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THE ALGEBRA GENERATED BY NILPOTENT ELEMENTS IN A MATRIX

CENTRALIZER∗
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Abstract. For an arbitrary square matrix S, denote by C(S) the centralizer of S, and by C(S)N the set of all nilpotent

elements in C(S). In this paper, we use the Weyr canonical form to study the subalgebra of C(S) generated by C(S)N . We

determine conditions on S such that C(S)N is a subalgebra of C(S). We also determine conditions on S such that the subal-

gebra generated by C(S)N is C(S).
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1. Introduction. An element N of a ring R is nilpotent if Nk = 0 for some positive integer k. Several

papers have been devoted to determining when an element of a ring or algebra is a sum or product of its

nilpotent elements. In [6], it was shown that every commutator in a simple ring with a nontrivial idempotent

is the sum of nilpotent elements of index 2. It was also shown that this does not always hold true for simple

rings with nontrivial zero-divisors or prime rings with nontrivial idempotents, which answers a question of

Herstein in [8]. Expressing commutators as sums of nilpotent elements were also considered for a unital

algebra generated by its idempotents and for a von Neumann algebra in [1], for simple Artinian rings in

[7], and for unital C*-algebra with nontrivial projections satisfying certain conditions in [11]. In the algebra

B(H) of operators on a complex, separable, infinite-dimensional Hilbert space H, products of two nilpotent

operators were considered in [9]. It was shown that an operator T is a product of two nilpotent operators if

and only if dim ker(T ) = dim ker(T ∗) =∞. The case when these nilpotent operators commute and are both

square-zero was studied in [5]. It was shown that T is a product of two commuting square-zero operators if

and only if T is a square-zero operator and the dim(ker(T ) ∩ ker(T ∗)) =∞.

In this work, we consider matrix rings and decompositions of square matrices into sums and products

of nilpotent matrices. It was shown in [7] that there exist division rings D such that every n × n matrix

A over D is a sum of nilpotent matrices for n ≥ 2. In [15], Wang and Wu showed that a square matrix A

over a complex Hilbert space is a sum of two nilpotent matrices of index 2 if and and only if A is similar to

−A. This was generalized to an arbitrary field by Botha in [2]. In [3], Breaz and Cǎlugǎreanu showed that

if A is an n × n traceless matrix over a commutative ring R, then A is a sum of three nilpotent matrices.

Moreover, when R is replaced by a field F , it was shown that if char(F ) = 0 or char(F ) does not divide n,

then A is a sum of two nilpotent matrices. And, if char(F ) divides n, then A is not a sum of two nilpotent

matrices if and only if A = λI for some λ 6= 0. In addition, it was shown in [13] that every traceless square

matrix over an arbitrary field F is a sum of four nilpotent matrices of index 2. If char(F) = 2, the number of

summands for such a decomposition is three. In [16], Wu showed that any complex singular square matrix
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A is a product of two nilpotent matrices with ranks both equal to rank A, except when A is a 2×2 nilpotent

matrix of rank 1. This was shown to be true for an arbitrary field in [14]. In [12], Novak characterized the

matrices over an algebraically closed field F that are products of two or three nilpotent matrices of index 2.

It was shown that A ∈Mn(F ) is a product of three nilpotent matrices of index 2 if and only if rank A ≤ n
2 .

In [10], Laffey considered the case of integer matrices and proved that for n ≥ 3, any singular n× n matrix

A over Z is a product of nilpotent integer matrices.

For an arbitrary square matrix S, denote by C(S) the centralizer of S, that is, the algebra of all matrices

A such that AS = SA, and by C(S)N the set of all nilpotent elements in C(S). In this paper, we study the

subalgebra of C(S) generated by C(S)N . We determine conditions on S such that C(S)N is a subalgebra of

C(S) (see Corollary 3.6). We also determine conditions on S such that the subalgebra generated by C(S)N
is C(S) (see Corollary 3.5). We make use of the Weyr canonical form to prove our results. There is an

overarching theorem from the structure of finite-dimensional algebras R over a field F from which most of

the results follow very quickly when expressed in terms of the Weyr form. This is called the Wedderburn’s

Principal Theorem established in 1908, which says that when F is perfect, such R decomposes as a semi-

direct product of its radical rad(R) and its semisimple part S. However, the structure of R/rad(R) (∼= S)

was first established in 1961 by Gerstenhaber using the Jordan form in [4]. We present this decomposition

using the Weyr form in Theorem 3.1. In Section 2, we discuss the Weyr canonical form, and we review basic

properties of C(S) when S is in Weyr canonical form. In Section 3, we prove our main results.

