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STRUCTURED JORDAN CANONICAL FORMS FOR STRUCTURED
MATRICES THAT ARE HERMITIAN, SKEW HERMITIAN OR
UNITARY WITH RESPECT TO INDEFINITE INNER PRODUCTS*
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Abstract. For inner products defined by a symmetric indefinite matrix ¥, 4, canonical forms for
real or complex ¥, s-Hermitian matrices, 3, ¢-skew Hermitian matrices and X, ¢-unitary matrices
are studied under equivalence transformations which keep the class invariant.
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1. Introduction. In several recent papers [1, 8, 10, 9, 6] the topic of canonical
forms for structured matrices and pencils associated with classical Lie groups, Lie
algebras and Jordan algebras has been studied. The motivation for these analyses is
the development of new structure preserving numerical methods for the solution of
the eigenvalue problem for matrices in these classes. The main motivation is to use
equivalence transformations that preserve the algebraic structures, i.e., for example
the symmetry in the spectrum in finite arithmetic. This means that the transfor-
mation matrices are restricted to be from the associated Lie groups only. If such
structure preserving methods can be constructed, then this usually leads to a reduc-
tion in complexity and at the same time it avoids that in finite arithmetic physically
meaningless results are obtained. Often one also has a better perturbation and error
analysis, see for example [2, 3, 4]. The latter is obtained in particular if one uses
unitary transformations which are at the same time in the associated Lie group, since
then the methods, usually, are also numerically backwards stable. However, for nu-
merical computations we need to know the proper condensed forms within the given
structures, usually called structured Schur like forms, that the numerical methods can
possibly generate, and from which the eigenvalues and eigenstructures can be easily
read off. The structured Jordan like canonical forms that we describe here are the
simplest versions of such condensed forms, although they need nonunitary transforma-
tions. Hence these Jordan like forms will be the fundamental theory for studying the
proper structured Schur like forms and therefore for developing numerical methods.

The invariants under similarity transformations have been classified already for
quite a while [5, 11]. There, for physical applications the canonical forms are restricted
to be classical Jordan forms. So the transformation matrices are not in the associated
Lie groups. Such canonical forms are not what we are interested in. Hence it is
necessary to convert these forms to the desired forms.

A complete analysis for the case of Hamiltonian, skew Hamiltonian and symplectic
matrices, i.e., matrices that are Hermitian, skew Hermitian and unitary with respect
to an indefinite scalar product given by a skew symmetric matrix, has recently been
given in [8]. In this paper we now derive analogous results for the matrices that are
Hermitian, skew Hermitian and unitary with respect to an inner product defined via
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I, 0
0 -1
matrix. We consider the following classes of matrices.

DEFINITION 1.1. Let R and C denote the real and complex field, respectively.
A matriz C € CPTO*®+D) s colled 3, ,-Hermitian if CS,, = (CS,.,)". C is called
X, qg-symmetric if it is X, ;-Hermitian and real.

A matriz C € CPHOXPHD g called X2, ,-skew Hermitian if CS, 4, = —(CS,.) 7. C is
called 3, ,-skew symmetric if it is ¥, ,-skew Hermitian and real.

A matriz G € CPHO*X+D G5 cqlled 3, ,-unitary if G7L,,G = ,,. It is called
X, q-orthogonal if it is ¥, ;-unitary and real. Note that the ¥, ,-Hermitian matrices
form a Jordan algebra, the X, ,-skew Hermitian matrices from a Lie algebra, and the
Y, ¢-unitary matrices form a Lie group. The algebras and group are invariant under
similarity transformations with ¥, ,-unitary matrices.

PRroPoOSITION 1.2.

1. If C is ¥, 4-Hermitian and G is £, ,-unitary then G~'CG is ¥, ,-Hermitian.

2. If C is ¥, 4-skew Hermitian and G is ¥, ,-unitary then G7'CG is ¥, ,-skew Her-
matian.

3. If Gi and Gy are ¥, g-unitary then G1Gs is also X, ,-unitary.

Similar to the approach for Hamiltonian and symplectic matrices in [8] we derive
structured Jordan canonical forms for these classes of matrices. But different from
the case of Hamiltonian and symplectic matrices and pencils, for matrices that are
Y, q-Hermitian, skew Hermitian or unitary, it is difficult to derive the appropriate
structured Schur like forms with similarity transformations that are both unitary and
¥, q-unitary, since this class has only a very small dimension. Currently the best that
one can do in this respect are the fishbone like forms of [1]. As mentioned above the
approach that we present here will be taken as the first step for the structured Schur-
like forms. To make the idea more clear let us consider the case of ¥, ,-Hermitian
matrices. The discussion for the other cases is similar. There are many different
approaches that one can take to derive canonical and condensed forms for such ma-
trices. A very simple approach to obtain a canonical form is the idea to express the
Yp,g-Hermitian matrix C as an Hermitian pencil A¥, , — ¥, ,C. Using congruence
transformations U# (A\X, , — %, ,C)U, we obtain a canonical form via classical results,
see e.g., [7, 12, 13, 5]. In view of our goals, however, this is not quite what we want,
since in general these forms do not give that U#Y, ;U = ¥, ,, hence they do not lead
directly to the desired structured form. Clearly, however, the characteristic quantities
that we obtain from this canonical form will have to appear in our canonical form,
too.

The outline of the paper is as follows: We will present some basic preliminary
results and some notations in Section 2 and then present structured canonical forms
for ¥, ,-Hermitian matrices and X, ,-skew Hermitian matrices under X, ,-unitary
similarity transformations in Section 3 and Section 4, respectively. By combining the
Cayley transformation and the structured canonical forms for ¥, ,-skew Hermitian
matrices we will then derive the structured canonical forms for ¥, ,-unitary matrices
in Section 5. All canonical forms are represented both for real and complex matrices.
For comparisons and derivations we also list the already known classical canonical
forms.

The theorems for the main results are listed in Table 1.1. Here C and R represent
the complex and real case respectively, and J and U represent the classical structured
Jordan canonical forms and the structured Jordan forms under ¥, ,-unitary similarity

the indefinite symmetric matrix X, , := ] , where I}, is the k x k identity
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Yp,q-Hermitian | ¥, ;-skew Hermitian | X, ,-unitary
C&J Theorem 3.1 Theorem 4.1 Theorem 5.9
R& J Theorem 3.2 Theorem 4.2 Theorem 5.10
C& U Theorem 3.3 Theorem 4.3 Theorem 5.11
R& U | Theorem 3.6 Theorem 4.4 Theorem 5.12
TABLE 1.1

Main results

transformations, respectively.

2. Preliminaries. In this section we introduce the notation and give some pre-
liminary results that are needed for the canonical forms. Our construction of struc-
tured Jordan froms will be based on the combination of different blocks of the classical,
unstructured Jordan form. Let us recall some facts from the classical theory.

Let A(A) denote the spectrum of a matrix A. We begin with a well-known fact
on the relationship between left and right invariant subspaces, which follows clearly
from the Jordan canonical form.

PROPOSITION 2.1. Let the columns of U span the left invariant subspace of a
square matriz A corresponding to Ay € A(A) and let the columns of V span the right
invariant subspace corresponding to Ay € A(A). If \y # )Xo then UHV = 0 and if
A1 = Ag then det(UHV) # 0.

Let

rXr

For any given nilpotent matrix
N = diag(Ny, ..., Ny,)
we set
Py :=diag(P,,,...,P,)), Py :=diag(P,,,...,P.).

Then these matrices have the following easily verified properties.
PRroPOSITION 2.2.

i) P =Pt = (-1)""'Py;

ii) Py'NHPy = —N;

iii) Py = P = Py';

iv) Py'NHPy = N,
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For matrices A and B, A ® B = [a;;B] denotes the Kronecker product and for a
t x t matrix Z with ¢t =1, or 2 we set

N.(Z2)=1,® Z+N,®1;, N(Z)=1®Z+NQI.

Also set

1 0 0 1
21’1:[0 —1}’ Jl:[—l o}'

From [5], or from a direct derivation as done in [8] we have the following properties.
PROPOSITION 2.3. Let C be a complex square matrixz and let X be an eigenvalue

) . Red ImA
of C with associated Jordan structure N(X). If A := { CTm)\ Re\

], then we have
the following results.

L.a If C is complex ¥, ,-Hermitian, then there ezists a nonsingular matriz U such
that

i) if Im XA # 0, then

H _[ 0o Py _ NN 0
UE””U‘{P&’ 0 } CU‘U[ 0 N |

ii) if \ is real, then
UHEW]U:dia,g(mpr1 ...,WSPTS), CU=UN(\),

where all m; = £1.

Lb If C is real ¥, 4-symmetric, then there exists a real nonsingular matriz U such
that

i) if Im A # 0, then

U'S,,,U =Py ® %1y, CU =UN(A),

ii) if \ is real, then

Urs, U = diag(m Py, ..., 7, P;.), CU=UN()),
where all m; = £1.
Il.a If C is complex X, ;-skew Hermitian, then there exists a nonsingular matriz U
such that
i) if ReA#0, then

0 P
vis, U= { Pl o
ii) if ReA =0, then

UHEW]U:dia,g(mPr1 vy msPr), CU=UN(\),

where m, = %i for even r, and mp, = £1 if odd ry.
IL.b If C is real ¥, 4-skew symmetric, then there exists a real nonsingular matriz U
such that
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i) if ReAIm \ # 0, then
T _ 0 Py ®%1,1 _ N(A) 0
U Y,U= { P£®21,1 0 , CU=U 0 N(=A) |’

ii) if ReA# 0, Im A = 0 then

0 P
U's, U= { PT o

iii) if X\ # 0, ReA =0, then
UTEMU = diag(P,, ® =4, ..., P, ® Z5), CU =UN((Im\).J;),

where Zy = wila for odd 1, and 2y = (Imwy)Jy for even ri, and m is as in the
complex case.
w) if A= 0, then

. 0 Py 0 Py
UszﬂU:dlag <771P2u1+17---a7rap2ua+17 |: PT %1 :|,..., |: PT 20b :|>,

2v1 2vy

CU=UN := Udiag(N2ul+1, . ,NQua+1,NQUl,NQU1, ey Nva, Nva).

Note that the parameters 7, are invariant in the sense that for each group of Jordan
blocks with the same size corresponding to A the numbers of 1, —1, or i, —i, of the
corresponding 7, are uniquely determined. For this reason we denote the complete set
of parameters by Ind(A) = {my, ..., 7} and call this the structure inertia indezx. Note
that for each Jordan block there is a unique corresponding structure inertia index.

Some obvious facts on the symmetry of the eigenvalues follow directly from Propo-

sition 2.3.

PROPOSITION 2.4. Let A be an eigenvalue of a square matriz C. Then we have
the following properties.

L. If C is ¥, 4-Hermitian (both complex and real) and Tm X # 0 then X is also an
eigenvalue of C with the same Jordan structure as .

Il.a If C is complex ¥, ;,-skew Hermitian and X is not purely imaginary, then —\ is
also an eigenvalue of C with the same Jordan structure as A.

IL.b If C is real ¥, ,-skew symmetric and X is not purely imaginary, then X\, =\, —\
are eigenvalues of C with the same Jordan structures as A. If A =0 is an eigenvalue,
then the number of each even sized corresponding Jordan blocks must be even.

