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ON THE NON-BACKTRACKING SPECTRAL RADIUS OF GRAPHS∗

HONGYING LIN† AND BO ZHOU‡

Abstract. Given a graph G with m ≥ 1 edges, the non-backtracking spectral radius of G is the spectral radius of its

non-backtracking matrix B(G) defined as the 2m×2m matrix where each edge uv is represented by two rows and two columns,

one per orientation: (u, v) and (v, u), and the entry of B(G) in row (u, v) and column (x, y) is given by δvx(1 − δuy), with

δij being the Kronecker delta. A tight upper bound is given for the non-backtracking spectral radius in terms of the spectral

radius of the adjacency matrix and minimum degree, and those connected graphs that maximize the non-backtracking spectral

radius are determined if the connectivity (edge connectivity, bipartiteness, respectively) is given.

Key words. Non-backtracking matrix, Non-backtracking spectral property, Non-backtracking spectral radius, Non-

backtracking walk.
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1. Introduction. Non-backtracking walks in a graph have been studied in several contexts, including

finding a Moore bound for irregular graphs [2], mixing times [1], and Alon’s second eigenvalue conjecture

[8]. Let G be a graph with vertex set V (G) and edge set E(G). For a vertex v of G, denote by NG(v) the

set of neighbors of v, and dG(v) the degree of v, i.e., dG(v) = |NG(v)|. A vertex v of a graph G is a pendant

vertex if dG(v) = 1. A non-backtracking walk in a graph G is a walk v1 . . . vk in G such that vj+1 6= vj−1
for all j with 2 ≤ j ≤ k − 1.

Given a graph G with at least one edge, the non-backtracking-directed graph Ĝ of G is a directed

graph whose vertices are the directed edges obtained by replacing each edge uv of G by two directed edges

(u, v) and (v, u) and there is a directed edge from (u, v) to (x, y) in Ĝ if and only if x = v and u 6= y.

A non-backtracking walk v1 . . . vk in G corresponds naturally to an equivalent walk e1 . . . ek−1 in Ĝ, where

ej = (vj , vj+1) for j = 1, . . . , k−1. The non-backtracking matrix B(G) = (b(u,v),(x,y)) of a graph G is defined

to be the adjacency matrix of Ĝ. That is,

b(u,v),(x,y) =

{
1 if v = x and u 6= y,

0 otherwise,

where (u, v), (x, y) ∈ V (Ĝ). The non-backtracking matrix of a graph is indexed by its directed edges and

can be used to count non-backtracking walks of a given length. Denote by A(G) the adjacency matrix of G.

As the entries of powers of the adjacency matrix, A(G)`, count the number of walks of length ` from one

vertex to another, the entries of B(G)` count the number of non-backtracking walks of length ` from one

vertex to another in Ĝ, or the number of non-backtracking walks of ` + 1 directed edges from one directed

edge to another in Ĝ.
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For a graph G, denote by D(G) the diagonal degree matrix of G. We use In to denote the unit matrix

of order n. The spectrum of the non-backtracking matrix is called the non-backtracking spectrum of the

graph. In the literature, the non-backtracking spectral properties received much attention. For instance, the

non-backtracking spectrum of a graph may be computed from Ihara’s Theorem [12, 13, 18]. Here we use an

equivalent form.

Theorem 1.1 (Ihara’s Theorem). Let G be a graph with n vertices and m edges, where m ≥ 1. Then,

det(λI2m −B(G)) = (λ2 − 1)m−n det(λ2In − λA(G) +D(G)− In).

The non-backtracking spectrum of regular graphs may be completely determined by Ihara’s Theorem.

Kotani and Sunada [13] determined the non-backtracking spectrum of bipartite biregular graphs. Angel

et al. [3] studied the non-backtracking spectral properties of the universal cover of a graph. More related

work may be found in [16, 20]. Very recently, Glover and Kempton [9] showed how to obtain eigenvectors

of the non-backtracking matrix in terms of eigenvectors of a smaller matrix and gave an expression for

the eigenvalues of the non-backtracking matrix in terms of the eigenvalues of the adjacency matrix and

nonorthogonal eigenvectors of the adjacency matrix and a smaller matrix when they exist.

