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A NOTE ON SEMISCALAR EQUIVALENCE OF POLYNOMIAL MATRICES∗

VOLODYMYR M. PROKIP†

Abstract. Polynomial matrices A(λ) and B(λ) of size n × n over a field F are semiscalar equivalent if there exist a

nonsingular n×n matrix P over F and an invertible n×n matrix Q(λ) over F[λ] such that A(λ) = PB(λ)Q(λ). The aim of this

article is to present necessary and sufficient conditions for the semiscalar equivalence of nonsingular matrices A(λ) and B(λ)

over a field F of characteristic zero in terms of solutions of a homogenous system of linear equations.
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1. Introduction. Let F be a field. Denote by Mm,n(F) the set of m × n matrices over F and by

Mm,n(F[λ]) the set of m × n matrices over the polynomial ring F[λ]. A polynomial a(λ) = a0λ
k + a1λ

k−1

+ . . . + ak ∈ F(λ) is said to be monic if the first nonzero term a0 is equal to 1.

Let A(λ) ∈Mn,n(F[λ]) be a nonzero matrix and rankA(λ) = r. For the matrix A(λ), there exist matrices

P (λ), Q(λ) ∈ GL(n,F[λ]) such that

P (λ)A(λ)Q(λ) = SA(λ) = diag
(
s1(λ), s2(λ), . . . , sr(λ), 0, . . . , 0

)
,

where sj(λ) ∈ F[λ] are monic polynomials for all j = 1, 2, . . . , r and s1(λ)|s2(λ)| . . . |sr(λ) (divides) are the

invariant factors of A(λ). The diagonal matrix SA(λ) is called the Smith normal form of A(λ).

Definition 1.1. Matrices A(λ), B(λ) ∈ Mn,n(F[λ]) are said to be semiscalar equivalent if there exist

matrices P ∈ GL(n,F) and Q(λ) ∈ GL(n,F[λ]) such that A(λ) = PB(λ)Q(λ). ([7], Chapter 4).

Let A(λ) ∈Mn,n(F[λ]) be nonsingular matrix over an infinite field F. Then A(λ) is semiscalar equivalent

to the lower triangular matrix ([7])

Sl(λ) =


s11(λ) 0 . . . . . . 0

s21(λ) s22(λ) 0 . . . 0

. . . . . . . . . . . . . . .

sn1(λ) sn2(λ) . . . sn,n−1(λ) snn(λ)

 ,
with the following properties:

(a) sii(λ) = si(λ), i = 1, 2, . . . , n, where s1(λ)|s2(λ)| · · · |sn(λ) (divides) are the invariant factors of

A(λ);

(b) sii(λ) divides sji(λ) for all i, j with 1 ≤ i < j ≤ n.
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It may be noted that for a singular matrix A(λ) the matrix Sl(λ) does not always exist (see [7]). The

matrix A(λ) =

[
λ λ

λ2 + 1 λ2 + 1

]
is not semiscalar equivalent to the lower triangular matrix Sl(λ) =

[
1 0

∗ 0

]
.

The triangular form Sl(λ) for nonsingular matrices over a finite field does not always exist (see the

Remark following Corollary 2 of [10]). Let F = {0, 1} be a field of two elements. It is easily verified that the

polynomial matrix

A(λ) =

[
λ 0

λ2 + 1 (λ2 + λ+ 1)(λ2 + 1)

]
,

over the field F is not semiscalar equivalent to the lower triangular matrix

Sl(λ) =

[
1 0

∗ λ(λ2 + λ+ 1)(λ2 + 1)

]
.

Example 1.2. Let F = R be the field of real numbers. Further, let

A(λ) =

[
1 0

λ3 − 3λ2 − λ (λ2 − 1)(λ2 − 2λ)

]
and B(λ) =

[
1 0

λ3 − λ2 − λ (λ2 − 1)(λ2 − 2λ)

]
,

be 2×2 matrices with entries from R[λ]. For A(λ) and B(λ), there exist the nonsingular matrix P =

[
9 2

0 1

]
∈

M2,2(R) and the invertible matrix Q(λ) =

[
2λ3 − 6λ2 − 2λ+ 9 2λ4 − 4λ3 − 2λ2 + 4λ

−2λ2 + 4λ+ 4 −2λ3 + 2λ2 + 2λ+ 1

]
∈ M2,2(R[λ]) such

that PA(λ) = B(λ)Q(λ).