We will frequently use transformations with

V2 [ 1, —I,
o b VE[E k]
for which we have
H 0 Ir _ Ir 0
o3 [0 B]n-]k o]

For A € C"*"™ a simple calculation yields

(A 0 A+AE _ AFAY
(23) Tn |: 0 :tAH :| Tn = _AEz AH Aﬂ:A2H
2 2
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A variation of Y, is

I 0 -I
R 2 T r
(2.4) Y, = v2 0 v2 0
L. 0 I,
We will also need, in the following, the symmetric and skew symmetric part of
Jordan blocks

”

1 1
N+:§(NT+N7T)7 N;:§(NT_N7T)7
and for a ¢t X t matrix Z with ¢t = 1, 2, we set

Nf(Z)=I,®Z+NI®Il, N,

” ”

(Z)=1,®Z+ N, ®I.
Similarly we denote
Nt = %(N+NT), N~ = %(N —NT),
and for Z of t x t with t =1, 2,
NY(Z)=1I®Z+N"®IL;, N (Z)=I®Z+N~®I.

Finally the symbol ej represents the k-th unit vector.
With these notations and results in hand in the next two sections we will give the
canonical forms for ¥, ,-Hermitian and X, ;-skew Hermitian matrices.

3. ¥, ,-Hermitian matrices. In this section we derive structured Jordan canon-
ical forms for ¥, ;,-Hermitian matrices. We will always consider two forms, a struc-
tured canonical form where the transformation matrices are not necessarily X, .-
unitary and a structured canonical form under ¥, ;-unitary matrices. Also we will
always consider two cases, the complex ¥, ,-Hermitian and the real ¥, ,-symmetric
matrices.

THEOREM 3.1. Let C be a complex ¥, ,-Hermitian matriz with pairwise different
real eigenvalues o, . .., a, and pairwise different eigenvalues A1, ..., A\, with positive
imaginary parts. Then there exists a nonsingular matriz U such that

U-'cu = diag(R}, R, R,),
where the blocks are

RY = diag(Hy(\1), ..., Hu(\y)), Ro =diag(Hi(M1), ..., Hu(M)),
R, = diag(M;(a1), ..., My(aw)),
with substructures
Hy(M\e) = MI + Hi,  Hp(A\g) = Md + Hy,  Hy = diag(Np,, -, Ny, ),
fork=1,....u, and
My (o) = apd + My, M, = diag(Ny, ,,. ..Nq,“k),

fork=1,...,v.
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The matriz U satisfies
0 W. 0 -|
(3.1) ubts, u=1 weE o o |,
L 0 0o W, J

with W, = diag(Pp,, ..., Pu,) and W, = diag(W7,..., W}

v

), where for k=1,...,pu

A

we have Py, = diag(Pp, ;.- -, Ppk‘%) and for k=1,...,v and Ind(ay,) = {71, ...,

Tt } we have W[ = diag(ﬂhlff’qk’l,. e Tkt qu,tk ).
Proof. For each nonreal eigenvalue A with the corresponding Jordan structure
Hy. (M), by La, i) of Proposition 2.3, we can choose a matrix U}, such that

0 P . —
(32)  UFS, Uk = [ o P ] , U, = Uy diag(Hy (), Ho(Wp)).
Hy,

Partition Uy, = [Uy,1, Uy 2], where Uy 1, Uy 2 have the same size and set
Uc = [U171, N Ulhl; U172, ceey Uu72] = [L{f,uzf]

Note that by the symmetry of C, the columns of U{, ¥, s and U5, X, JU{ form
bases of the right and left invariant subspaces corresponding to the two disjoint sets
of eigenvalues {A1,...,\,} and {)1,...,)\,}, respectively. By Proposition 2.1 and
(3.2) we have

0 W,

uflzpyquc = |: WcH 0

|, cu=uding(rs, o),
with W., R and R, as asserted.

For each real eigenvalue ay with the corresponding Jordan structure My (ay), by
La, ii) of Proposition 2.3 we can choose a matrix V}, such that

H I T >
Vk ZPJIVk - dla‘g(ﬂ-k,lqu,u sy Tkt PQk,tk )v

where Ind(ag) = {mg,1,- -, Tk, and CVy = Vi My (ag). Set Uy = [Vi,...,V,], then
by Proposition 2.1 we have

utrs, U, = w,, Cu, =U.R,,

where W, and R, are of the asserted forms and with U = [U.,U,] the result follows
from Proposition 2.1. 0O

Similarly for real ¥, ,-symmetric matrices by employing L.b of Proposition 2.3 we
have the following forms.

THEOREM 3.2. Let C be a real ¥, ,-symmetric matriz with pairwise different
real eigenvalues o, . . ., a, and pairwise different eigenvalues A1, ..., A\, with positive
imaginary parts.

Then there ezists a real full rank matriz U such that

U'cu = diag(R., R,),
where

R, = diag(H1(A1),...,Hu(Ay))
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and for k =1,...,u the subblocks are Hy(Ay,) = diag(Np, , (Ag), ..., Np, ,, (Ag)) with
ReAr Im Mg

Ak - —ImAk Re)\k

} . The other diagonal block is

R, = diag(M1 (041), cey M,,(Oé,,)),

where for k =1,...,v the subblocks are My(ar) = oI + My, with My = diag(Ng, ,,

-» Ngy,, ). The matriz U has the form
W. 0

(3.3) urs, U = [ 0w ] :

where W, = diag(PH1 ®@X11,.-0, PHM ®%¥1,1), W, =diag(W7,...,W)), and where for

k=1,...,uwe have Py, = diag(Pp, ,, ..., Py, ,, ) and forInd(ax) = {me,1,..., Tk, }
and k=1,...,v we have W = diag(ﬂhlﬁqk‘l, e Tty qu,tk)'

The canonical forms in Theorems 3.1 and 3.2 are just the results of [5] in matrix
form. They are just the classical Jordan canonical forms, but the transformation
matrices are constructed in such a way that they satisfy the relationship (3.1) and
(3.3), respectively, associated with X, ,. This is not quite what we want, since we
wish to have that the transformation matrix is ¥, ;-unitary. The following results
give the structured canonical forms under ¥, ,-unitary transformations.

THEOREM 3.3. Let C be a X, ,-Hermitian matriz with pairwise different real
eigenvalues oy, ...,y and pairwise different eigenvalues A1, ..., \,, with positive
imaginary parts. Then there exists a ¥, ,-unitary matriz U such that

R, T.
i Rf T,

(3.4) UcU=| _pn A,
—TH R

For the blocks we have the following substructures.
i) The blocks with index ¢, associated with the nonreal eigenvalues, are

R. = diag(Rj,..., ), T.=diag(Ty,...,T}),

where for k=1,..., 1 we have
R}, = diag(N,;, , (ReAp), .- .,prmk (Re Ar)),
Ty = —diag(N,, , (iImAg), ..., Ny, .. (1Im \g)).

ii) The blocks with index r, associated with the real eigenvalues are
Rf = diag(Cy,...,C,), R, =diag(Dy,...,D,), T, =diag(F,...,F,).
For k =1,...,v these have the substructures
Cy, = diag(C{, G, Cy), Dy = diag(Dg, Dif, D), Fy = diag(Fy, F,", Fy),
where

1 1
¢ _ diae(N*t H + H
Cj = dlag(qu‘1 (ag) + 3Tk 1Ca 1y .,qu‘tk (ag) + 3Tkt Canr, ai ),
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. H H
Dlec = dlag(N;; 1( ) 5’”16,16%,16%,1) . th iy (ak) - §7rk,tke%,tk er,tk )>
. _ 1 H - H
ka = dlag(—qu’l + iﬂk’lequleqk’l yeney —qu’i . + §7Tk,tk er,tk er,tk ))
I + V2
CF = dia, th;,l(ak) \/Tieulm Nuk Jw (ak) "3 Cup,uwy,
k g V2 _H [} \/_ H )
L 2 Cup,1 Qk 2 Cup g
DkJr = dia,g(]\qu'k’1 (ak), ... ,N;k’w (o)),
(T -Na NG,
F,j':dw,g( ﬁe‘ﬁllw..,[ﬁh’; k ]>,
L 2 Uk 2 TUk,wy,
Cp = diag(N*k’l(ozk), NJL . (ar)),
i V2 H _ Y2 H
D;, = diag \gk ERCCI I 2ak 2 sy ;
L ~ 72 Cura N;: (o) 73 o,z N . (ag)
V2 _ V2 _
Fk = dlag([Teka ) _va,l]) RN [Tevk,zk ) _va‘zk])'
Here each nonreal A\, ()\_k) has sy, Jordan blocks of sizes pya,...,Dk,s, and each
real eigenvalue oy has
a) ty, even sized Jordan blocks of sizes 2qy.1, . .. ,2qk,t, and the corresponding structure
inertia indices Ty 1,. .., Tt ;

b) wy odd sized Jordan blocks of sizes 2up1 + 1,...,2uk 4, + 1, corresponding to the
structure inertia index 1;
¢) zx odd sized Jordan blocks of sizes 2up1 + 1,...,2v; , + 1, corresponding to the
structure inertia index —

Proof. Let m := Ez 1 Z] 1 pij. For Aq,...,A,, by Theorem 3.1 there exists a
matrix U, such that

N N 0o W. N N
utls, U. = { wH o ] CU. = U,

R 0
r |
Note WHW,. = W2 = I,,,. Setting U.:=U. diag(I,,, W.) then using the form of R_

and Proposition 2.2 we have

. . 0 I, .
UCHEI%QUC = |: I, 0 :| ) Cuc =U.

Rjo]

Now let U, := U. Y, where Y, is defined in (2.1). By (2.2) and (2.3) and the special
form of R we then get

(3.5) Uis, U. = o m, CU=U { R, T } ,

_TH R,
where R. and T, are in the asserted forms.