For a square real matrix M , let ρ(M) denote the spectral radius of M , that is, the maximum modulus

of the eigenvalues of M . Suppose that M is nonnegative. Then, the spectral radius ρ(M) is also called the

maximal eigenvalue of M in [15]. By the well-known Perron-Frobenius theorem for nonnegative matrices,

ρ(M) is an eigenvalue of M , and if M is irreducible, then there is a unique positive eigenvector of M

associated with ρ(M) up to a multiplicative constant, see Theorems 4.1, 4.2 and 4.3 in [15, pp. 11–14]. For

a graph G, the spectral radius of A(G) is known as the adjacency spectral radius of G, which is denoted by

ρA(G), and the spectral radius of B(G) is called the non-backtracking spectral radius of G, which is denoted

by ρB(G).

We present a sharp upper bound of the non-backtracking spectral radius of a graph in terms of the

adjacency spectral radius and determine the unique graphs with maximum non-backtracking spectral radius

among graphs with fixed vertex connectivity, fixed edge connectivity, and fixed number of pendant vertices,

respectively.

2. Preliminaries. For a real square matrix M , denote by σ(M) the spectrum of M .

Let G be a graph of order n. Define

X(G) =

(
A(G) D(G)− In
−In O

)
.

Then, det(λI2n−X(G)) = det(λ2In−λA(G) +D(G)− In). So, for a graph G on n ≥ 4 vertices with m ≥ n
edges, we have by Theorem 1.1 that σ(X(G)) ⊆ σ(B(G)).

In the following, we use ρX(G) to denote ρ(X(G)).

For a graph G, denote by δ(G) the minimum degree of G and ∆(G) the maximum degree of G.

The proofs of Lemmas 2.1, 2.2 and 2.3 appear in [9], see Proposition 5.2 (i) and (ii), Proposition 2.3,

Lemma 5.6 in [9], respectively.

Lemma 2.1. Let G be a graph. Then, every eigenvector of X(G) associated with µ ∈ σ(X(G)) is of the

form

(
−µy

y

)
, and 1 ∈ σ(X(G)).
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Lemma 2.2. Let G be a connected graph that is not a cycle and δ(G) ≥ 2. Then, B(G) is irreducible.

Lemma 2.3. Let G be a connected graph that is not a cycle and δ(G) ≥ 2. For an eigenvector of X(G)

with the form

(
−ρX(G)y

y

)
associated with ρX(G), y can be chosen to be positive.

Lemma 2.4. Let G be a graph G on n ≥ 4 vertices with m ≥ n edges. Then, ρB(G) = ρX(G) ∈ σ(X(G)).

Proof. As m ≥ n, we have by Lemma 2.1 that 1 ∈ σ(X(G)) ⊆ σ(B(G)). So, by Theorem 1.1, each

positive eigenvalue of B(G) is also an eigenvalue of X(G). By Perron-Frobenius Theorem, ρB(G) is a positive

eigenvalue of B(G). Therefore, we have ρB(G) = ρX(G) ∈ σ(X(G)).

For two disjoint graphs G and H, let G ∪ H be the graph with vertex set V (G) ∪ V (H) and edge set

E(G)∪E(H), G∨H be the graph obtained from G∪H by adding edges between each vertex of G and each

vertex of H.

For a set V1 of vertices of a graph G with ∅ 6= V1 6= V (G), we denote by G − V1 the graph obtained

from G by deleting all vertices of V1, and G[V1] the subgraph of G induced by V1. Similarly, for a set E1 of

edges of a graph G, we denote by G− E1 the graph obtained from G by deleting all edges of E1.

Let Sn and Kn be the star and complete graph on n vertices, respectively. Let Ka,b be the complete

bipartite graph with two partite sets of cardinalities a and b.

For a graph H, denote by P (H) the set of vertices of degree one in H. Let G be a connected graph

with at least one cycle and at least one vertex of degree one. Let G0 = G and Gi+1 = Gi − P (Gi) for i ≥ 1.

Then, there is a smallest s ≥ 1 with P (Gs) = ∅, so the minimum degree of Gs is at least two, and every

vertex lies on some cycle in Gs. We call Gs the 2-core of G, denoted by C(G).

The following lemma follows from previous works that vertices outside the 2-core of a graph (which

includes the vertices of degree one) do not affect the non-zero part of the non-backtracking spectrum, see

[19, Corollary 3.3]. For completeness, however, we include a proof here.

If G is a nontrivial tree, then ρB(G) = 0.

Lemma 2.5. Let G be a connected graph. Suppose that G is not a tree and v is a vertex of degree one

in G. Then, ρB(G) = ρB(G− v), so ρB(G) = ρB(C(G)).

Proof. Let u be the neighbor of v in G. Then, each entry of the row of B(G) corresponding to (u, v) is

0. In the submatrix of B by deletion of row and column corresponding to (u, v), each entry of the column

corresponding to (v, u) is zero. Let m = |E(G)|. Then,

det(ρI2m −B(G)) = ρ2 det(ρI2(m−1) −B(G− v)).

