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Abstract. Classes of an equivalence relation on a module V over a supertropical semiring, called rays, carry the underlying

structure of ‘supertropical trigonometry’ and thereby a version of convex geometry which is compatible with quasilinearity. In

this theory, the traditional Cauchy–Schwarz inequality is replaced by the CS-ratio, which gives rise to special characteristic

functions, called CS-functions. These functions partite the ray space Ray(V ) into convex sets and establish the main tool for

analyzing varieties of quasilinear stars in Ray(V ). They provide stratifications of Ray(V ) and, therefore, a finer convex analysis

that helps better understand geometric properties.
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Introduction. Quadratic forms lay the foundation for various theories, taking a major role in their

studies. They play a similar role in supertropical mathematics [7, 8, 4, 10, 11], which is carried over

the ‘weaker’ algebraic structure of semirings. As in classical theory, quadratic forms and their bilinear

companions lead to theories of tropical trigonometry and convex geometry, where, due to the ‘weak’ semiring

structure, the Cauchy–Schwarz inequality is replaced by the Cauchy–Schwarz ratio, written CS-ratio. This

type of convex geometry takes place over equivalence classes of a suitable equivalence relation, called rays [4],

and utilizes CS-functions that emerge from the CS-ratio on ray spaces. CS-functions are special characteristic

functions that provide a useful tool for convex analysis and help understand the variety of quasilinear stars

in ray spaces [5]. This paper proceeds the study of CS-functions and the induced stratification of ray spaces.

Classical quadratic forms can be explored via their supertropical images, obtained by applying suitable

valuations. These images preserve some essential characteristic properties and are easier to be classified

and investigated by the use of CS-functions which appear in the supertropical framework. This approach

becomes very effective when different bases are considered, in particular, when dealing with a system of

quadratic forms [5].

Supertropical semirings. Supertropical semirings carry a rich algebraic structure [2, 3, 6, 15, 16] and

provide the underlying structure of our framework. A supertropical semiring is a unital semiring R with

idempotent element e := e + e = 1 + 1 such that, for all a, b ∈ R, a + b ∈ {a, b} whenever ea ̸= eb and

a+ b = ea otherwise. Consequently, ea = 0 ⇒ a = 0. The element e determines the ghost map ν : a 7→ ea

and the ghost ideal eR of R, which is a unital bipotent semiring, i.e., a+ b ∈ {a, b} for any a, b ∈ eR, and

therefore totally ordered by:
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a ≤ b ⇔ a+ b = b.

Thereby, R is equipped with the ν-ordering and the ν-equivalence:

a <ν b ⇔ ea < eb, a ∼=ν b ⇔ ea = eb,

which determine the addition of R:

a+ b =


b if a <ν b,

a if a >ν b,

eb if a ∼=ν b.

The set T := R \ (eR) consists of the tangible elements of R, while the set G := (eR) \ {0} contains the

ghost elements. Nevertheless, the zero 0 = e0 is regarded mainly as a ghost. The semiring R itself is said

to be tangible, if eT = G, i.e., T generates R as a semiring. R is a supertropical semifield, if in addition

both T and G are multiplicative abelian groups [6, section 7].

We stay in a purely tropical setting, but since later we intend to use results from the supertropical

theory, we retain the supertropical notations, assuming that R = eR is a bipotent semifield, R = {0} ∪ G
with G a totally ordered abelian group. For formal reason, we enlarge R by an element ∞ to obtain a totally

ordered set R = R∪{∞}, with x < ∞ for all x ∈ R, on which the group G acts by multiplication with orbits

G, {0}, {∞}. We further extend the automorphism x 7→ x−1 by putting 0−1 = ∞, ∞−1 = 0. The addition

of R extends to addition R×R → R by the rule:

x+ y := max{x, y}.

We usually write R = [0,∞], where R = [0,∞[ is a bipotent semified (see the definition below). The product

0 · ∞ is not defined.

At various places, it will by helpful to have a bipotent semifield R̃ ⊃ R in which for every λ ∈ R and

n ∈ N there exists µ ∈ R̃ such that µn = λ.

Recall that for every n ∈ N the ‘n’th Frobenius map’ φn : R → R, φn(λ) = λn, is an isomorphism

form R to a subsemifield Rn = {λn | λ ∈ R,n ∈ N} of R. It follows that there is a bipotent semifield

R
1
n ⊃ R, unique up to isomorphism over R, such that

R = {λn | λ ∈ R
1
n }.

(As already done for n = 2 in [5, section 3].) We obtain a well-defined bipotent semifield:

R̃ =
⋃
n∈N

R
1
n ⊃ R,

where R
1
n ⊂ R

1
m if n|m. We call R̃ the root closure of R and say that R is root closed, if R = R̃. For

a given λ ∈ R, n ∈ N, we often denote the unique element µ of R̃ with µn = λ by n
√
λ or λ

1
n . For every

m,n ∈ N, we have the formula n
√
λm = λ

m
n .

An R-module V over a commutative supertropical semiring R is defined in the familiar way. A ray in V

is a class ̸= {0} of the equivalence relation:

x ∼r y ⇔ λx = µy for some λ, µ ∈ R \ {0}.
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We write X = ray(x) for the ray of a vector x ∈ V \ {0}, while Ray(V ) denotes the set of all rays in V ,

called the ray space of V .

The sets X0 := X ∪ {0}, Y0 := Y ∪ {0} are the smallest submodules of V containing the rays X and Y

respectively, while X0 + Y0 is the smallest submodule containing both X and Y . Clearly, the submodule

X0 + Y0 = (X + Y ) ∪ X ∪ Y ∪ {0},

is generated by X ∪ Y . The closed interval [X,Y ] is the set of all rays Z in X0 + Y0. The open interval

]X,Y [ is the set of all rays:

Z ⊂ X + Y := {x+ y | x ∈ X, y ∈ Y }.

Clearly, [X,Y ] = ]X,Y [ ∪ {X,Y }. The half-open intervals are as follows:

[X,Y [ := ]X,Y [ ∪ {X}, ]X,Y ] := ]X,Y [ ∪ {Y }.

CS-functions. In the sequel, we assume that a quadratic pair (q, b) is given on V , i.e., a quadratic form

q : V → R, and a bilinear companion, i.e., b : V × V → R, satisfying

q(x+ y) = q(x) + q(y) + b(x, y),

for all x, y ∈ V . We further assume (up to section 5) that q is anisotropic, i.e., q(x) ̸= 0 for x ̸= 0. For every

pair (x, y) in V \ {0}, we then have the CS-ratio:

CS(x, y) :=
b(x, y)2

q(x)q(y)
∈ R.

This CS-ration only depends on ray(x) and ray(y). Consequently, we define

CS(X,Y ) := CS(x, y)

for any rays X and Y and vectors x ∈ X and y ∈ Y .

A CS-function on the ray space Ray(V ) is a map:

f : Ray(V ) −→ R,

for which there exists a ray W ∈ Ray(V ) such that f(X) = CS(X,W ) for all X ∈ Ray(V ). CS-functions

determine functions:

fw : [0,∞] −→ R, w ∈ V \ {0},

which help understand parameterizations of intervals [Y1, Y2] by elements of R, cf. [8, section 7] and a revised

version in section 1 below. Each function fw induces a subdivision of [0,∞], over which the behaviour of

fw can be described explicitly by a monomial γλi (Proposition 1.5 and Theorem 1.7). Therefore, these

functions are special cases of piecewise monomial functions which can be compared (Theorem 2.6) and are

carefully analyzed below (Theorem 2.8).

Relying on our fine analysis and profiles of the CS-functions CS(W,−) on a fixed closed interval [Y1, Y2],

cf. [5, section 4 and section 5], we introduce a much more general partition of the ray space Ray(V ) into

convex sets which supports the notions ‘basic types’, ‘relaxations’, ‘composed types’, and ‘separation’. This
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study leads to a Sign Changing Theorem (Theorem 3.13) which serves as the main tool in our advanced

convex analysis.

‘Direct derivations’, as defined below (Definition 3.7), provide a notion of neighbors of a stratum, and

thereby a sequence of steps for a possible passage from one convex set to another convex set, considering

their types. Such steps are specified by junctions and butterflies, relied on the notion of a regular ray, and

provide a systematic process to build a sequence of steps (Construction 4.15, derived from Theorem 4.13,

Corollary 4.14, and Proposition 4.17). This process gives instances of special sets that are assigned to

each end point of an interval and can be enlarged by a wide formal saturation process which preserves basic

inclusion properties (Theorem 4.19). The initial construction is then extended in section 5 to closed intervals

with isotropic end points which contain an anisotropic ray in their interior and, consequently, consist entirely

of such rays.

An outlook. Much of the paper discusses functions f : Ray(V ) → R that are linear combinations of

CS-functions with coefficients in R\{0}. The set of all these functions is denoted by M. Given two functions

f, g ∈ M, we may ‘compare’ their restrictions to a closed interval [Y1, Y2], Y1 ̸= Y2. It turns out that there

is a succession of rays:

Z0 = Y1 <Y1
Z1 <Y1

· · · <Y1
Zr = Y2,

such that on each open interval ]Zi−1, Zi[ everywhere f < g, f = g, or f > g. To this end, we employ the

total ordering <Y1
on [Y1, Y2] appearing in [8, section 7], that is

Z ≤Y1
Z ′ ⇔ [Y1, Z] ⊂ [Y1, Z

′].

(There is a second total ordering <Y2
on [Y1, Y2] = [Y2, Y1], opposite to <Y1

.)

If, say, f < g on ]Zi−1, Zi[, we have f(Zi−1) < g(Zi−1) or f(Zi−1) = g(Zi−1), and f(Zi) < g(Zi)

or f(Zi) = g(Zi). Thus, the set {X ∈ [Zi−1, Zi] | f(X) < g(X)} is one of the sets [Zi−1, Zi], ]Zi−1, Zi],

[Zi−1, Zi[, ]Zi−1, Zi[ . These four options are exclusive, since R is a nontrivial dense totally ordered semifield,

cf. e.g., [8, Proposition 8.1]. If f > g on ]Zi−1, Zi[, we face the same situation with f and g interchanged.