For real eigenvalues o, .. ., a, the situation is relatively complicated. In this case
we have to transform the Jordan blocks one by one. Let a be a real eigenvalue of C
and N,.(«) be a Jordan block. Following from Proposition 2.3 there exists a matrix
U such that

A

Uy, ,U=xP., CU=UN,(),
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where m = +1. When r is even let U := Udiag(lg P )Tz then one can verify that

(M

R

+ 1
N (@) + gmes

—N, —ireze
5 2 2

€

]

(3.6) Uy, ,U =% CU=U

ror
2027

—N. + %ﬂ'eze{{ ]
Pl 2

+ 1
N () — gmeze

w3 mwl
sy

Similarly when r is odd setting U := U diag([ai , WP%)Y%, where Y% is defined
in (2.4), then if 7 =1,

e
R I S
Nii(a) Per | - s
(3.7) cU=U @effgl a 2 A
~No, —Lera ‘ NI, (a)
2 2 2
and if m = —1
I.i 0
H _
UiS, U= 3 e ]
Nrgl(a) ‘ 7267‘51 _N:gl
(3.8) CU=U | —Pell, a —¥2 i
~No, | -%e.n N (@)
2 2 2

Let oy, be a real eigenvalue with associated even sized Jordan blocks of sizes 2¢ 1,
-+ 2qg,1,,, and associated odd sized Jordan blocks of sizes 2ug1 + 1,...,2ug 4, + 1
and 2vp1 + 1, ..., 2v; ., + 1 corresponding to the structure inertia indices 1 and —1
respectively. By Proposition 2.3 there exists a matrix Uy, such that

U,f{Zp,qlA]k = diag(ﬂmféqk,l, e Tkt 132%,% ; p2uk,1+17 R p2uk.wk +15
—132%1+1, cee —132vk,zk+1),
CUy, = Uy, diag(Nag, , (@), - -, Nag, , (a); Naw, , +1(ck),
ooy Nowyy +1(@k); Nawg y41(0k), - - o5 Nowy, 41 (a))-
Set
Uy = Uxdiag(Zf 1, 25 15 Zins -0 2 Dt o> Ziy )

where

Z;;,j = diag(‘[qk,j’Trk”quk,]‘)ﬁquvj’ Zl:j = diag(I“’“’erl’P"’“'j)T"’“'j’

Zy ;= diag(Iy, ;+1, —Puk,j)'fuk,j-
Partition

T — . + + + +
Uk - [Vke,lawls,la ety Vke,tk ) Wlf,tkv Vk717Wk’15 .. V Wﬂ

’ Vk,wy? k,wy

Vit Wi Vi Wk,zk]7
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where the columns of Vi Wi are g ;, the columns of Vk], Wk], Vi o W
Uk,j + 1, ug,j, Uk,j, Vr+1 + 1, respectively. Set
Vi =WVt Vi Vi Vi Vi Vs b
Wi = Wi Wi Wi s Wi Wi s Wil
and Uy = [V, Wi]. Then by employing (3.6) — (3.8) we have
1 0 C F
H — nk,l — k k
Uk EP,QUIC - |: 0 _Ink‘g :| ) CUk Uk |: _kaI Dk :| )

where Cy, Fy,, Dy, are as asserted, ng1 = wy + Ef"zl Qo + Dok Uy + D0, vy and
_ tr Wi 2k _ v _ v
Mk = 2k + D05y Gkt D22y Ukt + Doy Uk Seb g = 3oy ey, Ny = D i T2

Then with
Vr:[V1,...,V,,], WT:[Wla---,Wy],
and U, = [V,., W] we have

I,, 0

(3.9) uﬁzp,qur:{ 0 I,

}, CU, = U,

RS T,
TH R

Finally set U = [V.,V,.; W.,W,], then by Proposition 2.1 and by above construc-
tion we have

utrs, U =

I, 0
0 _Im+n2 -

Since U is nonsingular it follows that ¥ ¥, ,U is congruent to ¥, , and hence m+n; =
p, m+ny =qand YUY, U =3, ,. Equation (3.4) then follows from (3.5) and (3.9).
a

REMARK 3.4. The difference between the structured canonical forms of The-
orems 3.1 and 3.3 is that in order to get a X, j,-unitary transformation matrix we
need to refine further and combine different blocks together. This leads to a loss in
structure in the Jordan canonical form, which becomes more complicated, but shows
that the classical Jordan canonical form somehow obscures the extra structure in the
chains of root vectors.

REMARK 3.5. By the structured Jordan form we immediately obtain the following
relationships

p= ZZPL,J + Z (wr + Z(IL,J + Zuk,] + ka,]

k=1 j=1

Q—ZZPW +Z Zk+zqk,] +Zukg +ZUL,J

kl]l

(3.10)  |p—g| = IZ(wk — )]
k=1

These relationship show that the parameters p,q will affect the eigenstructure of C.
For example, we get in the case p = 0 (or ¢ = 0) that C, which is Hermitian now,
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is unitarily similar to a real diagonal matrix. Another direct consequence is that for
a real eigenvalue the largest size of the associated Jordan block is not larger than
2min{p, q} + 1, and for a nonreal eigenvalue the largest size of the associated Jordan
block is not larger than min{p, ¢}. Furthermore, it is clear that if |p — q| # 0, then C
must have real eigenvalues with at least |p — ¢| odd sized Jordan blocks.

The real structured Jordan canonical form for a real ¥, ,-symmetric matrix, under
real ¥, ,-orthogonal transformations can be obtained analogously.

THEOREM 3.6. Let C be a real ¥, ,-symmetric matriz with pairwise different
real eigenvalues vy, ..., o, and pairwise different eigenvalues A1, ..., A, with positive
imaginary parts. Then there exists a real X, ,-orthogonal matriz U, such that

RF T,
i RF T,

(3.11) u-tcu = _qr R
-Tr R,

i) The blocks with index c, associated with nonreal eigenvalues, are
R} = diag(A1,...,A,), R; =diag(Bi,...,B,), T.= diag(Ty,... T3,
where for k =1,..., 4 we have
Au = diag(4], A7), B = dag(BL BY), T} = diag(T, 7)),
Aj, = diag(N,, * (ReAp)L2) + Ep,.. ,prmk ((Re Ap)Iz) + Eg s,.),
Bj = diag(N,, | (Re \p)l2) — B 1, - -,Npt‘% (ReAp)l2) — Eg.s)s
Ty = —diag(N,,  (ImX)J1) — Eg1,...,N,, " (ImAp)J1) — Eg. s ),

Pk, Pk,
o 1 Nt ((ReXi)Is) gezlk,lq
Ak - dlag \/_ T )
7621,cl 1 Re Ay
N (ReX)b) Leay,, 1
’ geg—ék,mkfl Re Ag ’
0 . Nltl((Re Ak)I2) §e2lk,1
Bi; = diag V2,T )
3 tek L Re Ay
(ReME) Lew,
o \/T_ 21y, o Re )\k ’
o H _lel((:[m Ak)Jl) _ﬁ621k 1
T, = diag Y :
Te2lk,1—1 —Im >\k
_le zk((IHl>\I<:)Jl) —gemk‘mk
ey Tzeglk B —Im )\k )

with By ; = 8 2?1 }

ii) The blocks with index r, associated with real eigenvalues, are

Rf = diag(Cy,...,C,), R, =diag(Dy,...,D,), T,.=diag(F,...,F,).
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These have for k =1,... v the substructures

Cy, = diag(Cf, O, Cy), Dy = diag(Df, D, Dy, Fi = diag(Ff, Fif Fy),

where
e . + ]_ T + 1 T
Ck = dla‘g(qu‘l (ak) + §7Tk’1eqk‘1€qk,1 gty Nq’“'tk (ak) + §7rk’tk elIk,tk eqk,tk ),
e . 1
Dk = dlag(th,l (ak) - §7Tk,1€qk,1 eg;,l yeeey th‘tk (Clk) - §7Tk,tk er,tk eg;’tk ),
Fy = diag(—Nq;,l + 57”6,16%:,163;,1)-.-,_Nq;’tk + §7Tk,tk€qk,tk e;tk),
C]j = dlag ( N\Q;_EJ(OHC) \/TgeukJ ] [ N\;_fvwk (ak) geuk.wk ])
2T i 2T )
L Teuk,l Qk 2 Uk, A
D = diag(NJk,l(ak), Cey Nut-,wk (ar)),
[ N, -N;
F,j':dw,g( ﬁe;’ll""’lﬁe;’k ]>,
L 2 U1 2 CUk,wy
Ck_ = diag(N*;’l (Ozk), RN N/(j;’zk (ak));
[ \/5 T _ﬁ T
D,; = dlag \/gk _Tevk,l et \/;k 2 Uk, z, ,
L —Tevk,l N;’;,l(ak) _Tevk.zk :;’Zk (Oék)
_ V2 _ V2
Fk = dlag([Tevk,l ) _va,l]’ . [Tevkvzk , — Uk,zk])'

Each A, (\) has s even sized Jordan blocks of sizes 20k,15 - -
sized Jordan blocks of sizes 2l 1 +1,...,2l; 5, + 1.

For each real eigenvalue ay, there are
a) ty, even sized Jordan blocks of sizes 2qp 1, - .
inertia indices Tg1,. .., Thty;
b) wy odd sized Jordan blocks of sizes 2up1 + 1,...,2uk ., + 1 corresponding to the
structure inertia index 1;
¢) zp odd sized Jordan blocks of sizes 2vp1 + 1,...,2v; 5, + 1 corresponding to the
structure inertia index —1.

Proof. For real eigenvalues ay, ..., a,, using Lb, ii) of Proposition 2.3, as in the
proof of Theorem 3.3, there exists a real matrix U,. := [V,., W,.] such that

which is the real version of (3.9).
For a nonreal eigenvalue A of C with a Jordan block N,.()), by Proposition 2.3
there is a real matrix U such that

s 2Dk, sy, and T odd

-»2q1.+, corresponding to the structure

Rt

i

_TT

0
—1I,

T,
R

r

I,

urs, U. = { 0

j|7 Curzur|:

U's, ,U=P.©%,,, CU=UN(A),
ReA Im\

where A = { ~Im)\ Re)

} . As for (3.6)—(3.8), if r is even set

U :=U diag(I,,P; ® £11)Y,,
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and if r is odd then set

L, 0 -2, 0

- - 0 1 0 0

U := Udlag(lr_H,P%l (9 2171) 0 0 0 ]
L., 0 2L, 0

By Proposition 2.1 we have that
(P@%11) " = P, = (P@%11)",  (Pe@11)T (Ns(A)(Ps@T1,1) = (Ns(A))7,
and some simple calculations yield

I, 0

UTZMU:[ 0 -1

where, if r = 2s, then

A=N}((ReNL)+E, B=N}((Re\NL)—E., T=-N;(Im\)J;)+E
. 1 . . 0 1
with E,. = 3 ; and if r = 2s 4+ 1, then with J; = 1 0|
Ao | N (®eNE) Pers | o | NF(ReNL) Pern
7263:_2 Re A ’ 726;_1 Re A ’
- _V2
T = s (211;1 A) ) 2 €r—1 .
€r_s —ImA\

Now as for the case of real eigenvalues in the proof for Theorem 3.3, for nonreal
eigenvalues A1,..., A\, there exists a real matrix U, := [V, W] such that

RS T,
ucsz,quc = Em,ma Cuc = uc |: _fch R- :| )

c

where RY, T., R are in the asserted forms and m = 37 (3°7% 2pyj + -7 (21ks +
1)).

Set U = [V, V,; W,,W,] then analogously we get that i/ is real ¥, ;-orthogonal
and U ~'CY has the form (3.11). O

In this section we have obtained real and complex structured Jordan canonical
forms for ¥, ,-Hermitian matrices. In the next section we present analogous results
for ¥, ;-skew Hermitian matrices.

4. ¥, ,-skew Hermitian matrices. In this section we discuss structured Jor-
dan canonical forms for ¥, ,-skew Hermitian matrices. The construction is similar to
that for ¥, ,-Hermitian matrices discussed in Section 3 and therefore we omit much
of the detail. The essential difference is that the role of the real eigenvalues is now
taken by the purely imaginary eigenvalues.