So ρB(G) = ρB(G− v), which implies that ρB(G) = ρB(C(G)).

The follow lemma is Theorem 5.1 in [15, p. 19], which serves as part of Perron-Frobenius theorem.

Lemma 2.6 ([15, p. 19]). The spectral radius of an irreducible nonnegative matrix is greater than the

spectral radius of any its principal submatrix.

Lemma 2.7. Let G be a nontrivial connected graph with nonadjacent distinct vertices u and v. Then,

ρB(G) < ρB(G+ uv).
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Proof. Let H = G+ uv. It is evident that the degree of u (v, respectively) is at least two in H. As G is

connected, u, v must lie on some cycle in H.

By Lemma 2.5, we may assume that the minimum degree of H is at least two, as otherwise we may

consider C(H).

Suppose first that H is a cycle. Then, Ĥ consists of two directed cycles, so ρB(H) = 1. Note that

G = H − uv is a path, so ρB(G) = 0. It thus follows that ρB(G) < ρB(H).

Suppose next that H is not a cycle. By Lemma 2.2, B(H) is irreducible. As Ĝ is obtained from Ĥ by

removing two vertices (u, v) and (v, u) together with incident directed edges, B(G) is a principal submatrix

of B(H). By Lemma 2.6, we have ρB(G) < ρB(H).

The follow lemma is part of Theorem 1.1 in [15, p. 24].

Lemma 2.8. Let M = (mij) be an n×n nonnegative matrix. Let Rj be the j-th row sum for j = 1, . . . , n.

Then,

min{Rj : j = 1, . . . , n} ≤ ρ(M) ≤ max{Rj : j = 1, . . . , n}.

3. Bounding the spectral radius of the non-backtracking matrix. First, we present an upper

bound on the spectral radius of the non-backtracking matrix using the adjacency spectral radius.

First, we recall some known facts. For a graph G with minimum degree δ, ρA(G) ≥ δ by Lemma 2.8, so

ρA(G)2 ≥ δ2 ≥ 4(δ − 1). If G is connected and H is an induced subgraph of G, then ρA(H) ≤ ρA(G) with

equality if and only if H = G. This follows from the interlacing theorem or the Perron-Frobenius theorem.

Theorem 3.1. Let G be a nontrivial connected graph with minimum degree δ. Then,

ρB(G) ≤
ρA(G) +

√
ρA(G)2 − 4(δ − 1)

2
,

with equality if and only if G is regular and δ ≥ 2.

Proof. Suppose that δ ≥ 2. It is trivial if G is a cycle. Suppose that G is not a cycle. Then, ρB(G) ≥
δ − 1 ≥ 1. Let n = |V (G)| and m = |E(G)|. By Theorem 1.1 and Lemma 2.1, det(λI2m − B(G)) =

(λ2 − 1)m−n det(λI2n −X(G)) and 1 ∈ σ(X(G)). So ρB(G) = ρX(G).

By Lemma 2.3, we may choose a positive y for the eigenvector

(
−ρX(G)y

y

)
. So

(3.1) ρX(G)2y − ρX(G)A(G)y + (D(G)− In)y = 0.

As G is connected, A(G) is irreducible, so we have by the Perron-Frobenius theorem that there is a positive

eigenvector x such that A(G)x = ρA(G)x. Since both x and y are positive, we have x>y > 0. Left-

multiplying by x> for (3.1), we have

ρX(G)2x>y − ρX(G)x>A(G)y + x>(D(G)− In)y = 0,

i.e.,

ρX(G)2x>y − ρX(G)ρA(G)x>y + x>(D(G)− In)y = 0.

As both x and y are positive, we have

x>(D(G)− In)y ≥ x>(δ − 1)Iny = (δ − 1)x>y,
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with equality if and only if G is regular. It follows that

ρX(G)2 − ρA(G)ρX(G) + δ − 1 ≤ 0,

with equality if and only if G is regular. Recall that ρA(G)2 ≥ δ2 ≥ 4(δ − 1). Then,

ρX(G) ≤
ρA(G) +

√
ρA(G)2 − 4(δ − 1)

2
,

with equality if and only if G is regular. That is,

ρB(G) ≤
ρA(G) +

√
ρA(G)2 − 4(δ − 1)

2
,

with equality if and only if G is regular.

Next, suppose that δ = 1. If G is a tree, then ρB(G) = 0, and ρA(G) ≥ δ = 1, so the result follows.