2. Preliminaries. Throughout this paper, we let F be an arbitrary field. Denote by Mn(F ) the set of

all n× n matrices over F .

Definition 2.1 ([17, Definition 2.1.1]). A basic Weyr matrix with eigenvalue λ is an n × n matrix W

of the following form: There is a partition n1 + · · · + nr = n of n with n1 ≥ · · · ≥ nr ≥ 1 such that, when

W is viewed as an r × r blocked matrix [Wij ], where the (i, j) block Wij is an ni × nj matrix, the following

three features are present:

1. The main diagonal blocks Wii are the scalar matrices λIni for i = 1, . . . , r.

2. The first superdiagonal blocks Wi,i+1 are full column-rank ni×ni+1 matrices in reduced row-echelon

form (i.e., an identity matrix Ini+1
followed by zero rows) for i = 1, . . . , r − 1.

3. All the other blocks of W are zero (i.e., Wij = 0 when j 6= i, i+ 1).

In this case, we say that W has Weyr structure (n1, . . . , nr). The Weyr structure is homogeneous if n1 =

n2 = · · · = nr. Note that if W is a homogeneous basic Weyr matrix with eigenvalue λ, then r = 1 if and only

if W = λI. For example, the following is a 7 × 7 basic Weyr matrix with eigenvalue λ and Weyr structure

(3, 2, 1, 1):

(2.1) W =



λ 0 0 1 0 0 0

0 λ 0 0 1 0 0

0 0 λ 0 0 0 0

λ 0 1 0

0 λ 0 0

λ 1

λ


.
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Definition 2.2. A square matrix W is a Weyr matrix, or is in Weyr form, if W is a direct sum of

basic Weyr matrices with distinct eigenvalues. That is, if λ1, . . . , λk are the distinct eigenvalues of W , then

W has the form:

W =


W1

W2

. . .

Wk

 ,
where Wi is a basic Weyr matrix with eigenvalue λi for i = 1, . . . , k.

Note that, by definition, a Weyr matrix with a single eigenvalue is a basic Weyr matrix.

Theorem 2.3 ([17, Theorem 2.2.4]). To within permutations of basic Weyr blocks, each square matrix

S over an algebraically closed field is similar to a unique Weyr matrix W . The matrix W is called the Weyr

canonical form of S.

Let S ∈ Mn(F ) and W be the Weyr canonical form of S, then W = XSX−1 for some nonsingular

matrix X. Note that AS = SA if and only if (XAX−1)W = XASX−1 = XSAX−1 = W (XAX−1), which

implies

C(W ) = XC(S)X−1 =
{
XAX−1 | A ∈ C(S)

}
.

Hence, there is a one-to-one correspondence between the elements of C(S) and C(W ). Note that a matrix

A ∈ C(S) is a sum or product of matrices in C(S)N if and only if XAX−1 is a sum or product of matrices in

C(W )N . Indeed, let A ∈ C(S) and suppose A = N1 + · · ·+Nm or A = N1N2 · · ·Nm for some N1, . . . , Nm ∈
C(S)N . Then,

XAX−1 = X(N1 + · · ·+Nm)X−1 = XN1X
−1 + · · ·+XNmX

−1,

or

XAX−1 = X(N1N2 · · ·Nm)X−1 = (XN1X
−1)(XN2X

−1)X · · ·X−1(XNmX
−1),

where XNiX
−1 ∈ C(W )N for all i = 1, . . . ,m. That is, XAX−1 ∈ C(W ) is a sum or product of matrices

in C(W )N . The converse is shown similarly. Thus, there is also a one-to-one correspondence between the

elements of the subalgebra A(S) of C(S) generated by C(S)N and the subalgebra A(W ) of C(W ) generated

by C(W )N . And so, we assume without loss of generality that S is in Weyr form. Let λ1, . . . , λk be the

distinct eigenvalues of S, and say

S = S1 ⊕ · · · ⊕ Sk,

where Si is a basic Weyr matrix with eigenvalue λi for i = 1, . . . , k. Suppose A commutes with S and

partition A = [Aij ]1≤i,j≤k conformal to S. Since AS = SA, we have AijSj = SiAi,j for all i and j. Note

that when i = j, we have AiiSi = SiAii, and so for each i = 1, . . . , k, Aii commutes with Si. Now,

suppose that i 6= j. Since λi is the only eigenvalue of Si, it follows from the Cayley–Hamilton theorem that

(Si − λiI)m = 0 for some m ∈ N. Then, we have

(2.2) Aij(Sj − λiI)m = (Si − λiI)mAij = 0.

