, λ2 − t1, . . . , λn−2 + tn−1

2
, λn−1 − tn−1

2
, λn + tn+1

2
}

for odd n. The n× n matrix

B =




λ2 t1
t1 λ2

λ3+λ4
2

λ3−λ4
2 + t2

λ3−λ4
2 + t2

λ3+λ4
2

. . .

λn−1+λn

2
λn−1−λn

2 + tn
2

λn−1−λn

2 + tn
2

λn−1+λn

2




if n is even, or

B′ =




λ2 t1
t1 λ2

. . .
λn−2+λn−1

2
λn−2−λn−1

2 + tn−1
2

λn−2−λn−1
2 + tn−1

2

λn−2+λn−1
2

λn + tn+1
2



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if n is odd, is nonnegative symmetric with spectrum Γt. Thus, from Theorem 1.1, for
ε = λ1 − λ2,

Λt = {λ2 + t1 + ε, λ2 − t1, λ3 + t2, . . . , λn − tn
2
}

= {λ1 + t1, λ2 − t1, λ3 + t2, . . . , λn − tn
2
}

if n is even, or

Λt = {λ1 + t1, λ2 − t1, λ3 + t2, . . . , λn + tn+1
2
}

is n is odd, is the spectrum of a positive symmetric matrix.

Remark 5.4. Our results are useful in the SNIEP to decide the realizability of
a given list Λ of real numbers (including negative numbers) by a positive symmetric
matrix (see examples 6.2 and 6.3). Moreover, we always may easily construct a
realizing matrix.

Theorem 5.5. Let Λ = {λ1, λ2, . . . , λn} ⊂ R, with λ1 > λ2 ≥ . . . ≥ λn, be the
spectrum of an n×n positive symmetric matrix A. Then for all t > 0, there exists an
ε > 0, such that Γ = {λ1 + εt, λ2 ± εt, λ3, . . . , λn} is also the spectrum of a positive
symmetric matrix.

Proof. Since A is symmetric, there exists an orthogonal matrix Q such that

QTAQ = D = diag{λ1, λ2, . . . , λn}.

Let C = tE11 ± tE22, t > 0. Clearly, QCQT is a real symmetric matrix. Let
B = A + εQCQT , with ε > 0 small enough in such a way that B is positive. B is
also symmetric and it has JCF equal to J(B) = D + εC. Therefore, B is positive
symmetric with spectrum Γ.

6. Examples.

Example 6.1. The list

Λ =
{
1,
1
2
,
1
2
,−1

8
,−1

8

}

satisfies conditions of Theorem 2.8. Let D = diag
{
1, 1

2 ,
1
2 ,− 1

8 ,− 1
8

}
and let R be the

5 × 5 matrix given in (2.2). Then we may construct the following positive doubly
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stochastic matrices:

i) B = RDR−1 =




11
60

37
120

37
120

1
10

1
10

37
120

11
60

37
120

1
10

1
10

37
120

37
120

11
60

1
10

1
10

1
10

1
10

1
10

3
5

1
10

1
10

1
10

1
10

1
10

3
5




with spectrum Λ and linear elementary divisors

(λ− 1) ,
(
λ− 1

2

)
,

(
λ− 1

2

)
,

(
λ+

1
8

)
,

(
λ+

1
8

)
.

ii) A1 = B +
1
10
RE23R

−1

with spectrum Λ and elementary divisors

(λ− 1) ,
(
λ− 1

2

)2

,

(
λ+

1
8

)
,

(
λ+

1
8

)
.

iii) A2 = B +
1
100

RE45R
−1

with spectrum Λ and elementary divisors (λ− 1) ,
(
λ− 1

2

)
,
(
λ− 1

2

)
,
(
λ+ 1

8

)2
.

iv) A3 = B +
1
100

R (E23 + E45)R−1

with spectrum Λ and elementary divisors (λ− 1) ,
(
λ− 1

2

)2
,
(
λ+ 1

8

)2
.

The following examples show that our results are useful in the NIEP to decide the
realizability of lists Λ (including negative numbers) by positive (nonnegative) doubly
stochastic and positive (nonnegative) symmetric matrices.

Example 6.2. Is

Λ =
{
1,
11
18
,
1
8
,− 1

16
,−1

3
,−1

2

}

the spectrum of a positive symmetric matrix? Consider the partition Λ = {1,− 1
2} ∪

{ 11
18 ,− 1

3}∪{ 1
8 ,− 1

16}. Then from Corollary 5.2 there exists a positive symmetric matrix
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A with spectrum Λ. To construct A, we consider, for ε = 1
6 , the auxiliary list Λ

′ ={
5
6 ,

11
18 ,

1
8 ,− 1

16 ,− 1
3 ,− 1

2

}
. Then the matrix

B =




1/6 2/3 0 0 0 0
2/3 1/6 0 0 0 0
0 0 5/36 17/36 0 0
0 0 17/36 5/36 0 0
0 0 0 0 1/32 3/32
0 0 0 0 3/32 1/32




is nonnegative symmetric with spectrum Λ′ and from Theorem 1.1, we compute the
positive symmetric matrix

A =




29
132

95
132

13
792

√
10 13

792

√
10 1

72

√
305
11

1
72

√
305
11

95
132

29
132

13
792

√
10 13

792

√
10 1

72

√
305
11

1
72

√
305
11

13
792

√
10 13

792

√
10 41

264
43
88

1
144

√
122
11

1
144

√
122
11

13
792

√
10 13

792

√
10 43

88
41
264

1
144

√
122
11

1
144

√
122
11

1
72

√
305
11

1
72

√
305
11

1
144

√
122
11

1
144

√
122
11

13
288

31
288

1
72

√
305
11

1
72

√
305
11

1
144

√
122
11

1
144

√
122
11

31
288

13
288




with spectrum Λ.

Example 6.3. Is

Λ =
{
1, 0,− 1

24
,− 1

18
,− 1

12

}

the spectrum of a positive symmetric doubly stochastic matrix? Since

Λ′ =
{
1
3
,
1
6
,
1
8
,
1
9
,
1
12

}

is the spectrum of a positive generalized doubly stochastic matrix by Theorem 4.3,
then from Corollary 4.4, for t = 1

6 we have

Λ′′ =
{
1
3
+ 4t,

1
6
− t,

1
8
− t,

1
9
− t,

1
12

− t

}

=
{
1, 0,− 1

24
,− 1

18
,− 1

12

}

= Λ.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 462-481, August 2009



ELA

On Spectra Perturbation and Elementary Divisors of Positive Matrices 481

Thus, Λ is the spectrum of the positive symmetric doubly stochastic matrix

A =




629
4320

989
4320

929
4320

101
480

1
5

989
4320

629
4320

929
4320

101
480

1
5

929
4320

929
4320

689
4320

101
480

1
5

101
480

101
480

101
480

27
160

1
5

1
5

1
5

1
5

1
5

1
5



.
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