Suppose that G is not a tree. As C(G) is an induced subgraph, we have ρA(C(G)) ≤ ρA(G). By Lemma 2.5

and the result in Case 1, we have

ρB(G) = ρB(C(G))

≤
ρA(C(G)) +

√
ρA(C(G))2 − 4(δ(C(G))− 1)

2

< ρA(C(G))

≤ ρA(G)

=
ρA(G) +

√
ρA(G)2 − 4(δ − 1)

2
.

This completes the proof.

We remark that the upper bound for the non-backtracking spectral radius in the above theorem has

already been reported by Glover and Kempton in [9] under the technical condition that

ρA(G) ≥ 2
√

x>(D(G)− In)y,

where x and y are the eigenvectors in the proof.

Though the vertices of degree one in a graph do not affect the non-backtracking spectral radius, we still

evaluate the case when the minimum degree is one. This is because the vertices of degree one in a graph

affect the adjacency spectral radius and we are working on a upper bound on the non-backtracking spectral

radius in terms of the adjacency spectral radius.

Corollary 3.2. Let G be a connected graph that is not a tree. Then,

ρB(G) ≤
ρA(C(G)) +

√
ρA(C(G))2 − 4(δ(C(G))− 1)

2
,

with equality if and only if C(G) is regular.

Proof. By Lemma 2.5, ρB(G) = ρB(C(G)). The result follows by applying Theorem 3.1 to C(G).

As pointed out in [9], upper bounds for the adjacency spectral radius lead to upper bounds for the

non-backtracking spectral radius by Theorem 3.1.
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Corollary 3.3. Let G be a connected graph with n ≥ 2 vertices, m edges, and minimum degree δ.

Then,

ρB(G) ≤
√

2m− n+ 1 +
√

2m− n− 4δ + 5

2
,

with equality if and only if G is the complete graph with n ≥ 3.

Proof. The result follows from Theorem 3.1 as

ρA(G) ≤
√

2m− n+ 1,

with equality if and only if G is the star or the complete graph [11].

Corollary 3.4. Let G be a connected graph with n ≥ 2 vertices, m edges, maximum degree ∆, and

minimum degree δ. Let a = 2m− δ(n− 1). Then,

ρB(G) ≤
√
a+ (δ − 1)∆ +

√
a+ (δ − 1)(∆− 4)

2
,

with equality if and only if G is a regular graph with n ≥ 3.

Proof. The result follows from Theorem 3.1 as

ρA(G) ≤
√

2m− δ(n− 1) + (δ − 1)∆,

with equality if and only if G is a regular graph [5].

4. Maximizing the non-backtracking spectral radius over classes of graphs with fixed

parameters. Let M , N , P, and Q be respectively p × p, p × q, q × p, and q × q matrices, where Q is

invertible. It is well known that

(4.2) det

(
M N

P Q

)
= detQ det(M −NQ−1P ).

Let Js,t be the s× t all-one matrix. We write Js for Js×s.

Let G be a connected graph that is not complete. By a vertex cut of G, we mean a set S of vertices of

G such that G − S is disconnected. The connectivity κ(G) is the cardinality of a minimum vertex cut. If

G ∼= Kn, then κ(G) is defined to be n− 1. It is evident that κ(G) ≤ n− 2 if G is a connected graph that is

not complete.

Theorem 4.1. Over all connected graphs on n vertices with connectivity κ, where n ≥ 4 and 1 ≤ κ ≤
n − 2, Kκ ∨ (Kn−1−κ ∪K1) uniquely maximizes the non-backtracking spectral radius, which is equal to the

largest real root of f̃n,κ(t) = 0, where

f̃n,κ(t) = t5 − t4(n− 4)− t2(n2 − 6n+ κ2 − 2κ+ 10)− t(κ2 − 2κ+ 1)− κn2 + n2 + 5κn− 5n− 6κ+ 6.

Proof. Suppose that G is a connected graph on n vertices with connectivity κ that maximizes the

non-backtracking spectral radius.

Denote by S a vertex cut of G with |S| = κ. Then, G− S is not connected. Let G1 be a component of

G − S and let G2 = G[V (G) \ (S ∪ V (G1))]. By Lemma 2.7, adding edges to a connected graph increases

the non-backtracking spectral radius, so G[S], G1 and G2 are all complete. Assume that |V (G1)| ≥ |V (G2)|.
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Let a = |V (G1)|. Then, G ∼= Kκ ∨ (Ka ∪Kn−κ−a), where n−κ
2 ≤ a ≤ n− κ− 1. With respect to the vertex

set partition V (G) = S ∪ V (G1) ∪ V (G2), we have

A(G) =

 Jκ − Iκ Jκ,a Jκ,n−a−κ
Ja,κ Ja − Ia O

Jn−a−κ,κ O Jn−a−κ − In−a−κ

 ,

and

D(G) =

(n− 1)Iκ O O

O (κ+ a− 1)Ia O

O O (n− a− 1)In−a−κ

 .