Analogous to the X, ,-Hermitian matrices by employing the results in Propo-
sition 2.3 we have the following Jordan canonical forms both for complex and real
Y, q-skew Hermitian matrices.
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THEOREM 4.1. Let C be a X, 4-skew Hermitian matriz with pairwise different
purely imaginary eigenvalues o1, ...,0, and pairwise different eigenvalues A1, ..., A,
with positive real parts. Then there exists a nonsingular matriz U such that

U~cU = diag(R, R7, R,),

i) The diagonal blocks with index c, associated with eigenvalues not on the imaginary
axis, are

R} = diag(Hy (M), ., Hu(\), R = diag(Hy (<), ..., Hu(=X0),
where for k=1,..., 1 we have
Hi (M) = M + Hy, Hp(—=Xp) = =\l + Hy,, Hy, = diag(Np, 15 - -, Npy o, )-
i) The block Ry, associated with purely imaginary eigenvalues, has the form
R, = diag(M:(01),...,M,(0,)),

where My, (o) = ox I+ My, and for k =1,...,v we have My, = diag(Ny, ,, - .., N, ).
The matriz U has the form

0o w. 0
UH Ep,qu = WCI{ 0 0 )
0o 0 W,

where
W, = diag(Pw,, ..., Pr,), W, = diag(W/,...,W2),

and for k = 1,...,u we have Py, = diag(Pp,,,..., Py, ), and with Ind(oy) =
{7kt T} for k=1,...,v we have W} = diag(mg,1 Py, - Thoty Py, )-

THEOREM 4.2. Let C be a real X, 4-skew symmetric matriz with pairwise dif-
ferent nonzero purely imaginary eigenvalues oy, ...,o0, with positive imaginary parts,
pairwise different eigenvalues Ai,...,\, with positive real and imaginary parts and
pairwise different real positive eigenvalues cu,...,a,. (Note that when the spectrum
contains oy, it also contains —oy,, if it contains a; then also —a; and if it contains
\j then also —\j, \;, —A;. Furthermore O may be an eigenvalue.) Then there exists a
real nonsingular matrix U such that

U~'CU = diag(RS, R, R,).

i) The blocks with index c, associated with eigenvalues not on the imaginary azis, are
R} = diag(R},RY), with Rf = diag(Ki(on),...,K,(oy)) where for k = 1,...,n
we have Ki(ag) = apl + K, and Ky, = diag(Ny, ,,..., Ny, ). Analogously Rf =
diag(H1 (A1), ..., Hu(Ay)), where for k=1,..., u we have Ay, = —RI(:rf\;c\k gréilz
and Hy(Ay) = diag(Np, , (Ax), - .. s N, (Ar)).

The block R, = diag(R;,Rc_), has the same substructure as R just replacing
a; with —a; and A; by —A;.
i) The block Ry, associated with purely imaginary eigenvalues, has the structure

Rg = diag(Ml((Imal)Jl), ‘e .,M,,((Ima,,)Jl),Mg),
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where for k=1,...,v we have
My ((Imoy)Jy) = diag(qu,1 ((Imaoy)J1), .-, qu‘tk ((Im og)J1)),
and where
My = diag(Nag, +1,- - -, Nogat1, Nony, Nopy s - - -y Nop,, Nop, )

is the structure associated with the eigenvalue 0.
The matriz U has the form

0 W. 0 -|
Z/{TEpqu/{: [ V[gcT 8 I/g J )
g

where W, = diag(Wc, WC) with

A ~

W. = diag(PKl, Ceey PKn)7 W, = diag(PHl ® 21’1, ey PHM ® 2171),
and where
PKk = diag(Pfk_l, cey Pf’cvlk ), PHk = diag(Ppk‘l ye s 7Ppk,sk )

The block W, has the form W, = diag(W{,..., W2, Wy), where for k=1,...,v and
Ind(ok) = {71, -+, Tt } we have W = diag(Py, , ® Eg1,. .-, Py, © gy, with
Bk =Tkl if qrj is odd and Zy j = (Immg ;) J1 if qi; is even.

Finally for Ind(0) = {#?,..., 7% i, —i,...,i,—i} we have

a

0 P 0 P.
. 0 0 2h1 2hy
WO—dlag(W1P291+1,...,WaP29a+1, [ PZI;H 0 :| yrr [ PZII;;, 0 :|)

After determining the Jordan structure under non ¥, ,-unitary similarity trans-
formations we now derive the corresponding structured canonical form under X, ;-
unitary transformations.

THEOREM 4.3. Let C be a ¥, ,-skew Hermitian matriz with pairwise distinct
eigenvalues Ay, ..., N, with positive real parts and pairwise distinct oq,...,0, with
real part zero. Then there exists a X, q-unitary matriz U, such that

R, T.
R T
1 _ g g
(4.1) U CU = TH R,
H _
Tg Rg

For the different blocks we have the following substructures.
i) The blocks with index ¢, associated with eigenvalues not on the imaginary azis, are
R. = diag(Rj,..., R;,) and T, = diag(TY,...,T;) where for k=1,...,u

Rj, = diag(N,, | (iIm Ag), ... Now., (1Im \g)),
Ty = —diag(N,|  (Reg), ..., prmk (Re \p)).
ii) The blocks with index g, associated with purely imaginary eigenvalues, are

R; = diag(C1,...,C,), R, =diag(Dy,...,D,), T, = diag(Fy,...,F,),
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where for k =1,...,v the substructures are
Ck: = dlag(clgac’]jackj)v Dy, = dlag(DzaD]jaD[;)v Fy, = dlag(Fk?aFljaF];)a
with further partitioning
. _ 1.
Clj = dlag(N (Uk) + _Zﬁkyler,leH

_ 1. H
QK1 2 Qk,1""’Nq;e,tk (on) + Ezﬁkvtke(Ik,tk e(Ik,tk)’

. . _ 1. _ 1.
Dk = dlag(qu,l (Uk) - §Zﬁk,1eqk,1ei‘1v vy qu‘tk (Uk) - EZ/Bkytkeqk,tk eg,tk )>

e - 1. 1.
Fy = dlag(_N;;c,l + Ezﬁkdelﬂc,lei‘l) N —qu“k + Ezﬁkytke(Ik,tk eg,tk )
CF = diag N (o) ée“k,l o Nu—k,wk (o%) \/Tieuk,wk
’ _gequ,l Ok _gequ’wk Ok
Dg‘ = diag(Nu;‘1 (0k),- .- ’N’;’cvwk (o1)),
N N,
F]:':—dlag ﬁ’;{l o ﬁ’;[k ’
2 euk‘l P} euk,wk
C,: = diag(Nv_k_l (O'k), - ,N;c‘z’c (o‘k))’
_ . (o ?eka . Ok @eka ;
D, = diag N -k yeeey /3 2 Tk ,
_Tevk‘l vayl(ak) _Tevk,zk va,zk Uk)
o /3
Fk: = dlag([Tevk_ly _N;;‘l], AN [TEUk’Zk R —N;;z’c])

Each A\, (—\1,) has sy, Jordan blocks of sizes Dk,1y---sDk,s, - Lach purely imaginary
eigenvalue oy, has

a) t even sized Jordan blocks of sizes 2qi 1, . . ., 2qk ¢, with the corresponding structure
inertia indices i(—1)%21 13 1 (=)t
b) wy, odd sized Jordan blocks of sizes 2ug1 + 1,...,2ug ., + 1 corresponding to the
structure inertia indices (—1)%1F1 [ (=1)wewptL,
¢) zp odd sized Jordan blocks of sizes 2vp1 + 1,...,2u; 5, + 1 corresponding to the
structure indices (—1)v%1 ... (—=1)"=.
Proof. For all eigenvalues Ai,...,A,, by Theorem 4.1 there is a matrix U, such

that

N N N N +

z’{CI_IEIM]u: |: W/(')CH I/IO/C :| ) CZ/{C :Z/{c |: %C ROC— :| ’

where W,, R}, RS are defined in Theorem 4.1. Let U, := U, diag(I,,, W, ') Yy, where
Y, is defined in (2.1) and m = 373, 3735, px;. By using i), ii) of Proposition 2.2
and (2.2), (2.3) we have

(4.2) URY, U. =%pm,  CU.=U. { ]1?,3 Te } ,

c

where R., T, are as asserted.

Now we consider the purely imaginary eigenvalues. As for the real eigenvalues
of ¥, ,-Hermitian matrices we first focus on one Jordan block N,(o) with o purely
imaginary. According to Proposition 2.3 for this block there is a matrix U such that

Uy, ,U=xP., CU=UN,(0),
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where m = +1 if r is odd and 7 = =i if r is even. Similarly if r is even let U :=
Udiag(I%,(wP%)_l)T%. Then

Uiy U - I 0 U =U %_(0') + %zﬁegeg —N;‘ + %zﬁezeg
poa 0 —Iz |’ —N — siBezet Ny (o) — zifegef |’
2 2 2 2

Irgl 0 0 N% (U) ?ejl _N:«El
UTS, U=| 0 B 0 |, CU=U| =l o —Ppell,
0 0 _I%l -N, —46% N, . (o)
2 2

where 8 = (—1)"= 7. Note that 8 = +1, so here UHY, U is either ¥ri1 »-1 or
2 2

2%17%1 depending on the sign of 3.

Applying these formulas to all purely imaginary eigenvalues oy, ...,0,, analo-
gous to the real eigenvalue case in Theorem 3.3 for ¥, ;-Hermitian matrices we can
construct a matrix i, such that

H _ _ Ry T,
z’{g Epyqug - E”h”z? Cz’{g - Z’{!] |: T% R~ :| ’
g 9
where Rf, R, T, are defined in the theorem and n1, ny are the sizes of R}, R,
respectively.
The ¥, ,-unitary matrix I/ can then be generated from U., U,, and by combining
above relation with (4.2) we have (4.1). O
As the final result in this section we present the real version of Theorem 4.3.
THEOREM 4.4. Let C be a real ¥, ,-skew symmetric matriz with pairwise dis-
tinct real positive eigenvalues a1, . .., oy, pairwise distinct eigenvalues Ay, ..., A, with
positive real and imaginary parts and pairwise distinct purely imaginary eigenvalues
O1,...,0, with positive imaginary parts. (Note that we then also have eigenvalues
Oy, =0y, Ay Ay, — ALy, = A, —AL, oo, —A, and —oq,...,—0y, and also
0 may be another eigenvalue.)
Then there exists a real ¥, ,-orthogonal matriz U, such that

R, T
R* T
1 _ g g
(4.3) Ui =| g R, ,
T _
Tg Rg

where the different blocks have the following substructures:
i) The blocks with indez ¢, associated with the eigenvalues with nonzero real part, are

R. = diag(R., R.), T.=diag(T.,T.),

R, = diag(R;,...,R:), R.=diag(R},...,R.),

T. = diag(Tf, e ,’f’;), T, = diag(f’f, ... ,T,f),
where for k =1,...,n the substructures are

R; = diag(N;, .- Np)s Ty = — diag(N], (o), - - NE L (),
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and fork=1,..., 1,
RS = diag(N, o 1((Im)\k)J1), . .,Np_k% ((Tm Ag)J1)),
= —diag(N,;, , (ReAp)l2), ..., N;Mk ((ReXp)12)).

ii) The blocks with index g, associated with the purely imaginary eigenvalues, are
R; = diag(Cy,...,Cy,Co), R, =diag(Dy,...,D,, Dy), T, = diag(Fy,..., F,, Fp),
with the partitioning

Cy, = diag(C{, G, Cy), Dy = diag(Dg, Dif, D),  Fy = diag(Fy, F,[, Fy),
and for k =1,...,v the blocks have the further substructure