Since λi is not an eigenvalue of Sj , then Sj −λiI is nonsingular. It follows from (2.2) that Aij = 0 for i 6= j.

Hence, if A commutes with S, then

(2.3) A = A11 ⊕ · · · ⊕Akk,
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where A is partitioned conformal to S and each Aii ∈ C(Si). We also have that A is a sum or product of

elements in C(S)N if and only if each Aii is a sum or product of elements in C(Si)N . Thus, we further

assume without loss of generality, that S is a basic Weyr matrix. The following gives a description of the

elements of a centralizer of a basic Weyr matrix.

Lemma 2.4 ([17, Proposition 2.3.3]). Let W be an n × n basic Weyr matrix with Weyr structure

(n1, . . . , nr), r ≥ 2. Let K = [Kij ] be an n×n matrix partitioned conformal to W . Then W and K commute

if and only if K is a block upper triangular matrix for which

(2.4) Kij =

[
Ki+1,j+1 ∗

0ni−ni+1,nj+1 ∗

]
for 1 ≤ i ≤ j ≤ r − 1.

Here, we have written Kij as a blocked matrix where the zero block is (ni − ni+1) × nj+1. (The column of

asterisks is absent if nj = nj+1, and the [0 ∗] row is absent if ni = ni+1.)

Hence, K ∈ C(W ) is nilpotent if and only if Kii is nilpotent for all i.

3. Main results. A wonderful thing about the special block upper triangular form of a basic Weyr

matrix W is that it gives us a natural way of decomposing any matrix that centralizes W into a sum of

a nilpotent and a diagonal matrix. The conclusions of Wedderburn’s Principal Theorem, mentioned in the

Introduction, still hold in the case of R = C(W) without any restriction on the field F, due to the explicit

upper triangular form of the centralizer of a nilpotent Weyr matrix W. Consider the 9 × 9 nilpotent Weyr

matrix W with Weyr structure (4, 2, 2, 1) so that

(3.5) W =



0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 1

0 0 0

0


,

and centralizing matrices of W take the form:

X =



a b d e l n q s w

0 c f g m p r t x

0 0 h i 0 0 0 u y

0 0 j k 0 0 0 v z

a b l n q

0 c m p r

a b l

0 c m

a


,
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5 The algebra generated by nilpotent elements in a matrix centralizer

for arbitrary a, b, c, . . . , z ∈ F . Then

(3.6) X =



a b d e

0 c f g

0 0 h i

0 0 j k

a b

0 c

a b

0 c

a



+



l n q s w

m p r t x

0 0 0 u y

0 0 0 v z

l n q

m p r

l

m



.

The above gives us a decomposition of C(W ) as T + S, where S consists of block diagonal matrices

as in (3.6) and T consists of nilpotent block matrices of the form as in (3.6). The following theorem, from

which all of the important results of this paper follow, tells us that we can further refine the partition of the

structure of W as in (3.5) so that T has optimal dimension.

Theorem 3.1. Let W be an n × n nilpotent Weyr matrix over a field F , and let R = C(W ) be the

algebra of n × n matrices centralizing W . Let x = (n1, n2, . . . , nr) be the Weyr structure of W , and let

k1 = n1, k2, . . . , ks = nr be the distinct nis from largest to smallest. For convenience, set ks+1 = 0. Using

the special block upper triangular form of C(W ), refine the partition x so that R becomes block upper triangular

whose diagonal blocks have the following form:

1. The blocks have size nr × nr and (nj − nj+1)× (nj − nj+1) for j = 1, 2, . . . , r − 1 if nj > nj+1, but

with some repetitions.

2. The distinct blocks have size (ki − ki+1)× (ki − ki+1) for i = 1, . . . , s.

3. The entries in the distinct blocks are arbitrary.

Let T be the strictly upper block triangular part of R with respect to the refined partition, and let S be the

block diagonal part. Then

T = rad(R) and R = T ⊕ S as F -spaces,

so R is the semi-direct product of the ideal T and subalgebra S. Consequently,

R/rad(R) ∼= S ∼=
s∏

i=1

Mki−ki+1
(F ).