By Lemma 2.4, we have ρB(G) = ρX(G) ∈ σ(X(G)). To determine ρB(G), we calculate the characteristic

polynomial of X(G). Applying (4.2) and the definition of X(G), we have

det(ρI2n −X(G)) = det(ρIn) det
(
ρIn −A(G)− (D(G)− In) ·

(
ρ−1In

)
· (−In)

)
= ρn det

(
ρIn −A(G) + ρ−1(D(G)− In)

)
.

So, it suffices to calculate det
(
ρIn −A(G) + ρ−1(D(G)− In)

)
. Let b = n− a− κ. Then,

det
(
ρIn −A(G) + ρ−1(D(G)− In)

)
= det


ρ2+ρ+n−2

ρ Iκ − Jκ −Jκ,a −Jκ,b
−Ja,κ ρ2+ρ+κ+a−2

ρ Ia − Ja O

−Jb,κ O ρ2+ρ+n−a−2
ρ Ib − Jb

 .

Subtracting the k-th row from the 1-st, . . . , (κ − 1)-th row, respectively, adding the 1-st, . . ., (κ − 1)-th

column to the κ-th column, and expanding the resulted determinant according to the first κ − 1 rows, we

have

det
(
ρIn −A(G) + ρ−1(D(G)− In)

)
=

(
ρ2 + ρ+ n− 2

ρ

)κ−1
det


ρ2+ρ+n−2

ρ − κ −J1,a −J1,b
−κJa,1 ρ2+ρ+κ+a−2

ρ Ia − Ja O

−κJb,1 O ρ2+ρ+n−a−2
ρ Ib − Jb

 .

Similarly, we have

det
(
ρIn −A(G) + ρ−1(D(G)− In)

)
=

(
ρ2 + ρ+ n− 2

ρ

)κ−1(
ρ2 + ρ+ κ+ a− 2

ρ

)a−1(
ρ2 + ρ+ n− a− 2

ρ

)b−1

× det


ρ2−ρ(κ−1)+n−2

ρ −a −(n− a− κ)

−κ ρ2−ρ(a−1)+κ+a−2
ρ 0

−κ 0 ρ2−ρ(n−a−κ−1)+n−a−2
ρ

 .

So

det
(
ρIn −A(G) + ρ−1(D(G)− In)

)
=

(
ρ2 + ρ+ n− 2

ρ

)κ−1(
ρ2 + ρ+ κ+ a− 2

ρ

)a−1(
ρ2 + ρ+ n− a− 2

ρ

)b−1
ρ−3(ρ− 1)fa(ρ).
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where

fa(ρ) = ρ5 − ρ4(n− 4) + ρ3(a− 1)(n− a− κ− 1)− ρ2(n2 − aκn− 6n+ κn+ aκ2 + a2κ− 3κ+ 10)

− ρ(n2 − an2 + a2n− 4n+ 3an+ aκ2 + a2κ− 3aκ− 3a2 + 4) + (n− 2)(a− n+ 2)(a+ κ− 2).

Now it follows that

det(ρI2n −X(G)) = ρn det
(
ρIn −A(G) + ρ−1(D(G)− In)

)
= (ρ2 + ρ+ n− 2)κ−1(ρ2 + ρ+ κ+ a− 2)a−1(ρ2 + ρ+ n− a− 2)n−a−κ−1(ρ− 1)fa(ρ).

From the expression for the characteristic polynomial of X(G), we see that the spectrum of X(G)

consists of 1 with multiplicity 1, −1±i
√
4n−9

2 with multiplicity κ− 1, −1±i
√
4κ+4a−9
2 with multiplicity a− 1,

−1±i
√

4(n−a)−9
2 with multiplicity b − 1 and the roots of fa(ρ) = 0. By a simple calculation, the maximum

modulus of eigenvalues of X(G) different from the roots of fa(ρ) = 0 is
∣∣∣−1−i√4n−9

2

∣∣∣ =
√
n− 2. So ρB(G) ≥

√
n− 2 and ρB(G) = ra, where ρ = ra is the largest real root of fa(ρ) = 0.