Cy = diag(N,,  (Imog)J1) + Ega ..., Ny, (Imog)J1) + Egpt,, ),

Ak, ty,
DZ = dlag(Nq_k 1((Im0'k)J1) — Ek 1y-- .,Nq_k‘ik ((Imak)Jl) — Ek,tk)v
F,f:dlag( th1(02)+Ek,1;--- _Nqukt (02)+Ek,tk);
0
N, ((I J
C]j_ :diag Uk,l(( mO'k:) 1) ‘ ?]—2 ’

0 2L | (Imoy)/y

0
NJk‘w ((Imak)Jl) ‘ f]-

0 ffz ‘ (Imoy)Jy
D;f = diag(N, wn s (Amor) 1), Ny, ((Im Ok) ))

ey

(02)
—+ . Uk, 1
F; _—dlag<l—’—0 "\2[12 - 0 £
Cy = diag(N,, , ((Imoy)J1),..., ((
(Imox)i | 0 ‘/7512
D, = dia 0
k & \/5 val((Imak)Jl)
2],
(Imoy)s | 0 2L
) 0 — )
_\/7512 ‘ vaz ((Imak)Jl)
F, =di ) 0 > N, (0
p — dlag @IQ Ukl( 2) PR \/7512 - 'Uk,zk( 2) :

. 0 O
Hereforj:1,...,tk,Ekﬁj:%ﬁk7j [ 0 }
Finally, the blocks with index 0, associated to the eigenvalue 0, are

C():dia‘g(c(e)ica»ac[)i)’ DOZdlag(DS:D(TaD(;)a FOZdiag(FgaFJ7F07)7
with substructures

Cy = Dg = diag(N,,

20"

7N2_zc)7 Fg:_diag(NZ_;l) . >N2—;c)7
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- V2 - V2
e[ 25, B ][ 2, o))
732 €y 0 ~72 €ya 0
‘ B B . N+ N+
Df = dlag(Ngl,...,Nga), Fyf = — diag <[ Q?T ] Yo, { Q?T ]) ,
2 g1 2 “Ya
_ . — - - . V2 V2
Cy = diag(N, ,..., Ny, ), Fy = diag ([Tehl,—N,:], e [7%”’ —N,;’; ,
V2T V2, T
D, = diag \/g Qe_’“ e \/2 26_’“’ .
—76;“ Nh —Tehb th
Each nonzero real eigenvalue ay, (—_ak) has Uy, Jordan blocks of sizes fi1,- .., [k,
and each nonreal eigenvalue N\ (—Mi, Ak, — i) that is not on the imaginary axis has
sy Jordan blocks with sizes py1,...,Dk,s; -
For each nonzero purely imaginary eigenvalue oy, (—oy) we have
a) ti even sized Jordan blocks of sizes 2qi 1, ..., 2qkt, with the corresponding struc-
ture inertia indices i(—1)®2F 3 1o i(=1) % T3y for o and i(—1)%1 By, ...,

i(=1)™t% B 4, for —og;

b) wy, odd sized Jordan blocks of sizes 2ug1 + 1,...,2ug ., + 1 corresponding to the
structure inertia indices (—1)%1 1 [ (=1)wewptL,

¢) zp odd sized Jordan blocks of sizes 2vp1 + 1,...,2u; 5, + 1 corresponding to the
structure indices (—1)v%1 ... (—=1)"%=.

The zero eigenvalue has 2c even sized Jordan blocks with sizes of 2x1,2x1, ...,
2x., 2z, with corresponding structure inertia indices i, —i,...,i,—i , and a+b odd sized
Jordan blocks, where a of them have sizes 2g1 + 1,...,2g, + 1 with the correspond-
ing structure inertia indices (—1)91L ... (=1)%T! and b of them have sizes 2h; +
1,...,2hy + 1 with the corresponding structure inertia indices (—1)"1 ... (=1)".

Proof. As in the previous proofs we need to study the canonical forms of the non
purely imaginary and purely imaginary eigenvalues separately. Here for the latter
case we have to deal with two subcases, the nonzero and zero eigenvalues. For non
purely imaginary eigenvalues by Theorem 4.2 there is a real matrix U, such that
. N . . +
urs, . = [ VSCT W(;c } CU. = U, ROC ROC, }

)

Let U, := U, diag(Lp, W)Yy, where m := Shy E;’;l frj+ >y Z‘;’“:l 2py. ;. By
using Proposition 2.2 we can verify that

R. T,
ucsz,ch = Em,m: CUu. =U, |: :| s

7T R,

where R.,T,. are as asserted.
For nonzero purely imaginary eigenvalues o1, . ..o, we first consider a single Jor-
dan block N,(Imo.J;). By Proposition 2.3 there exists a real matrix U such that

U's, ,U=P.®%, CU=UN,(Imol,),

U
where = = 7l if r is odd and = = (Im)J; is r even, and 7 is the structure inertia
index corresponding to N,(c). If r is even, then we set U := U diag(I;, (Im 7) Py ®
Jl)’l)'rg and obtain

I, O
0 -I

N-(Imo)J)) + E.  —N+(0s) + E,

T _
U By U = { _NH0s) —E. N, ((Imo)J)—E, |

v
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where E, = %ﬂ [ 8 5) } and 3 = (—1)%im. If r is odd, then we set
1

U :=Udiag(Iy41, (nPoss @ ) ') (T ess @ I)

we have
Ir—l
urs, U= GBI, ,
—dr—1
_ 0 i
NT;;((IHIU)Jl) @5 —N% (02)
CU=U|_0 -6, | (mo)i | 0 L |,
0 _
_Nf%l (02) g, N, (Imo)Jy)

where 8 = (—1)*% 7. Based on these properties we can construct a real matrix
such that
R T
ngp,q?/{g = Yy nas CUy = U, [ T R!i ] )
g g
where
R} = diag(C1,...,C)), R, =diag(D1,...,D,), T,=diag(Fi,...,F,),

and Cy, D, Fi, (k=1,...,v) are in the asserted forms and

v ty Wi 2k
ng =2 Z(wk + Z qk,j + Zuk] + ka,j);
k=1 j=1 j=1 j=1

v ty Wi 2k
CEEDCED U EEDITED DML
k=1 j=1 j=1 j=1
For the eigenvalue zero we have distinguished between even and odd sized Jordan
blocks. For odd sized Jordan blocks as N, there exists a real matrix U such that
U's, ,U=xP., CU=UN,.

As in the purely imaginary case in the proof of Theorem 4.3 we then can generate a
real matrix U from U such that

- V2 +
Is 00 N Te N
=] § s o |ev-u|fan, o gl |,
2 pl
00 -NL, —Leon Ny
2 2 5

r+1

with 3 = (—1)"2 #. By Proposition 2.3, even sized Jordan blocks N, must appear in
pairs. More precisely for each pair of N,., N, there is real matrix U such that

- A{OPT NTO]

. B -
0TS0 = pr 0], CU_U{0 N
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Hence with U := U diag(I,., P~")Y, we have

T [1 o0 B N- —N?
Uzp,qU_{O | eUu=Ul e N

Based on these facts for the eigenvalue zero there exists a real matrix U, such that
Cy F

T 0 0

Us Tpglhs = Zgng,  CUz=U: { FY Dy ]

where Cy, Fy, Dy are in the asserted forms, and n{ = a + >, 2zx + > oy g +
Zizl hi, n =b+ 37 2x + 34y gk + Eizl hi

Finally by combining all these cases we can generate a real ¥, ;-orthogonal matrix
U from U., U,, U, which satisfies (4.3). O

We have seen that the results for ¥, ;-Hermitian and X, ,-skew Hermitian ma-
trices are quite similar, which was to be expected, since both classes have an algebra
structure. In the next section we now study the canonical forms for matrices in the
associated Lie group of ¥, ,-unitary matrices.

5. ¥, ,-unitary matrices. In the previous two sections we have studied struc-
tured Jordan canonical forms for ¥, ,-Hermitian and ¥, ,-skew Hermitian matrices.
Each class has an algebra structure, the ¥, ,-Hermitian matrices form a Jordan al-
gebra and the ¥, ,-skew Hermitian matrices a Lie algebra. The Lie group associated
with these two algebras is the class of ¥, ;-unitary matrices. In order to derive struc-
tured canonical forms for this group analogous to the results for the algebras, we can
make use of the Cayley transformation.

LEMMA 5.1. If A is ¥, ;-unitary and 1 ¢ A(A) then the Cayley transformation
of B

(5.1) B=pA)=A+DHA-I)"

is Xp q-skew Hermitian. Conversely, if A is ¥ ,-skew Hermitian then B as in (5.1)
is Xp g-unitary.

Proof. We only prove the result for the case that A is ¥, ;-unitary. The other
direction follows form the fact that p(p(A)) = A.

Since A is ¥, j-unitary, ¥, ;4 = A~HY, .. By this relation

YpB = Ep,q(A+ I)(A- I)il = (Ai + )X p,q( )
= AT+ DA -D)7S, = [T+ AD(ATT) (AN T - AT s,
= A+ DI - A8, =-B"S,, = —(5,,8)".

Therefore B is ¥, ,-skew Hermitian. [

Using the Cayley transformation p the canonical forms of ¥, ;-unitary matrices
(if 1 is not an eigenvalue) can be easily obtained from the canonical form of the
corresponding ¥, ,-skew Hermitian matrix discussed in Section 4. However, if we
Cayley transform the canonical form it is usually not a canonical form again and we
need further reductions to obtain again the canonical form. But, obviously it suffices
to further reduce each Jordan block separately. Before discussing these reductions,
we first split the Jordan structure of a ¥, ,-unitary matrix G into two parts, the part
related to the eigenvalue 1 and the rest.
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LEMMA 5.2. Let G be a X, ;-unitary matriz that has 1 as an eigenvalue. Then,
there exists a nonsingular matriz Y, such that

VY = diag(Sy, .4, Spagn)s YV 1GY = diag(Gr, Ga),

where p1 +p2 = p,q1 + q2 = q, G1 is Tp, ¢, -unitary with 1 &€ A(G1) and Gy is T, 4,-

unitary and has 1 as only eigenvalue.

Furthermore, if G is real, then ) can be chosen real, so that Gi,G> are also real.
Proof. Let ) be a nonsingular matrix such that

GY = Y diag(G1,0) =: VG,

with 1 ¢ A(él) and A(Qg) = {1}. Then we have YHGH — GHyH and, using the
¥, q-unitarity of G we have the discrete Lyapunov (or Stein) equation

(5-2) gAH(j}HZp,qj))gA = yHEp,qj;-

By the diagonal block form of g and the eigenvalue splitting, the solution of (5.2) has
also block diagonal form, i.e. il . qy diag(Ty,T>). Note that yHE,, qy as well as
T1,T> are nonsingular Hermltlan Therefore, there exist nonsingular matrices Zy, Z
such that

Z{ITIZI =Ypia Z2HT2Z2 = Yps .02

To finish the prOOf, we set y = j) diag(Zl,Zg), g1 Z gl Z1 and g2 Z gg Z2

The real case is clear, since 1 is a real eigenvalue. 0O

It is well known, that Cayley transformation directly leads to a rational relation-
ship between the eigenvalues, i.e., if v # 1 is an eigenvalue of a ¥, ,-unitary matrix
G, then A = p(y) = “’—“ is an elgenvalue of the Cayley transformation p(G) and we
have the following W(;il known facts.