From this example it follows, that the triangular form Sl(λ) is not uniquely determined for a nonsingular

polynomial matrix A(λ) with respect the semiscalar equivalence (see also Example 4.1).

Dias da Silva J.A and Laffey T.J. studied polynomial matrices up to PS-equivalence.

Definition 1.3 (See [1]). Matrices A(λ), B(λ) ∈ Mn,n(F[λ]) are PS-equivalent if A(λ) = P (λ)B(λ)Q

for some P (λ) ∈ GL(n,F[λ]) and Q ∈ GL(n,F).

Let F be an infinite field. A matrix A(λ) ∈Mn,n(F[λ]) with detA(λ) 6= 0 is PS-equivalent to the upper

triangular matrix (see [1], Proposition 2)

Su(λ) =


s11(λ) s12(λ) . . . s1n(λ)

0 s22(λ) . . . s2n(λ)

. . . . . . . . . . . .

0 . . . 0 snn(λ)

 ,
with the following properties:

(a) sii(λ) = si(λ), i = 1, 2, . . . , n, where s1(λ)|s2(λ)| · · · |sn(λ) (divides) are the invariant factors of

A(λ);

(b) sii(λ) divides sij(λ) for all integers i, j with 1 ≤ i < j ≤ n;

(c) if i 6= j and sij(λ) 6= 0, then sij(λ) is a monic polynomial and

deg sii(λ) < deg sij(λ) < deg sjj(λ).
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The matrix Su(λ) is called a near canonical form of the matrix A(λ) with respect to PS equivalence. We

note that conditions (a) and (b) for semiscalar equivalence were proved in [7]. It is evident that matrices

A(λ), B(λ) ∈ Mn,n(F[λ]) are PS equivalent if and only if the transpose matrices AT (λ) and BT (λ) are

semiscalar equivalent. It is clear that semiscalar equivalence and PS equivalence represent an equivalence

relation on Mn,n(F[λ]). On the basis of the semiscalar equivalence of polynomial matrices in [7], algebraic

methods for factorization of matrix polynomials were developed.

The semiscalar equivalence of regular matrix polynomials matters for the problem of classifying linear

controllable systems, when change of bases in the state and input spaces are allowed (see [11]). Each class

of similar controllable linear systems can be identified up to the right equivalence with a regular matrix

polynomial (see [9], [15]). Suppose that two pairs of n × n matrices (A1, B1) and (A2, B2) are controllable

and unimodular n × n matrices Pi(λ) are polynomial system representations of (Ai, Bi). According to

Theorem 2.4 from [15] (A2, B2) = (T−1A1T, T
−1B1Q) for some invertible matrices T and Q if and only if

P2(λ) = QP1(λ)U(λ), where U(λ) is an unimodular matrix. Put Gi(λ) = (Inλ − A)−1Bi, (i = 1, 2) and

assume that (A2, B2) = (T−1A1T, T
−1B1Q). Now we write the strictly proper rational matrix functions

Gi(λ) as irreducible matrix fractions (see [6], Sec. 6.2.3) in the forms Gi(λ) = Ni(λ)(Pi(λ))−1, i = 1, 2.

From equality G2(λ) = TG1(λ)Q, we have

N2(λ)P−1
2 (λ) = TN1(λ)(P1(λ))−1Q = TN1(λ)(Q−1P1(λ))−1.

This means that N2(λ)P2(λ)−1 and TN1(λ)(Q−1P1(λ))−1 are two irreducible matrix descriptions of G2(λ).

In accordance with [6], there is an unimodular matrix U(λ) such that N2(λ) = TN1(λ)U(λ) and P2(λ) =

QP1(λ)U(λ). It is obvious that matrices N2(λ) and N1(λ) are semiscalar equivalent, and matrices P2(λ) and

P1(λ) are semiscalar equivalent. Thus, any contribution to the problem of classifying the matrix polynomials

according to the semiscalar equivalence is a contribution to the problem of classifying the linear controllable

systems by changes of bases in the state and input spaces. 1 We note that the semiscalar equivalence and

the PS equivalence were used in the study of the controllability of linear systems in [2] and [3].