Suppose that a < n− κ− 1. From the above expression for fa(ρ), we have

fa(ρ)− fa+1(ρ) = (ρ3 + κρ2 + nρ+ κρ− 3ρ− n+ 2)(2a+ κ− n+ 1) > 0,

for ρ ≥
√
n− 2. So

fa+1(ra) = − (fa(ra)− fa+1(ra)) < 0.

This, together with the fact fa+1(ρ) ≥ 0 for ρ ≥ ra+1, implies that ra+1 > ra. This is a contradiction. It

thus follows that a = n− κ− 1. That is, G ∼= Kκ ∨ (Kn−1−κ ∪K1). Let f̃n,κ(t) = fn−κ−1(t). Then, ρB(G)

is the largest real root of f̃n,κ(t) = 0.

Let G be a nontrivial connected graph. An edge cut of G is a set E′ of edges such that G − E′ is

disconnected. The edge connectivity λ(G) of G is the cardinality of a minimum edge cut, and we define

λ(K1) = 0.

It is well known that λ(G) ≤ δ(G) for any graph G. So, for a connected graph G on n vertices, we have

λ(G) ≤ n− 1 with equality if and only if G is complete.

Theorem 4.2. Over all connected graphs on n vertices with edge connectivity λ, where n ≥ 4 and

1 ≤ λ ≤ n− 2, Kλ ∨ (Kn−1−λ ∪K1) uniquely maximizes the non-backtracking spectral radius, which is equal

to the largest real root of f̃n,λ(t) = 0, where

f̃n,λ(t) = t5 − t4(n− 4) + t2(−n2 + 6n− λ2 + 2λ− 10)− t(λ− 1)2 − n2λ+ n2 + 5nλ− 5n− 6λ+ 6.

Proof. From the proof of Theorem 4.1, ρB(Kλ ∨ (Kn−1−λ ∪K1)) is the largest real root of f̃n,λ(t) = 0.

As

f̃n,λ(n− 3) = −λ(n− 2)(n− 3)(λ− 1) ≤ 0,

one has ρB(Kλ ∨ (Kn−1−λ ∪K1)) ≥ n− 3.

Suppose that G is a connected graph on n vertices with edge connectivity λ that maximizes the non-

backtracking spectral radius. As the edge connectivity of Kλ ∨ (Kn−1−λ ∪ K1) is λ, we have ρB(G) ≥
ρB(Kλ ∨ (Kn−1−λ ∪K1)) ≥ n− 3.
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Note that λ ≤ δ(G). Suppose that λ < δ(G). Let Ec be an edge cut with cardinality λ of G, and G1

and G2 be the components of G− Ec. Let ni = |V (Gi)| for i = 1, 2. By Lemma 2.7, we have Gi ∼= Kni
for

i = 1, 2. Assume that n1 ≤ n2. If n1 ≤ λ, then there exists a vertex w in V (G1) such that

dG(w) ≤ n1 − 1 +
λ

n1
≤ (n1 − 1)

λ

n1
+

λ

n1
= λ,

which is contradiction. If n1 = λ+ 1, then there exists a vertex w in V (G1) such that

dG(w) ≤ n1 − 1 = λ,

which is also a contradiction. So n2 ≥ n1 ≥ λ + 2. Note that the maximum row sum of B(G) is at most

n2 − 2 + λ. By Lemma 2.8, ρ(B(G)) ≤ n2 − 2 + λ ≤ n2 − 2 + n1 − 2 = n − 4 < ρ(B(G)), which is a

contradiction. Thus λ = δ(G).

Let u be a vertex of degree λ in G. Then, {uw : w ∈ NG(u)} is an edge cut of cardinality λ in G. By

Lemma 2.7, we have G− {u} ∼= Kn−1. So G ∼= Kλ ∨ (Kn−1−λ ∪K1).

The vertex bipartiteness of a graph G is the minimum number of vertices whose deletion from G results

in a bipartite graph [7].

Theorem 4.3. Over connected graphs on n vertices with vertex bipartiteness γ, where n ≥ 4 and 1 ≤
γ ≤ n− 2, Kγ ∨Kd(n−γ)/2e,b(n−γ)/2c uniquely maximizes the non-backtracking spectral radius, which is equal

to the largest real root of h̃n,γ(t) = 0, where

h̃n,γ(t) = (2t2 + t(n− k) + n+ k − 2)2(t− n+ 2) + (2t2 + t(n− k) + n+ k − 2)(t(n− k)(n− k − 2) + 1)

+ (t2 − 1)(t+ γ)− 2,

if n− γ is odd, and

h̃n,γ(t) = (2t2 + t(n− γ) + n+ γ − 2)(t− n+ 2) + t(n− γ)(n− γ − 2),

if n− γ is even.