This panorama leads to a seemingly large variety of membership problems in M. Given subsets B ⊂ L

of M, we look for a subset D ⊂ M, consisting of ‘simple functions’ in some sense, and a set J of closed

intervals [Y1, Y2] in Ray(V ), such that a given f ∈ L can be tested to be a member of B by comparing the

restrictions of f and functions g ∈ D to these intervals [Y1, Y2]. Such a pair (D, J) is termed a toolbox for

(B,L). The central question is: when does there exist an efficient toolbox for (B,L)?

Most CS-functions CS(W,−) on Ray(V ) can be combined linearly from ‘simpler’ CS-function CS(Wi,−)

in many ways. Indeed, choosing a vector w ∈ W and taking a linear combination w = λ1w1 + · · · + λrwt

with wi ∈ V \ {0}, λi ∈ R \ {0}, let Wi ∈ ray(wi) and

αi :=
q(λiwi)

q(w)
=

λ2
i q(wi)

q(w)
≤ e.

Then

CS(W,X) =

r∑
i=1

αi CS(Wi, X),

for any X ∈ Ray(V ), cf. [8, Lemma 5.1]. This formula underscores the importance of fixing B and L in M

precisely for a meaningful membership problem.
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Notation. Often, to simplify notations, we write x ∨ y for max(x, y) and x ∧ y for min(x, y),

taken with respect to a given ordering which is clear from the context.

1. Uniqueness in the parametrization of a closed ray interval. Let Y1 and Y2 be two different

rays on V . Choosing vectors ε1 ∈ Y1, ε2 ∈ Y2, we have a surjective map:

πε1, ε2 : [0,∞] −↠ [Y1, Y2],

defined by:

πε1, ε2(λ) := ray(ε1 + λε2),

cf. [8, section 7]. (Read πε1, ε2(∞) = Y2.) Furthermore, there is a partial ordering ≤Y1 on Ray(V ) defined

by:

Z ≤Y1
Z ′ ⇔ [Y1, Z] ⊂ [Y1, Z

′],

which restricts to a total ordering on [Y1, Y2], cf. [8, section 8]. It is evident that πε1, ε2 is an increasing

map from [0,∞] to [Y1, Y2] with respect to the two total orderings. Thus, it is a priori clear that for every

Z ∈ [Y1, Y2], the fiber π−1
ε1, ε2 is a convex subset of [0,∞].

We begin to determine some of these fibers explicitly by a careful look at the CS-functions restricted to

[Y1, Y2]. Given a vector w ∈ V \ {0}, we have

(1.1) CS(ε1 + λε2, w) :=
b(ε1, w)

2 + λ2b(ε2, w)
2

(α1 + α12λ+ α2λ2)q(w)
,

with α1 := q(ε1), α2 := q(ε2), and α12 := b(ε1, ε2). In the following, we assume for simplicity that R is

square closed, i.e., R = R
1
2 . Note that now the total ordering on R = [0,∞] is dense, since λ < µ implies

λ <
√
λµ < µ.

When b(ε1, w) = b(ε2, w) = 0, the function CS(ε1 +λε2, w) is zero on the entire set [0,∞] and will be of

no use for us. Therefore, we consider only vectors:

(1.2) w ∈ V \ ε⊥1 ∩ ε⊥2 ,

where ε⊥i := {x ∈ V | b(εi, x) = 0}. For these vectors w, we abbreviate

(1.3) fw(λ) :=
b(ε1, w)

2 + λ2b(ε2, w)
2

(α1 + α12λ+ α2λ2)q(w)
,

and obtain functions fw : [0,∞] → R which are nowhere zero on ]0,∞[ .

Definition 1.1. We say that an R-valued function f : C → R on a convex subset C of [0,∞] is

monomial, if

(1.4) f(λ) = γλj ,

for λ ∈ C, j ∈ Z, and fixed γ ∈ R \ {0}. We call j the monomial degree of f . Alternatively, we say that f

is λj-monomial.

Note that a monomial function f avoids the values 0 and ∞ on C∩ ]0,∞[ . Furthermore, f is either

strictly increasing (j > 0), strictly decreasing (j < 0), or constant (j = 0).
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Definition 1.2. We call a function f : [u, v] → R on a subinterval [u, v] of [0,∞] piecewise mono-

mial, or pm for short, if there is a monomial subdivision of [u, v], i.e., a finite sequence:

(1.5) u = α0 < α1 < · · · < αr = v,

in R, such that every restriction f |[αs−1, αs], 1 ≤ s ≤ r, is monomial.

We then have a sequence (j1, . . . , jr) of the monomial degrees of f on the intervals [αs−1, αs], 1 ≤ s ≤ r. If

in this sequence js = js+1 for some 1 ≤ s ≤ r, then f is monomial of degree js = js+1 on [αs−1, αs], and so

we can omit the point αs in (1.5). Repeating this process, we finally obtain a subdivision (1.5) of [u, v] in

which js ̸= js+1 for the monomial degrees of adjacent intervals [αs−1, αs], [αs, αs+1]. The obtained sequence

is called the reduced monomial subdivision of [u, v] with respect to the function f : [u, v] → R. The

sequence (j1, . . . , jr) of associated degrees is called the reduced degree sequence of f .

It is easily seen that the reduced monomial sequence and the reduced degree sequence are invariants of

the pm function. (Hint: Given two subdivisions (1.5), first pass to a common refinement.)

Remark 1.3. Given two pm functions f : [u, v] → R and g : [u, v] → R, and monomial subdivisions (1.5)

of [u, v] for f and for g, we can refine both subdivisions to a common monomial subdivision. Considering

this common monomial subdivision, it is clear that the functions 1
f , f + g = f ∨ g := max(f, g), and

f∧g := min(f, g), and fg are again pm. {These functions are defined pointwise in the naive sense (f+g)(λ) =

f(λ) + g(λ) etc.} Obviously,

(1.6) (f + g) · (f ∧ g) = fg.

We discuss in details the function fw from (1.3), always with w ∈ V \ε⊥1 ∩ε⊥2 , which are easily seen to be

pm. The nominator b(ε1, w)
2+λ2b(ε2, w)

2 in (1.3) is constant on [0, b(ε1,w)
b(ε2,w) ] and λ2-monomial on [ b(ε1,w)

b(ε2,w) ,∞],

provided that b(ε1,w)
b(ε2,w) ̸= 0, which occurs if b(ε1, w) = 0 and b(ε2, w) > 0. In this case, b(ε1, w)

2 + λ2b(ε2, w)
2

is λ2-monomial on [0,∞].

Considering the function:

(1.7) q(ε1 + λε2) = α1 + α12λ+ α2λ
2,

on [0,∞], we distinguish two cases:

Case 1 α1α2 < α2
12,

Case 2 α1α2 ≥ α2
12.

In Case 1, the term α1 in (1.7) is dominant iff α12λ ≤ α1 and α2λ
2 ≤ α1, i.e., λ ≤ α1

α12
∧
√

α1

α2
. This

simplifies to λ ≤ α1

α12
, since

α2
1

α2
12

< α1

α2
. The term α12λ in (1.7) is dominant iff α1 ≤ α12λ and α2λ

2 ≤ α1λ,

i.e., α1

α12
≤ λ ≤ α1

α2
. Finally, the term α2λ

2 is dominant iff α1 ≤ α2λ
2 and α12λ ≤ α2λ

2, i.e.,
√

α1

α2
+ α12

α2
≤ λ,

which simplifies to α12

α2
≤ λ.

In Case 2, the quadratic form q|Rε1 +Rε2 is quasilinear, and so

α1 + α12λ+ α2λ
2 = α1 + α2λ

2.

This function is constant on [0,
√

α1

α2
] and monomial of degree 2 on [

√
α1

α2
,∞].

We summarize this, also for later use.
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Lemma 1.4. (a) If α1α2 < α2
12, then the function q(ε1 + λε2) is constant on [0, α1

α12
], monomial of

degree 1 on [ α1

α12
, α12

α2
], and monomial of degree 2 on [α12

α2
,∞].

(b) If α1α2 ≥ α2
12, then the function q(ε1 + λε2) is constant on [0,

√
α1

α2
], and monomial of degree 2 on

[
√

α1

α2
,∞].

The symmetry in these statements is also clear from the fact that

(1.8) ray(ε1 + λε2) = ray(ε2 + λ−1ε1).

The above analysis of the nominator and denominator in (1.8) gives the following.

Proposition 1.5. (a) Let α1α2 < α2
12. Then, fw is constant on

Aw :=

[
0,

b(ε1, w)

b(ε2, w)
∧ α1

α12

]
,

and on

Cw :=

[
b(ε2, w)

b(ε1, w)
+

α12

α2
, ∞

]
.

On

Bw :=

[
b(ε1, w)

b(ε2, w)
∧ α1

α12
,
b(ε2, w)

b(ε1, w)
+

α12

α2

]
,

fw is pm and not constant on any subinterval.

(b) Let α1α2 ≥ α2
12. Then fw is constant on

Aw :=

[
0,

b(ε1, w)

b(ε2, w)
∧
√

α1

α2

]
,

and on

Cw :=

[
b(ε2, w)

b(ε1, w)
+

√
α2

α1
, ∞

]
.

On

Bw :=

[
b(ε1, w)

b(ε2, w)
∧
√

α1

α2
,
b(ε2, w)

b(ε1, w)
+

√
α2

α1

]
.

fw is pm without being constant on any subinterval, provided that Bw is not a singleton. If Bw is a

singleton, then fw is constant on [0,∞].

Proof. The nominator in (1.3) has the reduced degree sequence (0, 2), while the dominator has the

reduced degree sequence (0, 1, 2) in Case 1 and (0, 2) in Case 2. Constance of fw happens on the convex

sets, where the monomial degrees of the nominator and the denominator coincide. This gives all claims.

Definition 1.6. Given rays Y1, Y2, we say that the parameter λ0 ∈ [0,∞] is unique to the right for

(Y1, Y2), if

(1.9) ray(ε1 + λε2) ̸= ray(ε1 + λ0ε2),

for λ > λ0 and all ε1 ∈ Y1, ε2 ∈ Y2. We say that λ0 is unique to the left for (Y1, Y2), if (1.9) holds for

λ < λ0 and all ε1 ∈ Y1, ε2 ∈ Y2. When both properties are valid, i.e., π−1(π(λ0)) = {λ0} for π = πε1, ε2 , we

say that λ0 is unique for (Y1, Y2).
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With this terminology, Proposition 1.5 has the following obvious consequence.