The semiscalar equivalence of matrices includes the following two tasks: (1) the determination of a

complete system of invariants and (2) the construction of a canonical form for a matrix with respect to

semiscalar equivalence. But these tasks have satisfactory solutions only in isolated cases. The canonical and

normal forms with respect to semiscalar equivalence for a matrix pencil A0λ+A1 ∈Mn,n(F[λ]), where A0 is

nonsingular, were investigated in [12] and [13]. A canonical form with respect to semiscalar equivalence for

a polynomial matrix over a field is unknowns in general case. The article is organized as follows. In Section

2, we prove preparatory results of this article. Necessary and sufficient conditions under which nonsingular

matrices A(λ) and B(λ) over a field F of characteristic zero are semiscalar equivalent are proposed in Section

3. In Section 4, numerical examples are also given.

2. Preparatory notations and results. To prove the main result, we need the following notations

and propositions. Let F be a field of characteristic zero. In what follows A∗(λ) = AdjA(λ) means the

classical adjoint matrix of A(λ) ∈ Mn,n(F[λ]). We denote by O the zero matrix and by 0̄ the zero vector,

respectively, and their dimensions are determined from the context. In the polynomial ring F[λ], we consider

the operation of differentiation D: F[λ]→ F[λ] such that

D(a(λ) + b(λ)) = D(a(λ)) + D(b(λ)) and D(a(λ)b(λ)) = D(a(λ))b(λ) + a(λ)D(b(λ)),

1This statement proposed by the referee.
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for all a(λ), b(λ) ∈ F[λ]. Let a(λ) = a0λ
l + a1λ

l−1 + · · ·+ al−1x+ al ∈ F[λ]. Put

D (a(λ)) = la0λ
l−1 + (l − 1)a1λ

l−2 + · · ·+ al−1 = a(1)(λ),

and Dk(a(λ)) = D(a(k−1)(λ)) = a(k)(λ) for every natural k ≥ 2. The differentiation of a matrix A(λ) =[
aij(λ)

]
∈Mm,n(F[λ]) is understood as its elementwise differentiation, i.e.,

A(1)(λ) = D(A(λ)) = [D(aij(λ))] = [a
(1)
ij (λ)],

and A(k)(λ) = D(A(k−1)(λ)) is the k-th derivative of A(λ) for every natural k ≥ 2.

Let b(λ) = (λ − β1)k1(λ − β2)k2 · · · (λ − βr)kr ∈ F[λ], deg b(λ) = k = k1 + k2 + · · · + kr, and A(λ) ∈
Mm,n(F[λ]). By analogy with [7] for the monic polynomial b(λ) and the matrix A(λ), we will define the

matrix MA(b) =


N1

N2

...

Nr

 ∈Mmk,n(F), where Nj =


A(βj)

A(1)(βj)
...

A(kj−1)(βj)

 ∈Mmkj ,n(F), j = 1, 2, . . . , r.

Proposition 2.1. Let b(λ) = (λ−β1)k1(λ−β2)k2 · · · (λ−βr)kr ∈ F[λ], where βi ∈ F for all i = 1, 2, . . . , r,

and A(λ) ∈Mm,n(F[λ]) be a nonzero matrix. Then A(λ) admits the representation

(2.1) A(λ) = b(λ)C(λ),

if and only if MA(b) = O.

Proof. Suppose that (2.1) holds. It is evident that b(βj) = b(1)(βj) = · · · = b(kj−1)(βj) = 0 for all

j = 1, 2, . . . , r and A(βj) = O. Differentiating equality (2.1) (kj − 1) times and substituting each time

λ = βj into both sides of the obtained equalities, we finally obtain A(l)(βj) = O for all l = 1, 2, . . . , kj − 1.

Thus, Nj = O. Since 1 ≤ j ≤ r, we have MA(b) = O.

Conversely, let MA(b) = O. Dividing the matrix A(λ) by Inb(λ) with residue (see, for instance, Theorem

7.2.1 in the classical book by Lancaster and Tismenetski [8]), we have A(λ) = b(λ)C(λ) + R(λ), where

C(λ), R(λ) ∈ Mm,n(F[λ]) and degR(λ) < deg b(λ). Thus, MA(b) = MR(b) = O. Since MR(b) = O, then

R(λ) = (λ−βi)kiRi(λ) for all i = 1, 2, . . . , r, i.e., R(λ) = b(λ)R0(λ). On the other hand, degR(λ) < deg b(λ).

Thus, R(λ) ≡ O. This completes the proof.

Corollary 2.2. Let A(λ) ∈Mn,n(F[λ]) be a matrix of rankA(λ) ≥ n− 1 with the Smith normal form

S(λ) = diag (s1(λ), . . . , sn−1(λ), sn(λ)). If sn−1(λ) = (λ − α1)k1(λ − α2)k2 · · · (λ − αr)kr , where αi ∈ F for

all i = 1, 2, . . . , r; then MA∗(sn−1) = O.