Proof. Suppose that G is a connected graph on n vertices with bipartiteness γ that maximizes the

non-backtracking spectral radius.

Let S be a subset of V (G) with cardinality γ such that G − S is a bipartite graph. Let U1 and U2 be

the partite sets of G − S of cardinalities a and n − γ − a, respectively. Suppose without loss of generality

that n− γ − a ≤ a. Then, n−γ2 ≤ a ≤ n− γ − 1. By Lemma 2.7, G[S] ∼= Kγ and G[U1 ∪U2] = Ka,n−γ−a, so

G ∼= Kγ ∨Ka,n−γ−a. With respect to the partition V (G) = U ∪X ∪ Y , we have

A(G) =

 Jγ Jγ,a Jγ,n−γ−a
Ja,γ O Ja,n−γ−a

Jn−γ−a,γ Jn−γ−a,a O

 ,

and

D(G) =

(n− 1)Iγ O O

O (n− a)Ia O

O O (a+ γ)In−γ−a

 .
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By Lemma 2.4, ρB(G) = ρX(G) ∈ σ(X(G)). By similar argument as in the proof of Theorem 4.1, we have

det(ρI2n −X(G)) = ρn det
(
ρIn −A(G) + ρ−1(D(G)− In)

)
= ρn det


(
ρ+ 1 + n−2

ρ

)
Iγ − Jγ −Jγ,a −Jγ,n−γ−a

−Ja,γ
(
ρ+ n−a−1

ρ

)
Ia −Ja,n−γ−a

−Jn−γ−a,γ −Jn−γ−a,a
(
ρ+ γ+a−1

ρ

)
In−γ−a


= ρ3

(
ρ2 + ρ+ n− 2

)γ−1 (
ρ2 + n− a− 1

)a−1 (
ρ2 + n− γ − 1

)n−γ−a−1
× det


ρ2−ρ(γ−1)+n−2

ρ −a −(n− γ − a)

−γ ρ2+n−a−1
ρ −(n− γ − a)

−γ −a ρ2+γ+a−1
ρ


=
(
ρ2 + ρ+ n− 2

)γ−1 (
ρ2 + n− a− 1

)a−1 (
ρ2 + n− γ − 1

)n−γ−a−1
(ρ− 1)ha(ρ),

where

ha(t) = t5 − t4(γ − 2) + t3(−an− γn+ 2n+ a2 + aγ + γ2 − 2)

− t2(2an+ aγn+ 2γn− 3n− a2γ − 2a2 − aγ2 − 2aγ − 3γ + 4)

− t((a+ γ − 1)n2 − (2aγ + a+ γ + γ2 + a2 − 2)n+ a2γ + a2 + aγ2 + aγ + γ2 − 1)

− an2 + n2 − γn2 + aγn− 3n+ 2an+ 3γn+ a2n− 2a2 − 2aγ − 2γ + 2.

Then, the spectrum ofX(G) consists of 1 with multiplicity 1, −1±i
√
4n−9

2 with multiplicity γ−1, ±i
√
n− a− 1

with multiplicity a−1, ±i
√
n− γ − 1 with multiplicity n−γ−a−1, and the roots of ha(t) = 0. By Lemma 2.4,

ρB(G) is the largest real eigenvalue of X(G). As ρB(G) ≥
∣∣∣−1±i√4n−9

2

∣∣∣ =
√
n− 2 > 1, we have ρB(G) = sa,

where t = sa is the largest real root of ha(t) = 0.

Suppose that a ≥ dn−γ2 e+ 1. Then,

ha−1(t)− ha(t) = −q(t)(2a+ γ − n− 1),

where q(t) = t3 + t2(γ + 2) + t(n− 1− γ) + n− 2. For t ∈ [1,+∞), as q(t) is strictly increasing, one has

ha−1(sa) = ha−1(sa)− ha(sa) ≤ −q(1)(2a+ γ − n− 1) = −2n(2a+ γ − n− 1) < 0.

This, together with the fact that ha−1(t) ≥ 0 for t ≥ sa−1, implies that sa−1 > sa, which is a contradiction.

Thus a = dn−γ2 e, i.e., G ∼= Kγ ∨Kd(n−γ)/2e,b(n−γ)/2c.

Finally, we determine the value of ρB(G).