Theorem 1.7. Let Y1 and Y2 be different rays in V , and in the notations of Proposition 1.5 let Bw =

[uw, vw] for w ∈ V \ ε⊥1 ∩ ε⊥2 (e.g., if α1α2 < α12, then uw = b(ε1,w)
b(ε2,w) ∧

α1

α12
). Then λ0 ∈ [0,∞] is unique to

the right for (Y1, Y2), if there exists some w ∈ V \ ε⊥1 ∩ ε⊥2 for which λ0 ∈ ]uw, vw], and λ0 is unique to the

left, if there exists such vector w with λ0 ∈ [uw, vw[.

2. Piecewise monomial functions in the ray space. In the following, for simplicity, we always

assume that R is root closed. Let C be a convex subset of Ray(V ) and assume that Y1 and Y2 are different

rays in C. After a choice of vectors ε1 ∈ Y1 and ε2 ∈ Y2, we have the parametrization:

πε1, ε2 : [0,∞] −↠ [Y1, Y2], λ 7→ ray(ε1 + λε2),

as studied in section 1.

Definition 2.1. We say that a function F : C → R is monomial of degree i on [Y1, Y2], or λi-

monomial, if the map

Fε1, ε2 := F ◦ πε1, ε2 : [0,∞] −↠ R,

is λi-monomial. We call F piecewise monomial on [Y1, Y2], or pm for short, if Fε1, ε2 is pm on [0,∞],

as defined in section 1.

Example 2.2. Given a ray W in V , the R-valued function X 7→ CS(X,W ) on Ray(V ) is pm on every

interval [Y1, Y2] with Y1 ̸= Y2, for which w /∈ V \ ε⊥1 ∩ ε⊥2 for fixed vectors w ∈ W , ε2 ∈ Y1, ε2 ∈ Y2, as is

clear from section 1, cf. Proposition 1.5.

Comment 2.3. The functions Fε1, ε2 depend on the choice of the vectors ε1, ε2 in Y1, Y2. If ε1, ε2 are

replaced by other vectors ε′1, ε
′
2 in Y1, Y2, then ε′1 = ρ1ε1, ε

′
2 = ρ2ε2 with ρ1, ρ2 ∈ G, and so

πρ1ε1, ρ2ε2(λ) = πε1, ε2

(
ρ1
ρ2

λ

)
, Fρ1ε1,ρ2ε2(λ) = Fε1,ε2

(
ρ1
ρ2

λ

)
.

Nevertheless, the properties considered in Definition 1.1 are independent of the choice of the εi. To avoid

distraction by the dependence on the choice of the εi, which for most issues is irrelevant, we change our view

point. We regard Y1 and Y2 as pointed rays with base points εi, Yi = Gε1, and write

πY1, Y2
: [0,∞] −↠ [Y1, Y2], FY1, Y2

= F ◦ πY1, Y2
,

instead of πε1, ε2 . Thus, we work with pointed rays, but abusively still call them ‘rays’.

If F is pm on [Y1, Y2], then we can choose a finite sequence:

(2.1) 0 ≤ α0 < α1 < · · · < αr ≤ ∞,

in [0,∞] such that F (α0) = Y1, F (αr) = ∞, and F |[αs−1, αs] is monomial of some degree js for 1 ≤ s ≤ r.

Then, F takes constant value Y1 on [0, α0] and constant value Y2 on [αr,∞]. We could always take α0 = 0,

αr = ∞. But the present setting has more flexibility.

Again, (2.1) is called a monomial subdivision of [α0, αr] for F . Any two such monomial subdivisions

can be refined to a third monomial subdivision. On the other hand, we can reduce (2.1) to a sequence where

adjacent monomial degrees are different, called the reduced monomial subdivision, and so have a unique

reduced monomial degree sequence for F on [Y1, Y2]. If (2.1) is the reduced monomial subdivision,

then [0, α0] is the unique maximal interval on which F has constant value Y1. As consequence of Remark 1.3,

we obtain
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Remark 2.4. If F and G are R-valued functions on a convex subset C of Ray(V ), and are pm on a ray

interval [Y1, Y2], then the functions 1
F , F +G = F ∨G := max(F,G), F ∧G := min(F,G), and FG are again

pm on [Y1, Y2], and

(F +G)(F ∧G) = FG.

Proposition 2.5. If F : C → R is piecewise monomial or λi-monomial on [Y1, Y2], then F has the

same property on every subinterval [Z1, Z2] of [Y1, Y2].

Proof. Starting with a monomial subdivision (2.1) of [Y1, Y2] for F , we write

Z1 = ray(ε1 + ζε2), Z2 = ray(ε1 + ηε2),

with α0 ≤ ζ < η ≤ αr, ε1 ∈ Y1, ε2 ∈ Y2. Given µ ∈ R, we have

ray
(
(ε1 + ζε2) + µ(ε1 + ηε2)

)
= ray

(
(1 + µ)ε1 + (ζ + µη)ε2

)
= ray

(
ε1 +

(ζ+µη)
(1+µ) ε2

)
.

Now observe that

(ζ + µη)

(1 + µ)
=


ζ if µ ≤ ζ

η ,

µη if ζ
η ≤ µ ≤ 1,

η if 1 ≤ µ.

Thus,

g(µ) := FZ1, Z2(µ) =


f(ζ) if 0 ≤ µ ≤ ζ

η ,

f(µη) if ζ
η ≤ µ ≤ 1,

f(η) if 1 ≤ µ ≤ ∞.

Consequently, using the base points ε1 + ζε2 and ε1 + ηε2 for Z1 and Z2, we obtain a monomial subdivision

for F on [Z1, Z2], starting with 0 < ζ
η and ending with 1 < ∞ for the parameter λ. If f(λ) = γλi for

f = F ◦ πY1, Y2 on a subinterval [u, v] of [ζ, η] ∩ [α0, αr], then

(2.2) g(µ) = γηiµi,

on [u, v].

Theorem 2.6. Assume that F : [Y1, Y2] → R is a piecewise monomial function.

(a) The image of F is a closed subinterval [ρ, σ] of [0,∞]. If f = FY1, Y2
and

α0 < α1 < α2 < · · · < αr,

is a finite sequence such that f(α0) = Y1 and f(αr) = Y2 in [0,∞], and f is monomial on each

interval [αs−1, αs], 1 ≤ s ≤ r, then

(2.3) ρ =
∧

0≤s≤r

f(αs), σ =
∨

0≤s≤r

f(αs).

(b) If φ is a piecewise monomial R-valued function on an interval [u, v] in [0,∞], which contains [ρ, σ],

then the function φ ◦ F : [Y1, Y2] → R is again piecewise monomial.
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Proof. (a): The function f=FY1, Y2 maps each interval [αs−1, αs] onto a closed interval Is = f([αs−1, αs]),

perhaps degenerated to a one-point set, and Is−1 ∩ Is ̸= ∅ for s > 0. Thus,

f
(
[αs−1, αs]

)
=

n⋃
s=1

Is,

is again a closed interval. More precisely, Is = [f(αs−1), f(αs)] if f(αs−1) < f(αs), Is = [f(αs), f(αs−1)] if

f(αs) < f(αs−1), and Is = {f(αs)} if f(αs−1) = f(αs). This implies claim (2.3).

(b): There is nothing to do if ρ = σ. Assume that ρ < σ. Replacing the pm function φ by its restriction

to [ρ, σ], we also assume that [u, v] = [ρ, σ]. We refine the set {f(α0), . . . , f(αr)}, arranged to an ascending

sequence

ρ = u0 < u1 < · · · < um = σ,

by adding finitely many points in [ρ, σ] such that φ is monomial on each interval [uj−1, uj ], 1 ≤ j ≤ m. We

prove that φ ◦ f is piecewise monomial on each interval [αs−1, αs] and then will be done.

If f(αs−1) = f(αs), then φ ◦ f is constant on [αs−1, αs]. Assume that f(αs−1) < f(αs). If there is no

point uj in ]f(αs−1), f(αs)[ , then φ ◦ f is monomial on [αs−1, αs]. Otherwise, we have a finite subsequence:

f(αs−1) = uk < uk+1 < · · · < uℓ = f(αs),

of (u0, . . . , um). The function f maps [αs−1, αs] bijectively onto [f(αs−1), f(αs)], since f is λi-monomial on

[αs−1, αs] with i > 0 and R
1
i = R. Thus, there is a unique sequence:

αs−1 = βs,k < βs,k+1 < · · · < βs,ℓ = αs,

with f(βs,t) = µt for k ≤ t ≤ ℓ. Now φ ◦ f is a monomial on each interval [βs,t−1, βs,t], k + 1 ≤ t ≤ ℓ, since

f is monomial on this interval and φ is monomial on its image [ut−1, ut] under f . Thus, φ ◦ f is pm on

[αs−1, αs]. If f(αs) < f(αs−1), we argue with

f(αs) = uk < uk+1 < · · · < uℓ = f(αs−1),

and obtain again that φ ◦ f is pm on [αs−1, αs].

Our next goal is to ‘compare’ R-valued pm functions on parts of a closed interval.

Definition 2.7. We say that two R-valued functions F and G on a subset D of Ray(V ) are compa-

rable, if F ≤ G or F ≥ G (everywhere) on D, and that F and G are strictly comparable, if F < G,

F = G, or F > G (everywhere) on D. More generally, we say that R-valued functions F1, . . . , Fr on D are

comparable (resp. strictly comparable), if any two of the Fi’s are comparable (resp. strictly comparable).

Theorem 2.8. Assume that Y1 ̸= Y2 are rays in V , that F : [Y1, Y2] → R is a λi-monomial function,

and that G : [Y1, Y2] → R is a λj-monomial function (i, j ∈ Z).

(a) If i = j, then F and G are strictly comparable.

(b) If F and G are comparable, but not strictly comparable, and F (Y1) ̸= G(Y1), F (Y2) ̸= G(Y2), then

there is a unique ray Z in ]Y1, Y2] such that F < G everywhere on [Y1, Z[ and F = G on [Z, Y2].

(c) If F and G are not comparable, there is a unique ray Z in ]Y1, Y2[ such that F and G are strictly

comparable on [Y1, Z[ and on ]Z, Y2].
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Proof. Let f = FY1, Y2 , g = GY1, Y2 . We work with monomial subdivisions for F and G on the whole set

[0,∞]. For λ ∈ [0,∞], we have f(λ) = γλi, g(λ) = δλj with fixed γ, δ ∈ G.