PROPOSITION 5.3. Let G be I, ,-unitary with 1 ¢ A(G). Set C = p(G) and let
v € A(G) and A = p(y) € A(C). Then
i)XN#£1,—1.
ii) v and \ have the same algebraic and geometric multiplicities.
i) |y| = 1 if and only if \ is purely imaginary.
) If X € A(C) is not purely imaginary, then —\ = p(¥~') and, furthermore, X\, =\ €
A(C) if and only if v, € A(G). In order to further reduce Cayley transformed
Jordan blocks we need the following result.

LEMMA 5.4. Let N.(\) be a Jordan block with X # 1 and let v = p()\). Then
there exists a nonsingular upper triangular matriz X, such that

Xﬁlp(Nr(A))Xr = Ny(v),

r

and e,TXTeT #0.

Proof. See, e.g., [8]. [

We are now prepared to present block by block the transformations of the results
in Section 4.

LEMMA 5.5. Let G be a T, ;-unitary matriz and let N(y) = vI + N with N =
diag(Ny,, ..., Ny,) be the Jordan structure of G corresponding to v € A(G) with || #
1. Then there exists a full rank matriz U such that

H [ 0o Py _ N(v) 0
U Ep,qU - |: I:)JI\LTI 0 :| ) gU =U |: 0 N(T)_l
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and ¥~1 € A(G) has the same algebraic and geometric multiplicities as .
If G is real then we have two cases:
i) If 7y is real then there exists a real full rank matriz U such that

e P R s |

ii) If v is nonreal then there exists a real full rank matriz U such that

0 Py®%, N(,) 0 }
Urs, U= 4 T, gu=U ’ s
= pras, O ] w=e [ )

) . Rey Imvy
with , = [ “Tm~y Reny }

Proof. We may assume without loss of generality that 1 ¢ A(G). Otherwise by
Lemma 5.2 we can consider the smaller size matrix G;. If p is the Cayley trans-
formation, then by Lemma 5.1, C = p(G) is X, ;-skew Hermitian. Furthermore,
A = p(y) € A(C) and by Proposition 5.3 ii), iv), A is not purely imaginary and the
associated Jordan structure associated with A is Al + N. Applying Proposition 2.3
there exists a matrix U such that

0 Py

0  N(=X)
With U = U diag(I, Py') and, since PyNPI = —N¥ we have

0 1

oS, 0 = [[ 0] cﬁ:ff{N(A) 0 ]

0 —(NO)T

Using the Cayley transformation then we have
gU =
Note that

p(=N)") = (NN + D(=NNT -~
={(N(\) = DN + 1)~}
= {p(N())} .

Applying Lemma 5.4, there exists a nonsingular matrix X = diag(X,,, ..., X,,) such
that X 'p(N (X)X = N(y). Obviously X#{p(N(X))} #X H# = N(y) . Setting
V = U diag(X, X ) we obtain

V EP:‘IV_ |: I 0 :| 3 gV —V|: 0 N(’y)_H 9

and taking U =V diag(I, PN) finishes the proof in the complex case..

Since the Cayley transformation of a real matrix is also real, we can apply Propo-
sition 2.3 to get the result for the real case. 0O

This result shows that for the eigenvalues of a X, ;-unitary matrix that are not
of modulus 1, the structured canonical form cannot be of the form of a usual Jordan
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matrix, only half of these eigenvalues have the classical Jordan structure, while for
the other half of the eigenvalues we have to involve the inverses of Jordan blocks.

For eigenvalues with |y| = 1 the canonical structure is even more complicated. If
we restrict the chains of root vectors to have the proper structures coming form a %, ;-
skew Hermitian matrices as in Proposition 2.3 then no Jordan block will appear in
the canonical form. We can do further reductions for which we will need the following
simple result.

LEMMA 5.6. Given a vector t = [ti,...,t.]7 and t, # 0 then there exists a
nonsingular upper triangular Toeplitz matriz T such that T~ 't = e,.

Proof. See [8]. O

We now study the reduction of Cayley transformed blocks arising form unimodular
eigenvalues.

LEMMA 5.7. Let G be a I, ,-unitary matriz and let v € A(G) with |y| = 1 and
v # 1. Let N,(vy) be a single Jordan block, then there exists a full rank matriz U such
that

H 5 [ Ne(v) iBesef! Ny(7)~*
(5.3) Ui, U="F, gU=U|" et ,

if r = 2s and

vy, U =3P,

(5.4)
Ng(y) ves T— €561 NS(W)il
GgU =U 0 ol —efIN, ()t ,
0 0 Ny(7)~!
ifr=2s+1.

Here 3 = (—1)%im with m € {xi} if r = 2s and B = (—1)*"7, 7 € {£1} if
r = 2s + 1 where 7 is the structure inertia index of the corresponding eigenvalue
A=p(7).

If G is real then we have two cases:

i) If v # —1, then with :[ Rey Im],&z[;’ H .

—Im~y Revy
1 1 Im vy
S(/Y) =35 [ Im 1-Rey ] )
2 1—Rz'y -1

there exists a real full rank matriz U such that if r = 2s, then

0 0 )
(55) UTS,U=P.®%,, GU=U Nalo) =6 { P 0 } NG ;
0 N,(, )™

and if r = 2s + 1, then

0 0 P@%i,
urs, U =23 0 I 0 ;
Pi®%i1 0 0
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0 0 0 _
Ni(,) sty o M6
GU—U : (7)
0 9 [_El,lao]Ns() )71
0 0 Ns(, )_1

i) If v = —1, then there exists a real full rank matriz U such that

- [ o B _ N,(-1) 0
(5.7) Urs, U = [ AT 0 } QU_U[ 0 N, (1) ! ]

if v is even and

R { Ny(-1) —e;, —zes,el N, (—1)71 ]
(5.8) U's,,U=BP., GU=U [ 0 -1 =N, (-1)"t |,
0

0 Ny(=1)~!

ifr =2s+1. Here 3 = (=1)**'7 and 7 is the structure inertia index of 0 corre-
sponding to p(G).

Proof. We may again assume without loss of generality that 1 ¢ A(G) and set
C = p(G). By Proposition 5.3 the corresponding A = p(7y) now is purely imaginary,
and C has the Jordan block AI + N,.. Applying Proposition 2.3 there exists a matrix
U such that

(5.9) Ufs, ,U=nP., CU=UN,(\).
If r = 2s then m € {£i} and we partition

Iy A 0 Py [ Ns(\)  egell
U EIMIU_ |: (ﬂ.ps)H 0 :| ) NT(A) - |: 0 NS(A)

Applying the Cayley transformation we obtain
GU = Up(N»(N))-

Using the notation N,(v) = p(N,()\)) and the property that (Ny(\)—I)~! = %(Ns (v)—
I) we obtain

0 Ns(7)
Setting U = U diag(I,, (Ps) "), then

| = [ Ne(v) (I = Ny(7)ese Ny(y) (I — Ny()H
UHU—[I 0], QU—U[ N v NS(V)YH B }

p(N,(N)) = [ No(Y) 3T = Ny(y)esef (Ns(v) = 1) } |

By Lemma 5.2, there exists a nonsingular upper triangular matrix X such that
X 'Ny(y)X = N,(v). Since the last component of t := X’l(ges) is nonzero,
by Lemma 5.5 there exists a nonsingular upper triangular Toeplitz matrix 7' such
that Tt = e,. Setting Y = X (I — N,(7))T and U = U diag(Y,Y ¥ P,), we obtain
(5.3), since (I — N4(v))T commutes with Ny(v) and P Ny (y)~7 P, = N,(7)~!.

If r is odd, following (5.9) we partition

A ) 0 0 wPs Ns(A) e 0
vfs, U= 0 B 0 |, N(O\)= 0 X eff
(wP)" 0 0 0 0 N,
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and as before we obtain

. R [ Ns(’Y) vTfl(l_ Ns(')/))es ITTA{(I_ Ns('Y))fse{{(Ns(’Y) —1I) ]
GU=U| 0 y Srefl (Ny(v) = 1) :
L o 0 No(7) J
With U = U diag(I,41, (wP;) 1) we then have
0 0 I
vy, U=10 B8 0|,
I, 0 O
L [ Ns(A) vTfl(l_ As(')/))es vTflﬂ(l_J\A[s(’)/)A)esefj\?s(')/ _If(I_Ns('Y)H) ]
CU=U| 0 v Bl No(y) (I = No(n)*H) :
L o 0 Ny(y)H J

Setting ¥ = 152X (I — Ny())T and U = U diag(Y, 1, Y~ 3P,), we have (5.4).

If G is real, then the real forms (5.5), (5.6) and (5.7), (5.8) can be derived in the
similar way. Note that if y = —1 then the corresponding eigenvalue of C = p(G) is 0.
d

So far we have restricted ourselves to the Jordan structure associated with eigen-
values not equal to 1. For the eigenvalue 1 we give a separate analysis.

LEMMA 5.8. Let G be a ¥, 4-unitary matriz and let N,(1) be a Jordan block of
G. Then there exists a full rank matriz U such that

H _p _ NS(I) _iﬂesest(l)_l
U"%,,U =P, gu =U 0 Ns(l)fl ,

if r =2s and if r = 2s 4+ 1, then

R Ng(1) es — ese1 Ns(l)
(5.100 Uy, ,U=pP, GU=U 0o 1 —61 (1)
0 0 Ny(1)~1

Here 3 = (=1)%m with © € {xi} if r = 2s and B = (=1)**'7 with 7 € {£1} if
r=2s+1.
If G is real, then there exists a real matriz U such that

UTZp,qU = P2'r'7 gU =U NT()(l) NT((;_)fl )
if v is even and if r = 2s + 1 we have again (5.10).

Proof. By Lemma 5.2 we may assume without loss of generality that A(G) =
{1}. Otherwise we work on the small size matrix G,. We cannot use the Cayley
transformation p but a different rational transformation p(z) = (1—2)(1+2) . If A
is ¥, q-unitary then B = p(A) is ¥, ;-skew Hermitian and conversely. With this new
transformation we obtain the proof analogous to the proof of Lemma 5.7. 0O

Using these results, analogous to the case for the Jordan and Lie algebras we can
show the following structured canonical forms for both complex and real ¥, ,-unitary
matrices, respectively. The proofs are similar to that in the previous sections so we
omit them here.
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THEOREM 5.9. Let G be a ¥, ,-unitary matriz G, let A1, ..., A, be the pairwise
different eigenvalues of modulus less than one and let o1, ...,0, be the pairwise dif-

ferent eigenvalues of modulus one. Then there exists a nonsingular matrix U such
that

U GU = diag(R., R%, R,).
i) The diagonal blocks R., R%, associated with eigenvalues not on the unit circle, are
RC = diag(Hl(/\l)) cee )HM(/\M))a Rz = diag(Hl(A_l)ila v )HM(A_H)il)v

where for k =1,...,u we have Hy(A\) = Al + Hy, Hr(A\t) = M1 + Hy, and Hy, =
diag(Np, ,»--- Nowor ).
ii) The diagonal block R, associated with the unimodular eigenvalues are R, =

diag(My, ..., M,), where for k=1,...,v, we have

Mk = diag(Akyl, ey Ak,thBk,ly ey Bk,wk)-

Here for j = 1,...,t, we have
o [ N (00) 30 e el N (@)
k,j 0 qu,j (O.—k)—l )

with 6, = 1 if op # 1 and 6y = =1 if op = 1 and furthermore B ; = (—1)P*Jimy ;
with my ; € {+i}.
Moreover, for j = 1,...,wg, we have

NTk‘j (Uk) UkeTk‘j S(Uk)erk‘je{{NTk,j (o-_k)_l
Bkvj = 0 Ok _e{{Nrk,j (U_k)_l )
0 0 ]\frk,].(a_k)*1

with S(Uk) = 1;"“ ifO’k 75 1 and S(]_) = —%,

Ok

The matriz U has the form

0 W. 0
uts, u=|wi o o |,
0 0 W,

with W, = diag(PHl,...,PHH) and W,, = diag(W, ..., WY), where fork=1,...,u

A

we have Py, = diag(Pp, ;.- -, Ppk‘%) and for k=1,...,v we have

o N N o B o N
Wk - dlag(P2Qk,1 IR PQQk,tk ) ﬁk,lPQTk,lJrl: v )6k,wk P2Tk,wk+1)'

Here for j =1,...,wy we have B ; = (—1)7"’“’1'“7”‘;’3- with m}; € {+1}.