If n−γ is odd, then by above argument, ρB(G) is the largest real root of hd(n−γ)/2e(t) = 0, or the largest

real root of h̃n,γ(t) = 0 as hd(n−γ)/2e(t) = 1
4 h̃n,γ(t). Suppose that n− γ is even. Then, ρB(G) is the largest

real root of hd(n−γ)/2e(t) = 0, where

hd(n−γ)/2e(t) =
1

4
(2t2 + t(n− γ) + n+ γ − 2)h̃n,γ(t).

If (n−γ)2 < 8(n+γ− 2), then the roots of 2t2 + t(n−γ) +n+γ− 2 = 0 are not real, and so by Lemma 2.4,

ρB(G) is the largest real root of h̃n,γ(t) = 0. If (n− γ)2 ≥ 8(n + γ − 2), then the roots, say t1 and t2 with

t1 ≤ t2 of 2t2 + t(n− γ) + n+ γ − 2 = 0 are real and negative, and ρB(G) is positive, so ρB(G) is also the

largest real root of h̃n,γ(t) = 0.
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Theorem 4.4. Let G be a connected graph on n vertices with p pendant vertices, where n ≥ 4 and

1 ≤ p ≤ n − 3. Then, ρB(G) ≤ n − p − 2, with equality if and only if G′ is a complete graph, where G′ is

obtained from G by deleting all pendant vertices.

Proof. By Lemma 2.5, ρB(G) = ρB(G′). Thus, ρB(G) ≤ n − p − 2, with equality if and only if G′ is a

complete graph.

5. Concluding remarks. In this paper, we gave tight upper bounds for the non-backtracking spectral

radius for graphs with fixed connectivity, edge connectivity, and bipartiteness, respectively, and characterized

the extremal graphs.

By Lemma 2.7, adding edges to a connected graph results in the increase of the non-backtracking spectral

radius. This fact is also true for the adjacency spectral radius [17]. Because of this fact, one may think that

graphs with certain conditions maximizing the non-backtracking spectral radius will be the same families

that maximize the adjacency spectral radius. There are indeed such examples but it is not always the case.

From the results in [14] and Theorem 4.1, we find that Kκ ∨ (Kn−1−κ ∪K1) uniquely maximizes both

the adjacency and non-backtracking spectral radii among all connected graphs on n vertices with connec-

tivity κ, where n ≥ 4 and 1 ≤ κ ≤ n − 2. However, it should be noted that the adjacency spectral

radius has no immediate connections with the non-backtracking spectral radius, so one cannot get the result

on the non-backtracking spectral radius from the result on the adjacency spectral radius. We also note

that quite different techniques are needed to maximize the adjacency spectral radius and non-backtracking

spectral radius, respectively. In the literature, in showing that graphs maximizing the adjacency spec-

tral radius have a particular structure, one supposes the graph does not have the structure and perform

graft operations to obtain a graph for which the adjacency spectral radius is increased, and there are lots

of graft operations, apart from adding edges [6, 17]. In the process, Perron-Frobenius theorem is impor-

tant. In showing that graphs maximizing the non-backtracking spectral radius have a particular struc-

ture, one can use Lemma 2.7 only at present so that the graph has a roughly particular structure and

then calculates the characteristic polynomial of an auxiliary but larger matrix X(G) that is neither non-

negative nor symmetric and maximizes the largest real eigenvalue of this matrix by somewhat algebraic

techniques.

There are families of graphs in which the graphs maximizing the adjacency spectral radius are different

from the ones maximizing the non-backtracking spectral radius. We list some examples:

(i) among all trees of order n ≥ 2, the star uniquely maximizes the adjacency spectral radius, while all

trees have non-backtracking spectral radius 0;

(ii) among all unicyclic graphs of order n ≥ 3, the graph formed from the star by adding an edge

uniquely maximizes the adjacency spectral radius, while all unicyclic graphs have non-backtracking

spectral radius 1;

(iii) among all connected graphs of order n with p pendant vertices, where 1 ≤ p ≤ n − 3, the graph

consisting of a complete graph of order n− p and p pendant vertices at a common vertex uniquely

maximizes the adjacency spectral radius, while all graphs consisting of a complete graph of order n−p
and p pendant vertices that are not necessarily at a common vertex maximize the non-backtracking

spectral radius (see Theorem 4.4).

Recently, Huang et al. [10] determined the unique graph that maximizes the adjacency spectral radius

in the set of all k-connected graphs of order n with diameter D. One may also consider the non-backtracking
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version of this class of graphs. Apart from Lemma 2.7, one needs more other different techniques and heavy

calculations. Actually, there are lots of other families of graphs that may be considered to maximize the

non-backtracking spectral radius, see [17] and references cited therein.
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