If i = j, then trivially F < G if γ < δ, F = G if γ = δ, and F > G if γ > δ. Assume that i ̸= j. For

each sign 2 ∈ {<,=, >} and λ ∈ ]0,∞[, we have

(2.4) f(λ) 2 g(λ) ⇔ γλi 2 δλj ⇔ λi−j 2
δ

γ
.

If F and G are not comparable, then all three signs <,=, > occur here, and we infer from (2.4) that F and

G are strictly comparable on [Y1, Z[ and ]Z, Y2] with

(2.5) Z = ray

(
ε1 +

k

√
δ

γ
ε2

)
= ray

(
k
√
γε1 +

k
√
δε2

)
,

in case i > j,

(2.6) Z = ray

(
ε1 +

k

√
γ

δ
ε2

)
= ray

(
k
√
δε1 + k

√
γε2

)
,

in case i < j, where k = |i− j| in both cases.

If F ≤ G, but not F < G, then on (2.4) the signs < and = occur, but not >, and we infer that F < G

on [Y1, Z[, F = G on [Z, Y2[ where Z is again the ray in (2.6).

Remark 2.9. If F and G are comparable and F < G everywhere on [Y1, Z[, F = G on [Z, Y2], as described

in Theorem 2.8.(b), then [Y1, Z[ is not a closed interval. In other words, [Y1, Z
′] ̸= [Y1, Z[ for every ray Z ′ in

[Y1, Z[. Likewise, for the ray Z appearing in Theorem 2.8.(c), neither [Y1, Z[ nor ]Z, Y2] is a closed interval.

All this is clear from (2.4) in the proof of Theorem 2.8, since the function λ 7→ λi−j on ]0,∞[ is strictly

monotone.

If F and G are R-valued functions on a set D ⊂ Ray(V ), we define the functions F ∨ G = max(F,G) and

F ∧G = min(F,G) on D in the obvious way:

∨ := max : x 7→ F (x) ∨G(x), ∧ := min : x 7→ F (x) ∧G(x).

Note that F ∨G = F +G and that

(2.7) (F +G) · (F ∧G) = FG.

Theorem 2.10. Assume that F and G are R-valued pm functions on [Y1, Y2] and that R is root closed.

Then, the functions F +G = F ∨G and F ∧G are again pm on [Y1, Y2].

Proof. Let f = FY1,Y2
, g = GY1,Y2

. We have a sequence α0 < α1 < · · · < αr in [0,∞] with f(α0) =

g(α0) = Y1, f(αr) = g(αr) = Y2, such that both f and g are monomial on each interval [αs−1, αs]. Let

Zs := ray(ε1 + αsε2). By Theorem 2.8, we have rays Ts in [Zs−1, Zs] such that F and G are comparable on

[Zs−1, Ts] and on [Ts, Zs], 1 ≤ s ≤ r, and so either F + G = F , F ∧G = G, or F + G = G, F ∧G = F on

each of these intervals.

Corollary 2.11. Assume that R is root closed, and that F1, . . . , Fr are piecewise monomial functions

on a closed interval [Y1, Y2]. Then, there is a finite sequence:

Y1 = Z0 <Y1 Z1 <Y1 · · · <Y1 Zr = Y2,

in [Y1, Y2] such that F1, . . . , Fr are strictly comparable on each open interval ]Zi−1, Zi[, 1 ≤ i ≤ r.
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Proof. The case of n = 2 is obtained from Theorem 2.8 by arguing as in the proof of Theorem 2.10.

The case of r > 2 follows by an easy induction.

3. Partitions of Ray(V ) into convex sets by linear combinations of CS-functions. In [5, section

4 and section 5], we introduced a partition of Ray(V ) into convex sets according to the profiles of the CS-

functions CS(W,−) on a fixed closed interval [Y1, Y2]. We elaborate this study by constructing much more

general partitions of Ray(V ) into convex sets, where the notion of ‘basic types’, ‘relaxations’, and ‘composed

types’ still make sense. As before, we assume that R is root closed, i.e., R = R̃, and that the quadratic from

q on the R-module V is anisotropic.

Definition 3.1. Given a finite set of rays S = {Y1, . . . , Yn} in V , we call an R-valued function f on

Ray(V ) S-basic, if f is a linear combination of the CS-functions CS(Y1,−), . . . , CS(Yn,−),

(3.1) f =

n∑
j=1

γj CS(Yj ,−),

with γj ∈ R = eR.

We pick a finite set B = {f1, . . . , fm} of S-basic functions and study the partition of Ray(V ) into nonempty

sets:

(3.2)
⋂

1≤i<j≤m

{X ∈ Ray(V ) | fi(X) 2i,j fj(X)},

with signs 2i,j in {<,=, >}, called the B-partition of Ray(V ).

The prescription of the set S is just a convention to fix ideas. Any finite set B in the R-module∑
Y R · CS(Y,−) with Y running through Ray(V ) appears in this way.

Definition 3.2. A basic type T for a family B, or B-type for short, is a conjunction1

(3.3) T =
∧

1≤k<ℓ≤m

fk(X) 2k,ℓ fℓ(X),

where X is a formal variable for rays in V , with signs 2k,ℓ in {<,=, >}, which is not contradictory, i.e.,

can be satisfied by some ray in V .

A relaxation U of T is a formula where some of the signs <,> appearing in (3.3) are replaced by ≤,≥
respectively. Then,

(3.4) U = T1 ∨ · · · ∨ Tr,

with unique basic types T1, . . . , Tr, up to permutations, called the components of U and T being one of

them. Finally, we call a basic type T ′, which is a component of some relaxation of T , a type derived from

T , or a derivate of T .

In parallel, for each basic B-type, we introduce the set:

(3.5) {T} := {X | X |= T},

1The symbol
∧

here stands for formal conjunction, as custom in logic.
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called the stratum of T , by which we mean the subset of all rays in V satisfying the formula T . (The word

‘stratum’ will be justified later.) For a relaxation U of {T}, we introduce the set:

(3.6) {U} := {X | X |= U},

called the relaxation set of U .

Note that, if U = T1 ∨ · · · ∨ Tr with basic types T1, . . . , Tr, then

(3.7) {U} = {T1} ∪ · · · ∪ {Tr}.

The strata {Ti}, with Ti a component of some relaxation U of T , are said to be derived from {T}, or
derivates of {T}.

Theorem 3.3. If T is a basic B-type and U is a relaxation of T , then both {T} and {U} are convex

subsets of Ray(V ).

Proof. This is a direct consequence, in fact a reformulation, of the CS-Convexity Lemma [5, Lemma 5.4].

Given different rays Y1 and Y2 in V and a basic type T , we denote the set [Y1, Y2], equipped with the

total ordering ≤Y1
, by

−−−−→
[Y1, Y2], and call it an oriented closed ray interval. We define the T -locus of

−−−−→
[Y1, Y2] as the set of all rays W in V which have a W -profile of type T on

−−−−→
[Y1, Y2] and denote this subset

of Ray(V ) by LocT(Y1,Y2), cf. [5, Definition 5.5].

Example 3.4. Assume that S = {Y1, Y2} with Y1 ̸= Y2. We choose B as follows:

(a) If CS(Y1, Y2) ≤ e, B consists of the three functions: 0, CS(Y1,−), CS(Y2,−).

(b) If CS(Y1, Y2) > e, B consists of the five functions: 0, CS(Y1,−), CS(Y2,−), CS(Y1,−)
CS(Y1,Y2)

, CS(Y2,−)
CS(Y1,Y2)

.

From the list of basic types T of CS-profiles on
−−−−→
[Y1, Y2] in [5, section 4] and their relaxations, we infer

that

{T} = LocT(Y1,Y2), {U} = LocU(Y1,Y2),

for a basic B-type and a relaxation U of T in the present sense, cf. [5, Definition 5.5]. Thus, we have

obtained the same partition of Ray(V ) into convex sets as in [5, section 5] and the same relaxation sets.

Given a finite set B of S-basic functions on Ray(V ), we next study the restriction of the B-partition to

a closed interval [W,W ′]. If T is a basic B-type, let

(3.8) [W,W ′]T := [W,W ′] ∩ {T}.

Provided that this set is not empty, it is called the trace of {T} on [W,W ′]. Since Ray(V ) is the disjoint

union of all B-strata, the set [W,W ′] is the disjoint union of all these sets [W,W ′]T . Assume that W ∈ {T}
and W ′ ∈ {T ′} where T ̸= T ′, i.e., [W,W ′] is not contained in one B-stratum {T}. The traces of B-strata

on [W,W ′] are pairwise disjoint convex subsets of [W,W ′]. Since [W,W ′] is totally ordered with respect

to ≤W (recall that X ≤W Y ⇔ [W,X] ⊂ [W,Y ]), it is trivial that the traces of B-strata on [W,W ′] appear

in an ordered sequence (< means <W ):

(3.9) [W,W ′]T0 < [W,W ′]T1 < · · · < [W,W ′]Ts ,

with T0 = T and Ts = T ′.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 531-558, September 2022.

Z. Izhakian and M. Knebusch 544

We pose two questions.

Question A Are the sets [W,W ′]Tk
intervals? If so, of which kind?

Question B If T ′ is derived from T (i.e., a component of the relaxation U of T ), how do the sequences

(T0, . . . , Ts) change when we vary W in {T} and W ′ in {T ′}?

We first study the case that B = {f1, f2} consists of only two S-basic functions. (As before, we assume

that R is root closed.) There exist at most three basic types, (f1 < f2), (f1 = f2), (f1 > f2), which we label

T0, T1, T2. Let [W,W ′] be an interval with f1(W ) < f2(W ), then f1(W
′) = f2(W

′) if there are two strata,

and f1(W
′) > f2(W

′) if there are three. {T0} is the stratum containing W , while T1 = {f1 = f2}, resp.
T2 = {f1 > f2} is the stratum containing W ′.