Proof. By inequality rankA(λ) ≥ n − 1, we have A∗(λ) 6= O. Since sn−1(λ)|sn(λ), the matrix A∗(λ)

admits the representation A∗(λ) = sn−1(λ)B(λ), where B(λ) ∈ Mn,n(F[λ]). By virtue of Proposition 2.1,

MA∗(sn−1) = O. The proof is completed.

The Kronecker product of matrices A = [aij ] (n×m) and B is denoted by

A⊗B =

 a11B . . . a1mB
...

...

an1B . . . anmB

 .
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Let nonsingular matrices A(λ), B(λ) ∈Mn,n(F[λ]) be equivalent and S(λ) = diag (s1(λ), . . . , sn−1(λ), sn(λ))

be their Smith normal form. For A(λ) and B(λ), we define the matrix

D(λ) =
((
s1(λ)s2(λ) · · · sn−1(λ)

)−1

B∗(λ)
)
⊗AT (λ) ∈Mn2,n2(F[λ]).

It may be noted if S(λ) = diag (1, . . . , 1, s(λ)) is the Smith normal form of the matrices A(λ) and B(λ),

then D(λ) = B∗(λ)⊗AT (λ).

3. Main results. It is clear that two semiscalar or PS equivalent matrices are always equivalent. The

converse of the above statement is not always true. The main result of this chapter is the following theorem.

Theorem 3.1. Let nonsingular matrices A(λ), B(λ) ∈Mn,n(F[λ]) be equivalent and

S(λ) = diag (s1(λ), . . . , sn−1(λ), sn(λ)),

be their Smith normal form. Further, let sn(λ) = (λ − α1)k1(λ − α2)k2 · · · (λ − αr)kr , where αi ∈ F for all

i = 1, 2, . . . , r. Then A(λ) and B(λ) are semiscalar equivalent if and only if the homogeneous system of

equations MD(sn)x = 0̄ has a solution x = [v1, v2, . . . , vn2 ]T over F such that the matrix

V =


v1 v2 . . . vn
vn+1 vn+2 . . . v2n
. . . . . . . . . . . .

vn2−n+1 vn2−n+2 . . . vn2

 ,
is nonsingular. If detV 6= 0, then V A(λ) = B(λ)Q(λ), where Q(λ) ∈ GL(n,F[λ]).

Proof. Since the matrices A(λ) and B(λ) are equivalent, then rankMD(sn) < n2.

Let nonsingular matrices A(λ), B(λ) ∈ Mn,n(F[λ]) be semiscalar equivalent, i.e., A(λ) = PB(λ)Q(λ),

where P ∈ GL(n,F) and Q(λ) ∈ GL(n,F[λ]). From the last equality, we have

(3.2) B∗(λ)P−1A(λ) = Q(λ) detB(λ).

Write B∗(λ) in the form B∗(λ) = d(λ)C(λ) (see the proof of Corollary 2.2) and detB(λ) = b0d(λ)sn(λ),

where d(λ) = s1(λ)s2(λ) · · · sn−1(λ), C(λ) ∈ Mn,n(F[λ]) and b0 is a nonzero element in F. Thus, from

equality (3.2), we obtain

(3.3) C(λ)P−1A(λ) = Q(λ)sn(λ)b0.

Put

P−1 =


v1 v2 . . . vn
vn+1 vn+2 . . . v2n
. . . . . . . . . . . .

vn2−n+1 vn2−n+2 . . . vn2

 ,
and

Q(λ)b0 = W (λ) =


w1(λ) w2(λ) . . . wn(λ)

wn+1(λ) wn+2(λ) . . . w2n(λ)

. . . . . . . . . . . .

wn2−n+1(λ) wn2−n+2(λ) . . . wn2(λ)

 ,
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where vj ∈ F and wj(λ) ∈ F[λ] for all j = 1, 2, . . . , n2. Then we can write equality (3.3) in the form (see [8],

Chapter 12)

(3.4)
(
C(λ)⊗AT (λ)

)
·
[
v1, v2, . . . , vn2

]T
= sn(λ)

[
w1(λ), w2(λ), . . . , wn2(λ)

]T
.

Note that C(λ)⊗AT (λ) = D(λ). In view of equality (3.4) and Proposition 2.1, we have

MD(sn)
[
v1, v2, . . . , vn2

]T
= 0̄.

Thus, the homogeneous system of equations MD(sn)x = 0̄ has a necessary solution.