Our description of R/rad(R) is the dual of that given by Gerstenhaber in terms of the Jordan structure

(m1,m2, . . . ,mt) of W (which is the dual partition of x). The sizes of the matrix rings involved are given in

terms of the number of times each distinct Jordan structure component mj is repeated in the structure.

Proof. The refined partition is described on [18, p. 208]. They call it the standard partition. We

illustrate with an example. Consider the matrix W from (3.5) with structure x = (4, 2, 2, 1). Now blocking

the typical centralizing matrix relative to the refined partition (1, 1, 2, 1, 1, 1, 1, 1) yields the desired form of
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X =



a b d e l n q s w

c f g m p r t x

h i 0 0 0 u y

j k 0 0 0 v z

a b l n q

c m p r

a b l

c m

a


.

(Note that with the standard partition, the diagonal blocks are no longer in decreasing order of size.) The

distinct diagonal blocks are

[a], [c],

[
h i

j k

]
,

whence

R/rad(R) ∼= F × F ×M2(F ).

Returning to the general proof, it is clear that T is a nilpotent ideal of R, R = T ⊕ S, and S ∼=∏s
i=1 Mki−ki+1

(F ). Since S is semisimple, it has no nonzero nilpotent ideals. Therefore, T must be the

maximum nilpotent ideal of R thereby making T = rad(R).

Corollary 3.2. Let A be the subalgebra of R generated by its nilpotent elements. Then

n21 + n22 + · · ·+ n2r − (k1 − k2)2 − (k2 − k3)2 − · · · − (ks−1 − ks)2 − k2s
≤ dimA

≤ n21 + n22 + · · ·+ n2r,

and these bounds are tight.

Proof. Clearly, rad(R) ⊆ A ⊆ R, so dim rad(R) ≤ dimA ≤ dimR. However, dimR = n21 +n22 + · · ·+n2r,

as demonstrated in [17, Proposition 3.2.2]. And the claimed lower bound is the dimension of rad(R) from

Theorem 3.1.

Corollary 3.3. Any property involving sums or products of nilpotent elements of R (such as the number

required for a general member) immediately reduces to the full matrix rings Mki−ki+1(F ).

Proof. In the semi-direct product R = T ⊕ S, each r ∈ R has a unique expression as r = t+ s for t ∈ T
and s ∈ S, and the expression for a product is

r1r2 = (t1 + s1)(t2 + s2) = (t1t2 + t1s2 + s1t2) + s1s2,

because T is an ideal. An immediate consequence is that the product r1r2 of nilpotents is nilpotent exactly

when s1s2 is nilpotent. Likewise for sums.

Corollary 3.4. The structure of R/rad(R) can be an arbitrary finite direct product of full matrix rings

over F . That is, given a product Mm1
(F )×Mm2

(F )× · · · ×Mmt
(F ), there exists a nilpotent matrix W in

some Mn(F ) whose centralizer modulo its radical is isomorphic to the given product.
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Proof. Take the nilpotent Weyr matrix W of structure:

x = (m1 +m2 + · · ·+mt, m2 +m3 + · · ·+mt, . . . ,mt−1 +mt, mt).

and apply Theorem 3.1.

Corollary 3.5. Assume F is not the two element field. Then R is generated by its nilpotent elements

if and only if

ki ≥ ki+1 + 2 for i = 1, . . . , s,

equivalently,

nr ≥ 2, and nj = nj+1 or nj ≥ nj+1 + 2 for j = 1, . . . , r − 1.

Proof. Since F is not the two element field, a matrix ring Mm(F ) is generated by its nilpotents exactly

when m > 1. The corollary now follows from Theorem 3.1 and Corollary 3.3.

Corollary 3.6. The subalgebra of R generated by its nilpotent elements equals the set of all nilpotents

of R exactly when

ki = ki+1 + 1 for i = 1, . . . , s,

equivalently,

nr = 1 and nj ≤ nj+1 + 1 for j = 1, . . . , r − 1.

Proof. Apply Corollary 3.3 and note that in a matrix ring Mm(F ), all sums and products of nilpotents

are nilpotent if and only if m = 1.
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