Lemma 3.5. We have the following facts:

(a) Assume that f1(W ) < f2(W ), f1(W
′) = f2(W

′), and so U := (f1 ≤ f2) is a relaxation of T0 :=

(f1 < f2), with an additional component T1. Then, there is a unique ray Z in [W,W ′] such that

f1 < f2 on [W,Z[ , f1 = f2 on [Z,W ′]. The set [W,Z[ is not a closed interval. In other words,

[W,Z ′] ̸= [W,Z[ for any Z ′ in [W,Z[. It may happen that Z = W ′ and so [Z,W ′] = {W ′}.
{We here regard a singleton {X} solely as a closed interval, deviating from thee terminology in [7,

Formula (7.5)], where {X} is also counted as an open and half-open interval.}
(b) Assume that f1(W ) < f2(W ), f1(W

′) > f2(W
′). Then there are two rays Z1, Z2 in [W,W ′] such

that

[W,W ′]T0 = [W,Z1[, [W,W ′]T1 = [Z1, Z2], [W,W ′]T2 =]Z2,W
′].

Neither [W,Z1[ nor ]Z2,W
′] is a closed interval. The basic type T1 = (f1 = f2) is a derivate of both

T0 and T2, but, of course, neither T0 is a derivate of T2 nor T2 is a derivate of T0.

Proof. (a): We infer from Theorem 2.8.(b) and Remark 2.9 that the claims in (a) hold in the case that f1
and f2 are monomial functions. Otherwise, we have a finite sequence (< means <W ):

A = W0 < W1 < · · · < Ws−1 < Ws = W ′

such that both f1 and f2 are monomial on each interval [Wr,Wr+1], 0 ≤ r ≤ s − 1. U := (f1 ≤ f2) is a

relaxation of T0 = (f1 < f2), whence {U} is a convex set. It containsW ′ and so [W,W ′] ⊂ {U}. In particular,

f1(Wk) ≤ f2(Wk) for 0 ≤ k ≤ s. Thus, there exists an index r ≤ s− 1 such that f1 < f2 on [W,Wr], f1 = f2
on [Wr+1,W

′]. Since both f1, f2 are monomial on [Wr,Wr+1], there is, again by Theorem 2.8.(b), a unique

ray Z ∈ ]Wr,Wr+1[ such that f1 < f2 on [Wr, Z[, f1 = f2 on [Z,Wr], and further [Wr, Z
′] ̸= [Wr, Z[ for

Wr ≤ Z ′ ≤ Z with respect to ≤Wr
. Since the ordering ≤W restricts to ≤Wr

on [Wr,W
′], it follows that

f1 < f2 on [W,Z[, f1 = f2 on [Z,W ′], and [W,Z ′] ̸= [W,Z[ for Z ′ in [W,Z], proving our claims in part (a).

(b): In the case that f1, f2 are monomial, our claims in (b) are clear from Theorem 2.8.(c), there with

[Z1, Z2] = {Z}. The general case follows by arguing as in the proof of part (a).

Theorem 3.6. Let T and T ′ be different basic types for a set B = {f1, . . . , fn} of S-basic functions.

Assume that there exist rays W ∈ {T}, W ′ ∈ {T ′} with

(3.10) [W,W ′] ⊂ {T} ∪ {T ′}.

Then there exists a unique ray Z ∈ [W,W ′] such that
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1. [W,W ′]T = [W,Z[, [W,W ′]T ′ = [Z,W ′], or

2. [W,W ′]T = [W,Z], [W,W ′]T ′ =]Z,W ′].

In case (1) T ′ is derived from T , while in case (2) T is derived from T ′. In both cases, the set {T}∪ {T ′} is

convex, and so (3.10) holds for every pair (W,W ′) with W ∈ {T}, W ′ ∈ {T ′}. U := T ∨ T ′ is a relaxation

of T in case (1) and a relaxation of T ′ in case (2).

Proof. We have the partition:

[W,W ′] = [W,W ′]T ∪̇ [W,W ′]T ′ .

Both sets on the right-hand side are closed or half-open intervals. This forces that there is a ray Z for which

(1) or (2) holds. Suppose we are in case (1). Let i, j ∈ {1, . . . , n} with fi(W ) < fj(W ). Then, (fi < fj)

occurs in the formula T and so fi < fj on [W,Z[ .

If (fi > fj) would occur in the formula T ′, then fi > fj in ]Z,W ′], but this contradicts Lemma 3.5.(b).

Thus, (fi < fj) or (fi = fj) occurs in T ′. This proves that U := T ∨ T ′ is a relaxation of T , whence T ′ is a

derivate of T and {U} = {T} ∪ {T ′} is convex.

Case (2) is obtained from Case (1) by interchanging W and W ′, and we are done also in this case.

Definition 3.7. In the setup of Theorem 3.6, we say that the strata {T} and {T ′} are neighbors and

that T ′ is a direct derivate of T , respectively, and T is a direct derivate of T ′.

Corollary 3.8. Two different strata {T} and {T ′} are neighbors iff the set {T} ∪ {T ′} is convex.

Proof. This is a immediate consequence of Theorem 3.6.

Remark 3.9. We state some facts about relaxations of a basic B-type T , which now are evident.

(a) Given a derivate T ′ of T , there is a unique minimal relaxation U of T with component T ′,

in the sense that {U} ⊂ {U1} for every other relaxation U1 of T with component T ′. It is the

conjunction of all formulas (fi < fj) and (fi = fj) which appear in both T and T ′, and the formulas

(fi ≤ fj) such that (fi < fj) appears T , but (fi = fj) appears in T ′, i, j ∈ {1, . . . , n}. We denote

this minimal relaxation U by U(T, T ′).

(b) If U0 is a relaxation of T with component T1 and U1 is a relaxation of T1 with component T2, then

U0 ∨ U1 is a relaxation of T with component T2.

(c) If T1 is a derivate of T and T2 is a derivate of T1, then T2 is a derivate of T (but we cannot exclude

the possibility that U(T, T ′) has more components than T, T1, T2, cf. Remark 3.15 below).

(d) If T ′ is a direct derivate of T , then

U(T, T ′) = T ∨ T ′.

We aim for a more intuitive description of the restriction of the B-partition to a closed interval [W,W ′]

by using the terminology of neighbors and direct derivates in Definition 3.7.

Convention 3.10. In order not to get distracted by formalities, we use the letters T, T ′, . . . both for

basic B-types and the associated sets {T}, {T ′}, . . . 2, still calling these sets ‘strata’.

We introduce a sequence of ‘separation rays’ as follows. If [W,W ′] is contained in a stratum, there

are no separation rays. Assume that W ∈ T , W ′ ∈ T ′ for different strata T and T ′. The strata meeting the

set [W,W ′] appear in a sequence:

2This habit is common in model theory, which we adopt, to denote a definable set and a formula defining it in the same

way.
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(3.11) T = T0, T1, . . . , Ts = T ′,

with

(3.12) [W,W ′] ∩ Ti ≤W [W,W ′] ∩ Ti+1,

for 0 ≤ i ≤ s. To easer the exposition, we write [W,W ′] ∩ Ti instead of [W,W ′]Ti
, cf. (3.8). In each set

[W,W ′] ∩ Ti, 0 ≤ i ≤ s, we pick a ray Wi, choosing W0 = W , Ws = W ′.

The strata Ti and Ti+1 are neighbors, since [Wi−1,Wi] ⊂ Ti−1 ∩ Ti. By Theorem 3.6, we have the

following alternatives for each i > 0.

Case 1

[Wi−1,Wi] ∩ Ti−1 = [Wi−1, Zi[, [Wi−1,Wi] ∩ Ti = [Zi,Wi].

Case 2

[Wi−1,Wi] ∩ Ti−1 = [Wi−1, Zi], [Wi−1,Wi] ∩ Ti =]Zi,Wi].

In case 1 Ti is a direct derivate of Ti−1, while in Case 2 Ti−1 is a direct derivate of Ti.

Definition 3.11. We call the rays Z0, Z1, . . . , Zs appearing above the separating rays for B

on [W,W ′].

If [W,W ′] meets more than two strata (i.e., s ≥ 2), we can locate the separating rays Zi, 0 ≤ i ≤ s, without

referring to the case distinction above as follows.

Remark 3.12. Z0, Z1, . . . , Zs are the unique rays in [W,W ′] with

]Zi−1, Zi[ ⊂ Ti ∩ [W,W ′] ⊂ [Zi−1, Zi],

for 0 < i < s.

Let fi, fj ∈ B be given, 1 ≤ i, j ≤ n, i ̸= j, and assume that [W,W ′] is not contained in a single

stratum. We thus have the sequence T = T0, . . . , Ts = T ′ of strata with W ∈ T , W ′ ∈ T ′, and the sequence

of separating rays Z0, Z1, . . . , Zs, as discussed above. Recall that fi 2i,j,k fj on each Tk with a constant sign

2i,j,k ∈ {<,=, >}.

We are interested in the distribution of these signs 2i,j,k on [W,W ′]. We distinguish the cases:

(a) fi(W ) < fj(W ), fi(W
′) = fj(W

′),

(b) fi(W ) < fj(W ), fi(W
′) > fj(W

′).

The other possibilities of signs between fi(W ), fj(W ) and fi(W
′), fj(W

′) can be reduced to these cases (a)

and (b) by interchanging fi and fj and/or W and W ′.

Theorem 3.13 (Sign Changing Theorem).

(a) If fi(W ) < fj(W ) and fi(W
′) = fj(W

′), then there is an index k, 0 < k ≤ s such that

fi < fj on T0 ∪ · · · ∪ Tk−1,

fi = fj on Tk ∪ · · · ∪ Ts,

and
{fi < fj} ∩ [W,W ′] = [W,Zk−1[,

{fi = fj} ∩ [W,W ′] = [Zk,W
′].
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(b) If fi(W ) < fj(W ) and fi(W
′) > fj(W

′), then there are indices k, ℓ, 0 < k < ℓ ≤ s such that

fi < fj on T0 ∪ · · · ∪ Tk−1,

fi = fj on Tk ∪ · · · ∪ Tℓ−1,

fi > fj on Tℓ ∪ · · · ∪ Ts,

and
{fi < fj} ∩ [W,W ′] = [W,Zk−1[,

{fi = fj} ∩ [W,W ′] = [Zk, Zℓ],

{fi > fj} ∩ [W,W ′] =]Zℓ,W
′].

Proof. (a): By Lemma 3.5, there is a ray Z in [W,W ′] such that fi < fj on [W,Z[ and fi = fj on [Z,W ′].

Since on every set Tr ∩ [W,W ′], we have a constant sign fi < fj or fi = fj , it is evident that Z = Zk. Now

all claims in part (a) are evident.