Each eigenvalue \j ()\_k_l) has sy, Jordan blocks of sizes p1,...,Dk,s, and each
unimodular eigenvalue oy, has
a) ti, even sized Jordan blocks of sizes 2qy.1,...,2qkt, corresponding to the structure
inertia indices (—1)% e L (=) % TligE  and
b) wy odd sized Jordan blocks of sizes 2ry1 + 1,...,2r 4, + 1 corresponding to the
structure inertia indices (—1)"2T1 80 |, (=1)"we TG0

THEOREM 5.10. Let G be a real ¥y, ,-orthogonal matriz, let o, ..., oy be pairwise

different real eigenvalues of modulus less than one, let A1, ..., A, be pairwise different
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nonreal eigenvalues with positive imaginary parts of modulus less than one, and let
Y1,---,% be pairwise different nonreal eigenvalues of modulus 1, also with positive
imaginary parts. (Note that then also ai’',..., apt, AL A AT /\;1;)\_1_1,
e A 1, Ay .-, and possibly also —1,1 are eigenvalues.) Then there exists a real

nonsingular matriz U such that

U™'GU = diag(R., R’, R,,).

i) The blocks with index c, associated with eigenvalues not on the unit circle, are
R. = diag(R,, R.) and R: = diag(R., R!), with

R. = diag(Ky (1), ..., K,(ay)), R.=diag(Ki(a1)™,. .., K, (a,)™h),
RC = dlag(Hl (Al)v v 7HM(AH))7 ch = dla‘g(Hl (Al)_17 R HH(AH)_I)a

where for k =1,...,n we have Ki(ax) = axl + Ky, and Ky, = diag(Ny, ,, ..., Np, ., )
and for k =1,...,u we have Hy(Ay) = diag(Np, , (Ak), ..., Np,,, (Ax)), with Ay =
ReXr ImAg
—Im )\k Re )\k ’
ii) The block Ry, associated with the unimodular eigenvalues, is
R, =diag(My,...,M,,M_, M) with

Mk = diag(Ak,la- .. 7Ak,tk;Bk,17- .. 7Bk,wk)7
M_ =diag(4;,...,4; ,By,...,By, ),

w —

M, = diag(Af,..., Af Bf',...,B:EJr).

ty

Here we have the following substructures:
a) For j=1,...,t

Y

0 O
Akj — [ NQk,1(7 k) ‘ —52,3- |: 132 0 :|qu,]‘ (7 k)71 ]
o MG J

with B ; = (=L)Pxiimy ; and 7, ; € {£i}.
b) Forj=1,...,wg

0 0 0 _
Nrk.j (: k) ) { S( k) 0 } NTk,j(’ k) !
B i — ’ ’
ko 0 y k [_El,lao]Nrk,j(y k)il ’
0 0 NTk,j(7 k)_l

with

Im
— Re Yk Im V& S( ‘) _ 1 1 17Rzliyk
—Imy, Revy |’ . '

¢) Fork=1,... t_
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d) Fork=1,...,w_

Nr;(—l) —€,- %erb}e{Nr;(—l)_l
By=| 0 -1 =N (S
-1
0 0 Nr;(—l)
e) Fork=1,...,t;
ra Nq;r(l) 0 »
0 Nq:(l)
f) Fork=1,...,wy
Nr:—(l) erz- —%er’;e%ﬂerj(l)fl
B,j = 0 1 —€1 er:r(lr1
0 0 Nr’:r(l)*1
The matriz U has the form
0o wW. 0
urs, U= wr o o |,
0 0 W,

where

W, = diag(W,, W.), W, = diag(Wg,..., W2, W W),
WC = diag(f’Kl, R ’Pkn)’ VNVC = diag(f’Hl & 2171, R ,PH” (9 2171)

and as substructures we have for k = 1,...,1 that Px, = diag(ﬁfkvl, Cey Pfk_lk) and
fork=1,...,u that P, :diag(f’pk,l,... P, ).

» " Pk,s
The substructure for the blocks with index u'is as follows:

1) For k=1,...,v we have

) ) 0 0 P, ®%,
W]g = dlag Pqu’l ®21717""P24k,tk ®2171;ﬂz71 R 0 [2 0
P %1 0 0
0 0 I:)T‘k,wk ® E1,1
B | 0 I 0 ,
PL @%i; 0 0

Zz)ith Bij= (—l)r’“vi"‘lﬂ,‘;J and 77 ; € {1}, for j =1,... wy.

A~

W = diag(P2q1_,...,P2qi—7 ;ﬁfP2rl_+1,...,ﬁ;fP%LH),

with B, = (=1)" T'a; and m € {£1} fork=1,...,w_.
3)

A

- b .atp + p
W+_dla‘g(qu;”""Pwttr’ﬁl P2rfr+17--.76w+P2r:;++1)7
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with B = (—l)r:+17rk+, and mf € {£1}, fork=1,...,wy.

Each real eigenvalue oy, (a,:l) has l, Jordan blocks of sizes fr1,..., fr1, and
each eigenvalue A, (Mg, )\,;1, /\_kil) has sy, Jordan blocks of sizes pr.1,..., Dk, sp-

Each nonreal unimodular eigenvalue v, (Vi) has ty even sized Jordan blocks of
s12es 2qp 1, - .., 2qkt, corresponding to the structure inertia indices (—1)qk,1+1iﬁ,§71,
.y (—l)q’“’ikﬂiﬁ,‘é’tk‘ and wy, odd sized Jordan blocks of sizes 2r 1 +1,...,2rp 4, +1
corresponding to the structure inertia indices (—l)rk’l“‘lﬁg’l, e (—l)r’“vwk“ﬂ,‘c”wk.

The eigenvalue —1 has 2t_ even sized Jordan blocks of sizes qi ,q1 ,---,9; 4
corresponding to the structure inertia indices i, —i, . ..,1,—%, and w— odd sized Jordan
blocks of sizes 2r; +1,...,2r, + 1 corresponding to the indices (—1)"x 713, ..

(1),
The eigenvalue 1 has 2ty even sized Jordan blocks of sizes qfﬂqfﬂ..,qi,qi+
corresponding to the structure inertia indices i, —i,...,i,—i and wy odd size Jordan
blocks of sizes 2r + 1,.. 521 + 1 corresponding to the indices (—1)’"fr+1ﬁf, e
rt +1
(—1)" s
Note that the structure inertia indices actually arise through the Cayley transfor-
mation in the associated X, ;-skew Hermitian matrices, but they inherently describe
also the associated structure for the unimodular eigenvalues of G.
Finally we will give the canonical forms under ¥, ,-unitary similarity transforma-
tions. To simplify the notation which is even more technical, we now introduce for a
nonzero scalar v the blocks

NF(M) = (V) + No) M), Ny () = 2(N(y) = No) ),

2

DN | =

and similarly for a 2 x 2 real nonsingular matrix , we set

1 _ _ 1 _
NIGY = 5(NG) + () N, N7()= S (NVe( ) = Ne() ).
THEOREM 5.11. Let G be a ¥, 4-unitary matriz with pairwise distinct eigenvalues
ALy ..., Ay of modulus less than one and pairwise distinct eigenvalues ~yi,...,7, of
modulus one. Note that then also )\_171, . ,)\_,;1 are eigenvalues. Then there exists

a Xp q-unitary matriz U, such that

R, T,
i R T,
uGu=| . R,
Y, Ry

i) The blocks with index ¢, associated with the eigenvalues that do not have modulus
one, have the form R. = diag(RS,...,R;) and T, = diag(TY,...,T;), where for
k=1...,u

Rj, = diag(N,, (), Ny (M), Tf = —diag(N,, (M), -, Ny (An))-

Ph,sp, P, sy,
ii) The blocks with index u, associated with the unimodular eigenvalues, are

R} = diag(C1,...,C,), R; =diag(Dy,...,D,),
T, = diag(F1,...,F,), Y, =diag(Gy,...,G.).
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Here for k =1,...,v the blocks are

Cy, = diag(Cy,CF,Cy), Dy =diag(Dg, Dff, D)),
Fy, = diag(F{, Fy ,F,), Gy =diag(G;,G{,Gy),

and with 0 = 1 for v, # 1 and 6, = —1 if v = 1 the substructures are

Ci = diag(N,} | (v) + %iékﬂk,leqk,lei’quk‘l(’Yk)_H,

.. ,Nq':’tk (i) + %i&kﬁmk . ei‘ik N, (vr) ™),
Dj, = diag(Ng, | (v) — %Z‘Skﬂk 1eg i€ N, ()™,

NG () — %Mkﬁk,tqu,% eane. Naw, () 1),

1. _
= diag(— q“(’Yk) §l5kﬂk,16qk,1€i,1qu,1(’Yk) H,

1. _
T _NQk tr (7"7) _Zékﬁkytk e‘]k,tk ei,tk NQk,tk (’Yk) H):

. . _ 1. _
Gk = - dlag(qu,l(’Yk) + _deﬁkyler,leg,lNQk,l ('Yk) H>

2
_ 1. _
. ,quatk (7’6) + §Z6kﬁk,tk er,ik ei‘tk NQk,tk ('Yk) H))
Cc* = di qu;,l(')/k) + S(;k)euk,lequ_lNuk,l (’Yk)_H \/Tgfykeukg

p = d1ag V2 H -H )

—eld  Nug:(n) Vi

.. N"—‘:wk (ry ) + S(’Yk)euk,wk equ,wk Nuk,wk (’Yk)_H ?’Ykeuk,u)k
—2ell o N, ()™ Vi
(k) H

l)lcJr = dla‘g( ug, 1(716) - euk,1euk‘1Nuk,1 (’yk)_Ha

2

s(k) _
’N;rk,wk(,yk)_ 2 e“k.wkequ,wkNuk,wk(’Yk) H):

Fr = —diag (l N“ik,l(%)fsgk)e“k,lequ,lNuw('Yer ] ,

qu 1PV ug (’yk)iH

2
uk wp, (7’6) , eH., kNuk,wk (’yk)iH
i H Nuk,wk (’Yk)_H ’