Conversely, the homogeneous system of equations MD(sn)x = 0̄ has a solution x = [v1, v2, . . . , vn2 ]T

over F such that the matrix V =


v1 v2 . . . vn
vn+1 vn+2 . . . v2n
. . . . . . . . . . . .

vn2−n+1 vn2−n+2 . . . vn2

 is nonsingular. Dividing the product

C(λ)V A(λ) by Insn(λ) with residue, we have

C(λ)V A(λ) = sn(λ)Q(λ) +R(λ),

where Q(λ), R(λ) = [rij(λ)] ∈Mn,n(F[λ]) and degR(λ) < deg sn(λ). From the last equality we obtain

MD(sn)x0 = MColR(sn) = 0̄,

where ColR(λ) =
[
r11(λ) . . . r1n(λ) . . . rn,n−1(λ) . . . rnn(λ)

]T
. In accordance with Proposition

2.1 we have ColR(λ) ≡ 0̄. Thus, R(λ) ≡ 0 and

(3.5) C(λ)V A(λ) = sn(λ)Q(λ).

Note that detB(λ) = b0d(λ)sn(λ), where b0 is a nonzero element in F. Multiplying both sides of equality

(3.5) by b0d(λ) we have

(3.6) b0B
∗(λ)V A(λ) = b0d(λ)C(λ)V A(λ) = b0d(λ)sn(λ)Q(λ) = Q(λ) detB(λ).

Hence B(λ)Q(λ) = b0V A(λ) and passing to the determinants on both sides of this equality, we obtain

detQ(λ) = const 6= 0. Since Q(λ) ∈ GL(n,F[λ]), we conclude that matrices A(λ) and B(λ) are semiscalar

equivalent. This completes the proof.

It may be noted that nonsingular matrices A(λ), B(λ) ∈ Mn,n(F[λ]) are PS equivalent if and only if

A(λ)T and B(λ)T are semiscalar equivalent. Thus, Theorem 3.1 gives the answer to the question: When are

nonsingular matrices A(λ) and B(λ) PS equivalent?

In the future, F = C is the field of complex numbers.

Corollary 3.2. Let nonsingular matrices A(λ), B(λ) ∈Mn,n(C[λ]) be equivalent and

S(λ) = diag (s1(λ), . . . , sn−1(λ), sn(λ)),

be their Smith normal form. Then A(λ) and B(λ) are semiscalar equivalent if and only if the homogeneous

system of equations MD(sn)x = 0̄ has a solution x = [v1, v2, . . . , vn2 ]T over C such that the matrix V =
v1 v2 . . . vn
vn+1 vn+2 . . . v2n
. . . . . . . . . . . .

vn2−n+1 vn2−n+2 . . . vn2

 is nonsingular.
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Definition 3.3. Two families of n× n matrices over the field C

A = (A1, A2, . . . , Ar) and B = (B1, B2, . . . , Br) ,

are said to be similar if there exists a matrix T ∈ GL(n,C) such that Ai = TBiT
−1 for all i = 1, 2, . . . , r.

We associate the families A and B with monic matrix polynomials

A(λ) = Inλ
r +A1λ

r−1 +A2λ
r−2 + · · ·+Ar and B(λ) = Inλ

r +B1λ
r−1 +B2λ

r−2 + · · ·+Br,

over C of degree r respectively. The families A and B are similar over C if and only if the matrices A(λ) and

B(λ) are semiscalar equivalent (PS equivalent) (see also [7], [1], [4], [5], [14] and references therein). From

Theorem 3.1 and Corollary 3.2, we obtain the following corollary.

Corollary 3.4. Let n × n monic matrix polynomials (of degree r) A(λ) = Inλ
r +

∑r
i=1Aiλ

r−i and

B(λ) = Inλ
r +

∑r
i=1Biλ

r−i over the field of complex numbers C be equivalent, and let

S(λ) = diag (s1(λ), . . . , sn−1(λ), sn(λ)),

be their Smith normal form. The families A = (A1, A2, . . . , Ar) and B = (B1, B2, . . . , Br) are similar over

C if and only if the homogeneous system of equations MD(sn)x = 0̄ has a solution x = [v1, v2, . . . , vn2 ]T over

C such that the matrix V =


v1 v2 . . . vn
vn+1 vn+2 . . . v2n
. . . . . . . . . . . .

vn2−n+1 vn2−n+2 . . . vn2

 is nonsingular.

If detV 6= 0, then Ai = V −1BiV for all i = 1, 2, . . . , r.