(b): By Lemma 3.5, we have two rays Z ′, Z ′′ in [W,W ′] such that fi < fj on [W,Z ′[, fi = fj on [W,Z ′], and

fi > fj on ]Z ′,W ′]. This forces Z ′ = Zk, Z
′′ = Zℓ, and gives all the claims in part (b).

Corollary 3.14. Given two strata T ̸= T ′ with T ′ a derivate of T , there is a sequence of strata

T0 = T, T1, . . . , Ts = T ′ such that Tk is a direct derivate of Tk−1, for k = 1, . . . , s

Proof. We choose rays W ∈ T and W ′ ∈ T ′. Given two different functions fi, fj in B, we may assume

that fi(W ) < fj(W ), perhaps interchanging fj and fj . Now we are in case (a) of Theorem 3.13. Either the

pair (fi, fj) has the same sign, < or =, on each Tk, 0 ≤ k ≤ s, or changes sign from < to = from Tk−1 to Tk

at exactly one k, 1 ≤ k ≤ s. This test, done with all sets {fi, fj}, proves that each Tk is a direct derivate

of Tk−1.

It may happen that for two different strata T and T ′ with T ′ a derivate of T , there are several sequences

T0, . . . , Ts of consecutive direct derivates with T = T0 and T ′ = Ts. We document this by writing down the

chart of all direct derivates in Example 3.4.(b) for the ascending basic types listed in [7, section 7]. We mark

a direct derivation T ′ of a stratum T by an arrow T → T ′.

Remark 3.15. Assume that Y1 and Y2 are rays with CS(Y1, Y2) > e and B consists of the five functions

in Example 3.4.(b). By [7, Table 4.4], we have the ascending basic types A, ∂A,B, ∂B,E, ∂E and obtain

from the list of relaxations in [7, Scholium 4.6] the chart of direct derivations:

(3.13)

A //

!!

E

""
∂A // ∂E

B //

==

∂B

<<

Thus, we have two sequences of direct derivations (A,E, ∂E) and (A, ∂A, ∂E) from A to ∂E and two such

sequences (B, ∂A, ∂E) and (B, ∂B, ∂E) from B to ∂E.

Comment 3.16. We now have the means at hands to convey the idea that the B-partition of Ray(V ) is

a tropical analog of various classical notions of stratification in differential topology and elsewhere, e.g., real

semialgebraic geometry [1, section 9]. We view an interval [W,W ′] or [W,W ′[ with its total ordering ≤W as

a ‘curve’, where a ray X travels from W to W ′.
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Assume that T ′ is a direct derivate of T . For any curve [W,W ′] with W ∈ T , W ′ ∈ T ′, there is a first

ray Z with Z ∈ T ′, i.e., [W,Z[⊂ T , [Z,W ′] ⊂ T ′. This is reminiscent of various curve selection properties

in classical theories. To locate the strata in the boundary of a given stratum, or special points of them: [W,Z[

is a curve in T with a limit ray Z in T ′. Every direct derivate of T can be located by such a curve [W,Z[.

The reader may feel irritated by the primitive shape of this curve selection property. But note that we

are in a very special situation. Our basic predicates are formulas f 2 g for two functions f, g where 2 is

one of the signs <,=, >, and the functions f and g are R-linear combinations of CS-functions so that each

set {X | f(X) 2 g(X)} is convex in Ray(V ).

It is natural to study such ‘comparison sets’ {X | f(X) 2 g(X)} for functions f and g on suitable convex

subsets C of Ray(V ), which are piecewise monomial on each closed interval [W,W ′] ⊂ C. As is obvious

from Corollary 2.11, there is still a partition of each [W,W ′] into finitely many intervals, on which the pair

(f, g) has a constant sign. While for f and g in B we have at most three such intervals, there often will be

many more, but Questions A and B from above retain their sense.

It appears to us that for suitable pm functions a richer stratification theory is available, for which our

present theory serves as a starting point and gives a base. Nevertheless, already the class P (f1, . . . , fr) of

polynomials with f1, . . . , fr ∈ B deserves interest. Also the class of functions φ ◦ f with f ∈ B and φ a pm

function on [0,∞] comes to mind, cf. Theorem 2.6.

The membership problems addressed at the end of the introduction become more natural and more

accessible by taking pm functions into play. Let M′ denote the set of all R-valued functions on Ray(V ),

which restrict to pm functions on all closed intervals in Ray(V ). Assume as before that B ⊂ L are sets (not

necessarily finite) of linear combinations of CS-functions. Then, B ⊂ L ⊂ M ⊂ M′. Given f ∈ L, we ask

for a toolbox (D, J), consisting of a set D ⊂ M′ and a (hopefully small) set J of closed intervals in Ray(V ).

This toolbox is used to test membership of f ∈ L in B by comparing f with the functions in D on the

intervals in J . The main advantage of this new setting is that we have much simpler test functions at hands.

We provide a simple instance of such a membership problem.

Example 3.17. The glen of a finite sequence of rays Y1, . . . , Yn in V at a ray W in V is the set of all Z

in the convex hull of Y1, . . . , Yn for which

CS(W,Z) <
∧

1≤i≤n

CS(W,Yi),

cf. [5, Definition 9.1].

Assume that CS(Y1, Y2) > e. As before, let M denote the set of linear combinations of CS-functions on

Ray(V ) with coefficients in R \ {0}. Let L denote the set of functions CS(W,−) on [
−−−→
Y1, Y2] with positive

ascending or descending profile and B denote the set of those f ∈ L which have a glen, i.e., functions of

type B, ∂B,B′, cf. Example 3.4.(b) above (N.B. ∂B = ∂B′). Then, (D, J) with J consisting of one interval

[Y1, Y2], and D the set of constant function g = c > 0 on [Y1, Y2], is a toolbox for (B,L). Indeed, if f ∈ L is

given, then f ∈ B iff for the constant function g of value f(Y1) ∧ f(Y2) we have f < g on some subinterval

]Z1, Z2[ of [Y1, Y2], the glen of f .

4. Entering a direct derivate of a stratum. Returning to a B-partition on Ray(V ), we define

‘entrance and exit rays’ for a basic B-stratum T as follows.
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Definition 4.1. Assume that T ′ is a direct derivate of T . Given rays W ∈ T , W ′ ∈ T ′, there is a

unique ray Z such that [W,Z[ ⊂ T , [Z,W ′] ⊂ T ′. We call such ray Z an exit ray of T and entrance ray

of T ′. We call the set of all entrance rays of T ′ the inner border of T ′ and denote this set by ∂T ′ and

call the set of all exit rays of T the outer border of T , denoted by ∂T . Thus,

∂T ′ = {Z ∈ T ′ | ∃W ∈ T : [W,Z[ ∩T ′ = ∅},(4.1)

∂T = {Z ∈ Ray(V ) \ T | ∃W ∈ T : [W,Z[⊂ T}.(4.2)

Note that each interval [W,W ′] with W ∈ T , W ′ ∈ T ′ either meets ∂T or ∂T . Every neighbor of T

either contains entrance rays from T , or has exit rays in T , but not both.

In the following, we assume that T and T ′ are strata with T ′ a direct derivate of T .

Theorem 4.2. If W1,W2 are rays in T and Z1, Z2 are rays in T ′ such that [W1, Z1[ ⊂ T , [W2, Z2[ ⊂ T ,

then [W,Z[ ⊂ T and Z ∈ T ′ for every W ∈ ]W1,W2[ and Z ∈ [Z1, Z2].

Proof. Z is in T ′, since Z1, Z2 ∈ T ′, and T ′ is convex. Given X ∈ [W,Z[, we need to verify that X ∈ T .

Since W ∈ ]W1,W2[ , there are vectors w1 ∈ W1, w2 ∈ W2 such that

W = ray(w1 + w2).

This implies that

X = ray((w1 + w2) + (λ1z1 + λ2z2))

= ray((w1 + λ1z1) + (w2 + λ2z2)),

for some z1, z2 ∈ Z, λ1, λ2 ∈ R. We have

ray(wi + λizi) ∈ [Wi, Zi] ⊂ T for i = 1, 2,

and conclude that X ∈ T.

An illustration aid. Imagine that T and T ′ are neighboring countries and that every closed interval [W,W ′]

with W ∈ T , W ′ ∈ T ′ is an air path from a location W in T to a location W ′ in T ′. Furthermore, suppose

that every plane flying from T to T ′ is forced to land for control at the first airport Z right after entering T ′.

In this scenario, the theorem says that if [W1, Z1] and [W2, Z2] represent correct flights from T to T ′, then

for every W ∈ ]W1,W2[ and Z ∈ [Z1, Z2] also [W,Z] represent a correct flight.

Corollary 4.3. (a) Let W ∈ T and Z1, Z2 ∈ T ′ with [W,Z1[ ⊂ T ′, [W,Z2[ ⊂ T ′. Then, [W,Z[ ⊂
T for every Z ∈ [Z1, Z2].

(b) Let W1,W2 ∈ T and Z ∈ T ′, and assume that [W1, Z[ ⊂ T , [W2, Z[ ⊂ T . Then, [W,Z[ ⊂ T for

every W ∈ [W1,W2].

Proof. (a): Apply Theorem 4.2 with Z1 = Z2 = Z.

(b): The claim holds for W in ]W1,W2[ by Theorem 4.2. For the remaining two rays W1 and W2, the claim

holds by assumption.

Theorem 4.4. Given W1,W2 ∈ T and Z1, Z2 ∈ T ′, assume that all sets [W1, Z1[, [W1, Z2[, [W2, Z1[,

[W2, Z2[ are contained in T . Then for every W ∈ [W1,W2] and Z ∈ [Z1, Z2] again [W,Z[⊂ T and Z ∈ T ′.
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Proof. Z is in T ′ since T ′ is convex. If W ∈ ]W1,W2[ and Z ∈ [Z1, Z2], then [W,Z[⊂ T by Theorem 4.2.

If W = W1 and Z ∈ [Z1, Z2], then [W,Z[⊂ T by Corollary 4.3. If W = W2, we obtain the same by

interchanging W1 and W2.

Encouraged by Theorem 4.2, we search systematically for convex subset A ⊂ T , B ⊂ T ′ with [W,Z[∈ T

for all W ∈ A, Z ∈ B. (In short, all flights from A to B are correct.) Note that then B is a convex subset

of ∂T ∩ T ′.