.
2 Uk

s(k) _g V2
G;r = - dlag([ U, 1(7]@) + euk,1equ_1Nuk,1(7k) Ha _’ykequ,l]v

2 2
s [N () + S(;k) g, 6qu_wk Ny, ()77, ?%%Hk_wk
Cy = diag(Ny, , (v) = s(gk)em o No s ()™,
N, ( ")—S(gk)evk,zkeka,zk oz (0) ™),

V3 _
D, = diag (l T Eeu  Nowa ()™

_§7kevk,1 N ( )+Mevk,1eH va,l(’yk)iH

Vk,1 2 Vk,1

D,

Y

)
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Yk V2ell Ny (w)™"
y —?'chvk,zk Nj; k(’yk)—{— (gk)evk.zkef’cv%va,zk('Yk:)_H ’

Fy = ding(Somen . —Nop, 0n) = ey el Ny ()],

Vk,1 2 Vk,1 "V, 1

V2 _
B [T’ykevk,zk7 N

s(vx) _
('Yk) - evk,zk eka,zk va,zk ('71») H]):

ke 2
Gy = diag ﬁe”Hk Now 0%
. =di :
F _va 1(7’6) 2 )evk 1eka 1va,1(’7k)7H

2
+
\éie Vi, = Sva’Zk (716)_H

Ny, () + Gen, ell | Nu,, (n) ™"

In these formulas we have used s(yg) = ”’“ —if v #1 and s(1) = -3

Each A\, ()\_k_l) has sy, Jordan blocks of 5128 Pk.1,- - -, Pk,s, - For each unimodular
eigenvalue v, we have
a) ty, even sized Jordan blocks of sizes 2qy 1, - . ., 2qk.t, with the corresponding structure
inertia indices i(—1)T 13 oo i(=1) T TGy,

b) wy odd sized Jordan blocks of sizes 2up1 + 1,...,2uk ., + 1 corresponding to the
indices (—1)ue 1+l (=1)%kwp Tl
¢) zp odd sized Jordan blocks of sizes 2vp1 + 1,...,2u; 5, + 1 corresponding to the
indices (—1)%i ..., (=1)" =,

THEOREM 5.12. Let G be a real ¥, 4-orthogonal matriz with pairwise distinct real

eigenvalues o, .. ., ay of modulus less than one, pairwise distinct nonreal eigenvalues
AL, - .-, Ay of modulus less than one with positive imaginary parts, and pairwise differ-
ent nonreal eigenvalues vy, .. .,7v, of modulus one also wzth positive zmagmary parts.
(Note that we then also have the eigenvalues o - LD VI /\,“ /\1_ s Ay L
/\_171, cs ,)\_‘fl and ¥1,...,7, as well as possibly —1, 1.)
Then there exists a real ¥, ,-orthogonal matriz U such that
R, T.
Rt T,
—1 —_ u u
U GU = T R,
Y, R,

i) The blocks with index ¢, associated with eigenvalues not on the unit circle, are split
further as R, = diag(R., R.) and T, = diag(T.,T.) with

= diag(RS,...,R), R.=diag(R;,...,RS),

diag(TY, ..., T5), T.= diag(TY,...,T})

=
I

and for k=1,...,n we have

A

RS = diag(N;;,l (o), .- ,N;;’lk (o)), Tg=-— diag(NJZk,1 (ak),-.- ,lek’lk (o)),
while for k =1,...,u

Ak)y-os N (M), T = = diag(Ny  (Ak), -, Ny (k).

Pk, sy, Pr,1 Ph,sp,

R¢ = diag(

pkl(
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ii) The blocks with index u, associated with the unimodular eigenvalues, are split
further in real and nonreal eigenvalues, as

R} = diag(Cy,...,C,,C_,Cy), R, =diag(Dy,...,D,,D_,Dy),
T, = diag(F1,...,F,,F_,Fy), Y, =dag(G,,...,G,,G_,G;)

and have for k =1,... v the partitioning

Cy = diag(Cg,C,C, ), Dy = diag(Dj, Di, Dy,),
Fy, = diag(F{,Fy ,F,), Gy =diag(G§,G{,G}).

In these blocks we have with

1 0 O
Ek,j = 561@,] |: 0 Jl :|

n 1 0 0 _ 1 1 _ imwk
Ek’j - 5 [ :| Nuk,j (7 k) T) E, = _5 l Im 3 ! ]l-1ewk y

0 E;

the following substructures.

Cr = dia (qkl(,k)+Ek,1...,N,;:‘ik(,k)+Ek7tk),
Dy, = dia (thl(wk)_Eklw-'wNﬂ,%(’k)_Ekytk)v
Fy = diag(— qul( )+Ek17”'7_Nq_k,tk(7 k) + Ert)s
GS, = — diag( qkl( )+Ek71"“’Nq_k,ik(’ k) + Ert),
C;r = diag Nii §)+ P ‘ @0,1@ ;

0, =R LINw ()T |

we| | Ml B | g

., diag( ke 3ok )

[07 _§IZ]Nuk,wk (7 k)iT ‘

D+_dlag( ukl( )_Ehlv"'vNJk,w (7 k)_Ekywk)7

k
SO R
[ )" [0, 2 ] Nuy (1)

0, \/TEIQ]NUkl (7 k

) k

G = =gV, 0+ Bl g Lo W 0+ Bl g D,
Oy = diag(Ny k) = Brtye o, NI (k) = Bz,
. i [0 RDINy ()"
Dy = diag _L% ‘ N LG8 + By ;
3 s k
b [0, 2 DINy L, (1)
.’ —é, K ‘ NE L G) + B, ’
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_ . 0 _ - 0 _ -
Fk :dlag [ V2 |_va‘1(7k)_Ek,1]7"'7[ V2 | vaz ( )_Ek,zk] 3
51> 51 g
o —ding [ | 02BN 0o | [0 F RN, (07T ]
F va 1 + Ek 1 ’ ’ _NT;,zk + Ek,zk

The blocks associated with eigenvalues 1, —1 are partitioned further as

Cx :diag(Ci,Ci,Cg), Di:diag(Di,Di,D;),
Fy :dlag(FivFiaFi_)a G+ :d1ag(Gft,Gi,G;),

and have with Eki =
structures

1 At o1 T -T
1€ eg Ngk +(£1)7T and B = ZehkiehIhoki(il) the sub-

Ofl::Dfl::dlag(N;xi(il)):N;xi (:*:1))7
F{ = G4 = —diag(N, (jzl) N, ok, (£1)),
N, (ﬂ) Ef i§e9i
Ct = diag N !

——eTiN ()T

N (¥1) - Ef, +¥2e 4

Jay at

fT Nz, (& S |

DI :diag(Ngti(i )+E1 Nt (£1) + ET,),

+
N (i1)+Ei N (£1)+Ef
F;r:—dlag \/— R \/—gai y
T iN i(:l:l) —eTi N i (j’:l)
V2 V2

G1 = — diag([N L (ED) - Ef|+ 5 gt

— +
4] ],...,[Ng;ti (:l:l) — Eai| + 76‘(]}:&]),

Ci = cuag(Nhli (il) +EE N}jbii (+1) + Ej),
+1 %%%Nhf(il)—T

| =diag Ay ,
F2e,s Ny (£1) - B

-
H_

)—E
+1 Vgeﬂ Nog, (£1)~7

)

nes
ZF\/Tiehbii N (jzl) Ef

l’:!:
- V2 _ ~ V2 _ R
Fi = diag([+ e, s, — N (1) + Ef, ..., [ﬂ:Tehbi ,—Nhi (+1) + E;} ),

([ Ny Fepe Nig (D77
G = diag ot AL e > "
~NL() - B N (1) - B
1 b:l:
Each real eigenvalue oy, (a,;l) has l, Jordan blocks of sizes fr1,..., fr1, and

each g (/\,;1, e )\_kil) has sy, Jordan blocks of sizes py1,...,Dk,s,-
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Each nonreal unimodular eigenvalue i, (i) has
a) ty, even sized Jordan blocks of sizes 2qy 1, - . ., 2qk.t, with the corresponding structure
inertia indices i(—1) 1 1B 1 oo i(=1)% T By 1 associated with v, and i(—1)%1 6y, 1,

o i(=1D) Tt By associated with g

b) wy odd sized Jordan blocks of sizes 2up1 + 1,...,2uk ., + 1 corresponding to the
structure inertia indices (—1)%1F1 . (=1)Wewrtl,
¢) z, odd sized Jordan blocks of sizes 2ug1 + 1,...,2vk 5, + 1 corresponding to the
structure inertia indices (—1)¥%1, ..., (=1)"=x.

The eigenvalue 1 has 2c4. even sized Jordan blocks of sizes 2331", 23:?', e 2mj+ , 2mj+
corresponding to the structure inertia indices i, —i,...,t,—i, and a4 + by odd sized
Jordan blocks, a of them of sizes 297 +1,. .., 2g;‘++1 with the corresponding structure

+
inertia indices (—1)9T+1, . (—1)9‘“r+1 and by of them of sizes 2h] +1,. .., 2hb++ +1

. . . L it
with the corresponding structure inertia indices (—l)h;r, cey (<L)

Similarly, the eigenvalue —1 has 2c_ even sized Jordan blocks of sizes 2x1 ,2x7 ...,

2z,  corresponding to the structure inertia indices i,—1, ..., 1, —%, and a_ +b_

2z
odd sized Jordan blocks, a— of them of sizes 29, +1,...,2¢9, +1 with the correspond-

c_?

ing structure inertia indices (—1)91 1, .. (—I)gLJrl and b_ of them of sizes 2h; +
1,...,2h; +1 with the corresponding structure inertia indices (—1)" ..., (—l)h”f .

6. Conclusion. We have presented real and complex structured Jordan canoni-
cal forms under real ¥, ,-orthogonal and ¥, ,-unitary matrices, respectively. Combin-
ing these results with the structured canonical forms for Hamiltonian, skew Hamilto-
nian and symplectic matrices in [8] a complete list of the possible structured canonical
forms is available.

The structured Jordan canonical forms for groups of structured matrices such
as complex Y, ,-symmetric, skew symmetric and orthogonal matrices, complex J-
symmetric, J-skew symmetric and J-orthogonal matrices, with the similarity ma-
trices in the corresponding Lie groups, can be derived in a similar way, were J =

0o I,
L
replaced by general nonsingular Hermitian and skew Hermitian matrices, respectively.
Due to the large amount of material that we have already presented we have refrained
from presenting these results.

It is also possible to generalize all these results to the matrix pencil case with
structures as it has been done for Hamiltonian pencils, and symplectic pencils in [8]
and for skew Hamiltonian/Hamiltonian pencils in [9, 10]. This generalization can be
done as follows: Suppose that for a matrix pencil A — AB with say A = A", B =BH
the matrix B is invertible, then the matrix A = B~ A satisfies BA = AHB. So we
can determine a nonsingular matrix ¢ such that

} We can also generalize these results to the cases that ¥, , and J are

URBU =D,, U AU =D,.
Taking the product form of A we have
UBU =Dy, U" AU =DyD,,

which is just the result of Thompson [12] or Uhlig for the real case [14]. We can also
easily obtain the canonical forms for all the pencils with A = £+ A®, B = +B%,
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