4. Illustrative examples. To illustrate Theorem 3.1 and Corollary 3.4, consider the following exam-

ples.

Example 4.1. Matrices A(λ) =

[
1 0

λ2 + aλ λ4

]
and B(λ) =

[
1 0

λ2 + bλ λ4

]
with entries from C[λ]

are equivalent for all a, b ∈ C and S(λ) = diag (1, λ4) is their Smith normal form. In what follows a 6= b.

Construct the matrix

D(λ) = B∗(λ)⊗AT (λ) =


λ4 λ6 + aλ5 0 0

0 λ8 0 0

− (λ2 + bλ) −(λ4 + (a+ b)λ3 + abλ2) 1 λ2 + aλ

0 −(λ6 + bλ5) 0 λ4

 ,

and solve the system of equations MD(s2)x = 0̄. From this, it follows
0 0 1 0

−b 0 0 a

−2 −2ab 0 2

0 −6(a+ b) 0 0



v1
v2
v3
v4

 =


0

0

0

0

 .
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From this we have, if a + b 6= 0, then A(λ) and B(λ) are not semiscalar equivalent. If a + b = 0, then

b = −a and system of equations MD(s2)x = 0̄ is solvable. The vector
[

1, 2
a2 , 0, −1

]T
is a solution

of MDs2x = 0̄ for arbitrary a 6= 0. Thus, the matrix V =

[
1 2

a2

0 −1

]
is nonsingular.

So, if a 6= 0 and b = −a, then the matrices A(λ) =

[
1 0

λ2 + aλ λ4

]
and B(λ) =

[
1 0

λ2 − aλ λ4

]
are

semiscalar equivalent, i.e., A(λ) = PB(λ)Q(λ), where P = V −1 =

[
1 2

a2

0 −1

]
and

Q(λ) =

[
2λ2

a2 + 2λ
a + 1 2λ4

a2

− 2
a2 − 2λ2

a2 + 2λ
a − 1

]
∈ GL(2,C[λ]).

Thus, the matrix Sl(λ) is not uniquely determined for the nonsingular matrix A(λ) with respect to

semiscalar equivalence for arbitrary a 6= 0.

Example 4.2. Let

A =

(
A1 =

[
−3 0

−4 1

]
, A2 =

[
1 1

1 1

] )
,

and

B =

(
B1 =

[
1 0

−4 −3

]
, B2 =

[
0 0

1 2

] )
,

be two families of 2× 2 matrices over the field C. Monic matrix polynomials

A(λ) = I2λ
2 +A1λ+A2 =

[
λ2 − 3λ+ 1 1

−4λ+ 1 λ2 + λ+ 1

]
,

and

B(λ) = I2λ
2 +B1λ+B2 =

[
λ2 + λ 0

−4λ+ 1 λ2 − 3λ+ 2

]
,

with entries from C[λ] are equivalent and S(λ) = diag (1, (λ2 − 1)(λ2 − 2λ)) is their Smith normal form. It

may be noted that s1(λ) = 1 and s2(λ) = (λ2 − 1)(λ2 − 2λ)).

Construct the matrix

D(λ) = B∗(λ)⊗AT (λ) =

[
λ2 − 3λ+ 2 0

4λ− 1 λ2 + λ

]
⊗
[
λ2 − 3λ+ 1 −4λ+ 1

1 λ2 + λ+ 1

]

=


(λ2 − 3λ+ 2)

[
λ2 − 3λ+ 1 −4λ+ 1

1 λ2 + λ+ 1

] [
0 0

0 0

]

(4λ− 1)

[
λ2 − 3λ+ 1 −4λ+ 1

1 λ2 + λ+ 1

]
(λ2 + λ)

[
λ2 − 3λ+ 1 −4λ+ 1

1 λ2 + λ+ 1

]

,
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and solve the system of equations MD(s2)x = 0̄. Crossing out zero rows in the matrix MD(sn) and after

elementary transformations over the rows of this matrix, we get the following system of linear equations

 1 1 0 0

3 9 2 6

7 49 6 42



x1
x2
x3
x4

 =


0

0

0

0

 .

From this system of equations, we obtain x1 = −x2 = t, x3 = 0 and x4 = t. The matrix V =

[
t −t
0 t

]
is

nonsingular for nonzero t ∈ C. Thus, the monic matrix polynomials A(λ) and B(λ) are semiscalar equivalent.

Hence, the families of matrices A and B are similar, i.e., Ai = V −1BiV , i = 1, 2.
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