Definition 4.5. (As before T ′ is a direct derivate of T ).

(a) For a given W ∈ T , we define

∢(W,T ′) := {Z ∈ T ′ | [W,Z[ ⊂ T}.

(b) For a given Z ∈ T ′, we define

∢(T,Z) := {W ∈ T | [W,Z[ ⊂ T}.

Both of these sets are convex by Corollary 4.3. In illustrative terms: ∢(W,T ′) represents the set of airports

in T ′ admitted for W , and ∢(T,Z) represents the set of airports in T for reaching Z.

It is obvious from Definition 4.1 that (∂T ) ∩ T ′ is the union of all sets ∢(W,T ′) with W running

through T ′,

(4.3) (∂T ) ∩ T ′ =
⋃

W∈T

∢(W,T ′).

Definition 4.6. (a) A junction for T and T ′ is a triple (W,W ′, Z) with Z ∈ T ′, [W,Z[ ⊂ T , and

[W ′, Z[ ⊂ T . In other terms, Z ∈ T ′ and W,W ′ ∈ ∢(T,Z).

(b) A butterfly (for T and T ′) is a quadruple (W,W ′, Z, Z ′) with Z,Z ′ ∈ T ′, Z ̸= Z ′, and [W,Z[,

[W ′, Z[, [W,Z ′[, [W ′, Z ′[ subsets of T .

Thus, a butterfly consists of two junctions (W,W ′, Z) and (W,W ′, Z ′) which have a common ‘base’ [W,W ′]:

Z

Z ′

W T ′

W ′

Remark 4.7. As consequence of Theorem 4.4, we have the following fact. If (W1,W2, Z1, Z2) is a butterfly

for T and T ′, then, for any rays W ′
1,W

′
2 in [W1,W2] and Z ′

1, Z
′
2 in [Z1, Z2], (W ′

1,W
′
2, Z

′
1, Z

′
2) is again a

butterfly for T and T ′. In particular, (W,W1, Z1, Z2) is a butterfly for any W ∈ [W1,W2], implying that

[Z1, Z2] ⊂ ∂T ∩ T ′, a result stated already in Corollary 4.3.(a).

Searching for explicit instances where junctions and butterflies occur, we need mild regularity properties

of the involved CS-functions. They pertain to the bilinear companion b : V × V → R.
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Definition 4.8. Given an S-basic CS-function f =
∑n

j=1 γi CS(Yj ,−) with γj ̸= 0 for all j (cf. Defi-

nition 4.1), we call a ray W in V f-regular, if CS(Yj ,W ) > 0 for all j ∈ {1, . . . , n}.

Note that CS(Yj ,W ) > 0 iff b(yj , w) > 0 for yi ∈ Yj , w ∈ W .

Lemma 4.9. Assume that W and W ′ are rays in T and Z is a ray in T ′ with [W,Z[⊂ T . Choose vectors

w ∈ W , w′ ∈ W ′, and z ∈ Z, for which W = ray(w), W ′ = ray(w′), and Z = ray(z). Assume that f is an

S-basic CS-function for which the ray Z is f -regular. Then there exist values d > 0, c > 0 in R (which can

be made explicit) such that f is constant on every interval [ray(z+µw), ray(z+µw+λw′)], where 0 ≤ λ ≤ c,

0 ≤ µ ≤ d.

Proof. It suffices to verify the assertion for f = CS(Y,−) with Y ∈ S, CS(Y, Z) > 0. Choosing y ∈ Y ,

we have b(y, z) > 0 and

CS(z + µw + λw′, y) =
b(z + µw + λw′, y)2

q(z + µw + λw′)q(y)
.

Since q(z) > 0, there is some a > 0 such that q(z + µw + λw′) = q(z) for λ + µ ≤ a. Since b(z, y) > 0, we

then find c > 0, d > 0 such that

b(z + µw + λw′, y) = b(z, y) + µb(w, y) + λb(w′, y) = b(z, y),

for λ ≤ c, µ ≤ d. These bounds a, c, d can be easily made explicit in terms of z, w,w′.

For a given basic set S = {Y1, . . . , Yn} of rays, we choose vectors yi ∈ Yi, i ∈ {1, . . . , n}.

Definition 4.10. We say that a vector u ∈ V is S-regular, if b(u, yi) > 0 for every i ∈ {0, . . . , n}.

S-regular vectors occur frequently as we explain briefly.

Lemma 4.11. Assume that the companion b of q has zero radical on the submodule Ṽ of V corresponding

to the convex subset T ∪ T ′ of Ray(V ), cf. [5, Section 2]. This means that for every nonzero vector x ∈ V

with ray(x) ∈ T ∪ T ′, there is some nonzero v ∈ V with ray(v) ∈ T ∪ T ′ and b(x, v) > 0.

Proof. Our goal is to find a vector u ∈ V for which b(yi, u) > 0 for i ∈ {1, . . . , n} with ray(u) ∈ T ′. We

choose vectors vi ∈ V with b(yi, vi) > 0 for i ∈ {1, . . . , n}, which is possible by our assumption. We obtain

for v := v1 + · · ·+ vn that b(yi, v) > 0 for i ∈ {1, . . . , n}.

If v ∈ T ′, we are done by taking u = v. Assume that ray(v) ∈ T . We then pick some x ∈ V with

ray(x) ∈ T ′. Let Z denote the entrance ray of [ray(v), ray(x)] in T ′. We have a vector z ∈ Z with z = v+ ζx

and nonzero ζ ∈ R. Then, b(z, yi) > 0 for i ∈ {1, . . . , n} and ray(z) ∈ T ′. We are done by taking u = z.

Example 4.12. Assume that the pair (q, b) is balanced [7, section 1]. Then, b(x, x) = q(x) > 0 for every

x ̸= 0 in V , and so the restriction of b to any nonzero submodule of V has zero radical.

We are ready for a first positive result about existence of butterflies.

Theorem 4.13. Assume that T ′ contains an S-regular ray U . Given rays W,W ′ in T , let Z ∈ T ′ denote

the entrance ray of [W,U ] in T ′. Choose vectors w ∈ W , w′ ∈ W ′, and z ∈ Z. Then there exists some c > 0

in R such that ray(z + λw′) is the entrance ray in T ′ of the interval [ray(w + λw′), ray(z + λw′)] for every

λ ∈ [0, c].
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Proof. By Lemma 4.11, there exist elements c > 0, d > 0 in R such that every f ∈ B is constant on

every interval [ray(z + µw), ray(z + µw + λw′)] with 0 ≤ λ ≤ c, 0 ≤ µ ≤ d. Given f1, f2 ∈ B where f1 < f2
on T and f1 = f2 on T ′, we conclude for all λ ∈ [0, c], µ ∈ ]0, d], that

f1(z + µw + λw′) = f1(z + µw) < f2(z + µw) = f2(z + µw + λw′),

while

f1(z + λw′) = f1(z) = f2(z) = f2(z + λw′).

This makes it evident that ray(z+λw′) is the entrance ray in T ′ of the interval [ray(w+λw′), ray(z+λw′)].

Corollary 4.14. With the notation of Theorem 4.13, W1 := ray(w+cw′) ∈ T , Z1 := ray(z+cw′) ∈ T ′.

Then the quadruple (W,W1, Z, Z1) is a butterfly for T and T ′.

Proof. a) We know that Z and Z1 are rays in T ′.

b) Let X ∈ [W,Z1[. Then X = ray(z + cw′ + µw), for some µ > 0. If 0 < µ ≤ d, then x ∈ T . It follows that

X ∈ T for all X ∈ [W,Z1[, since [W,Z1[ is convex and W ∈ T .

c) Let X ∈ [W1, Z[. Now X = ray(z + µ(w + cw′)) = ray(z + µw + µcw′) for some µ > 0. If µ ≤ min(1, d),

then X ∈ T . It follows that this holds for all X ∈ [W1, Z[, since W1 ∈ T and [W1, Z[ is convex.

Given rays W,W ′ ∈ T , and U ∈ T ′, we now describe a process which sometimes gives us a junction

(W,W ′, Z), i.e., a ray Z ∈ T ′ with [W,Z[⊂ T , [W ′, Z] ⊂ T .

Construction 4.15. We start with the entrance ray Z0 of [W,U ] (in T ′), i.e., the ray Z0 in [W,U ]

with [W,Z0[⊂ T , Z0 ∈ T ′, and then obtain a sequence (Z0, Z1, Z2, . . . ) of rays in (∂T ) ∩ T ′ as follows:

Z1 := the entrance ray of [W ′, Z0],

Z2 := the entrance ray of [W,Z1],

Z3 := the entrance ray of [W ′, Z2],

etc.

We meet one of the following cases:

Case 1. There exists a first value k ∈ N0 with Zk = Zk+1. Then the sequence ‘stabilizes’ at k, i.e.,

Zk = Zk+1 = · · · . This final ray Z = Zk gives us a junction (W,W ′, Z), i.e., a ray Z ∈ T ′ with

[W,Z[⊂ T , [W ′, Z[⊂ T .

Case 2. We have Zk ̸= Zk+1 for every k. We then say that the sequence (Z0, Z1, Z2, . . . ) is a gorge in

(∂T ) ∩ T ′.

Case 2 reflects a tragical scenario. ‘Bob’, situated at W ∈ T , wants to meet ‘Alice’, situated at W ′ ∈ T ,

in T ′ by legal flights of both. He proposes the airport Z0. But Alice realizes that Z0 is not a legal entrance

for her, and thus proposes the legal entrance Z1 on the air path [W ′, Z0], etc. Bob and Alice will never come

together in T ′.

We call the process described in Construction 4.15 the junction process for (W,W ′, U), although this

process can give us a gorge instead of a junction.

We obtain more insight into this process by pursuing it on the level of vectors instead of rays. First

notice that the process coincides with the junction process for (W,W ′, Z0), where Z0 as is above the entrance

ray for [W,U ] in T ′.
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Scholium 4.16. Retaining the notations in Construction 4.15, we choose vectors w ∈ W , w′ ∈ W ′, and

z0 ∈ Z0. Since Z1 ∈ [W ′, Z0], there is a scalar λ1 ∈ R such that z1 = z0 + λ1w
′ ∈ Z1. We note in passing

that λ1 is uniquely determined by the vector λ1w
′, since λ2

1q(w
′) = q(λ1w) and q(w′) ̸= 0, and q(w′) is a

unit in the semifield R. Furthermore, there is a scalar λ2 ∈ R for which

z2 = z1 + λ2w = z0 + λ2w + λ1w
′ ∈ Z3,

and a scalar λ3 ∈ R for which

z3 = z3 + λ3w
′ = z0 + λ2w + (λ1 + λ3)w

′ ∈ Z3,

where again λ2 and λ3 are units determined by the vectors λ2w and λ3w
′.

Continuing in this way, we obtain a sequence (z0, z1, z2, . . . ) of vectors zi ∈ Zi and a sequence (λ0, λ1,

λ2, . . . ) of scalars, starting with λ0 = 0, such that for every i ∈ N0:

(4.4) z2i+1 = z0 + (λ2i + λ2i−2 + · · · )w + (λ2i+1 + λ2i−1 + · · · )w′,

and

(4.5) z2i = z0 + (λ2i + λ2i−2 + · · · )w + (λ2i−1 + λ2i−3 + · · · )w′.

Recalling that any (finite) sum of scalars is the maximum of these scalars, we infer that our process stops iff

λk+2 ≤ λk for some k ∈ N0. In this case, Zk+2 = Zk+1, and we have produced a junction (W,W ′, Z) for T

and T ′ with Z := Zk+1 = Zk+2.

We briefly sketch a case where it makes sense to associate to the gorge a ‘limit ray’ Z∞ ∈ T ∪T ′. Assume

that R := (R≥0,+, · ), i.e., the classical max-plus semiring in multiplicative notation. Then, both sequences

λ0 = 0 < λ2 < λ4 < · · · and λ1 < λ3 < λ5 < · · · have suprema

σ =
∑
i

λ2i, τ =
∑
i+1

λ2i+1

in the ordered monoid R≥0 ∪ {∞}, and we obtain a vector:

z∞ := z0 + σw + τw′

with associated ray Z∞ = ray(z∞).

Proposition 4.17. Both sets [W,Z∞[ and [W ′, Z∞[ are contained in T . Thus, if Z∞ ∈ T ′, then

(W,W ′, Z∞) is a junction.

Proof. Since σ = λ2 + σ, τ = λ1 + τ , we obtain for any α ∈ R \ {0}

w + αz∞ = w + α(z0 + σw + τw′)

= w + α(z0 + λ2w + σw + τw′)

= w + αz2 + ασw + ατw′,

and
w′ + αz∞ = w′ + α(z0 + σw + λ1w

′ + τw′)

= w′ + αz1 + ασw + ατw′.

Since ray(w + αz2) ∈ [W,Z2[⊂ T and ray(w′ + αz1) ∈ [W ′, Z1[⊂ T for any α ∈ R \ {0}, we conclude that

ray(w + αz∞) ∈ [W,Z∞[⊂ T and ray(w′ + αz∞) ∈ [W ′, Z∞[⊂ T , as desired.
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Definition 4.18. Given nonempty sets U ⊂ T and P ⊂ T ′, we define new sets:

L(U) :=
⋂

W∈U

∢(W,T ′), S(P ) :=
⋂
Z∈P

∢(T,Z).

In other words, L(U) is the set of rays Z which can serve as correct entrances in T ′ for every W ∈ U , and

S(P ) is the set of starting points W for a correct flight with entrance at every Z ∈ P . Note that these sets

L(U) and S(P ) are convex, but may be empty.

Our constructions above (Theorem 4.13, Corollary 4.14, and to some extent Proposition 4.17) give us

instances of sets U ⊂ T with L(U) not empty and of sets P ⊂ T with S(P ) not empty. Such sets U and P

can be enlarged by a widely used formal saturation process.

Theorem 4.19. (a) If U ⊂ T and L(U) ̸= ∅, then LSL(U) = L(U), and SL(U) contains every set

U1 ⊃ U with L(U1) = L(U).

(b) If P ⊂ T ′ and S(P ) ̸= ∅, then SLS(P ) = L(P ), and LS(P ) contains every set P1 ⊃ P with

S(P1) = S(P ).

Proof. By definition SL(U) ⊃ U and LS(P ) ⊃ P . Thus, SL(U) ̸= ∅, LS(P ) ̸= ∅. We can apply the

operators L and S to SL(U) and LS(P ), respectively, to obtain

LSL(U) = L(SL(U)) ⊂ L(U),

SLS(P ) = S(LS(P )) ⊂ S(P ),

but also have
LSL(U) = LS(L(U)) ⊃ L(U),

SLS(P ) = SL(S(P )) ⊃ S(P ).

Thus, LSL(U) = L(U) and SLS(P ) = S(P ). The second claims in (a) and (b) are now evident, since the

operators LS and SL enlarge nonempty sets in T ′ and T , respectively.

5. Approaching isotropic rays. We abandon the overall assumption in section 3 and section 4 that

the quadratic form q on the R-module V is anisotropic (but retain the assumption that R = eR is a root

closed semifield). We utilize the study of the ray space of the R-submodule Van of anisotropic vectors in V

in section 3. Thus, now S = {Y1, . . . , Yn} is a finite subset of Ray(Van) and B = {f1, . . . , fn} is a finite set

of S-basic CS-functions. Since V + Van = Van, the set Ray(Van) is convex in Ray(V ) and furthermore

]W,W ′] ⊂ Ray(Van),

for any isotropic ray W (i.e., q(W ) = {0}) and anisotropic ray W ′. Moreover, if W,W ′ are isotropic rays,

but ]W,W ′[ contains some anisotropic ray, then

]W,W ′[ ⊂ Ray(Van).

It turns out that the Sign Changing Theorem 3.13 remains valid on ]W,W ′] and ]W,W ′[, respectively, with

the following modifications. As customary, we write q(W ) = {q(w) | w ∈ W}.

Theorem 5.1. (a) If q(W ) = {0} and q(W ′) ̸= {0}, then there is a unique sequence of strata

T1, . . . , Ts in Ray(Van) which meets ]W,W ′], such that s ≥ 1 and, with respect to ≤W :

]W,W ′]T0
< ]W,W ′]T1

< · · · < ]W,W ′]Ts
,
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where ]W,W ′]Tk
:= ]W,W ′] ∩ Tk. (N.B. All these sets are convex.) The strata Tk−1 and Tk are

neighbors for 1 ≤ k ≤ s. If W̃ ∈ ]W,W ′]T0
, then the interval [W̃ ,W ′] meets all these strata, and the

sequence of separating rays Z0, Z1, . . . , Zs of [W̃ ,W ′] is independent of the choice of W̃ in ]W,W ′]T0
.

If fi, fj ∈ B are given with

fi(W̃ ) < fj(W̃ ), fi(W
′) = fj(W

′),

or

fi(W̃ ) < fj(W̃ ), fi(W
′) > fj(W

′),

then Theorem 3.13.(a) remains valid with [W,W ′] replaced by ]W,W ′], and [W,Zk−1] replaced by

]W,Zk−1].

(b) Assume that both W and W ′ are isotropic rays in V , and that the interval [W,W ′] contains anisotropic

rays. Then ]W,W ′[ ⊂ Ray(Van). Let T0, T1, . . . , Ts denote the sequence of strata that meet ]W,W ′[,

such that with respect to ≤W :

]W,W ′[T0
< ]W,W ′[T1

< · · · < ]W,W ′[Ts
,

where ]W,W ′[Tk
:= ]W,W ′[∩Tk. (N.B. Again these strata are convex.) The strata Tk−1 and Tk are

neighbors for 1 ≤ k ≤ s. Given rays W̃ in ]W,W ′[T0 and W̃ ′ in ]W,W ′[Ts , the interval [W̃ , W̃ ′] meets

all strata T0, T1, . . . , Ts, and the sequence of separating rays Z0, Z1, . . . , Zs of [W̃ , W̃ ′] is independent

of the choice of W̃ and W̃ ′. If fi, fj ∈ B are given with

fi(W̃ ) < fj(W̃ ), fi(W̃
′) = fj(W̃

′),

or

fi(W̃ ) < fj(W̃ ), fi(W̃
′) > fj(W̃

′),

then Theorem 3.13.(b) remains valid with [W,W ′] replaced by ]W,W ′[, [W,Zk−1[ replaced by ]W,Zk−1[,

and [Zℓ,W
′] replaced by [Zℓ,W

′[.

Proof. Just observe that for the sign 2 ∈ {<,=, >} we have fi(W̃ )2fj(W̃ ) for some i ̸= j in {1, . . . , n}
iff the formula fi2fj occurs in the conjunction T0 and, if W

′ is isotropic, fi(W̃
′)2fj(W̃

′) holds iff the formula

fi2fj occurs in the conjunction Ts. Then apply Theorem 3.13 to [W̃ ,W ′] and [W̃ , W̃ ′], respectively.

The problem arises, to determine the ‘entrance stratum’ T0 of ]W,W ′] in Theorem 4.2.(a), and to get

a hold on the rays W̃ in ]W,W ′] such that ]W, W̃ ] ⊂ T0.

Problem 5.2. (a) Given an isotropic vector ε ̸= 0 and a vector η in V with q(ε+ η) ̸= 0, find the

first stratum T0 met by ]W,W ′] for W = ray(ε), W ′ = ray(ε+ η). How much does T0 depend on the

choice of ε and η?

(b) Find for given ε and η an explicit bound t0 > 0 such that ray(ε+ tη) stays in T0 for 0 < t ≤ t0.

We pursue this problem in the case of Example 3.4, where a stratum T is determined by the CS-profile

of any ray W ∈ T on an oriented interval
−−−−→
[Y1, Y2]. Since we will refer to the computations in [5, section 3],

we relabel ε = ε1, Y2 = ray(ε2), and Y3 = ray(ε3) and abbreviate α12 = b(ε1, ε2) and α13 = b(ε1, ε3). We

analyze the profile of the function:

ft(λ) = CS(ε1 + tη, ε2 + λε3),
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with λ running in [0,∞] for small t > 0. This make sense if either b(ε1, η) > 0 or b(ε1, η) = 0, q(η) > 0,

since q(ε1 + tη) = tb(ε1, η) + t2q(η). Then,

(5.1) ft(λ) =
α2
12 + λ2α2

13 + t2[b(η, ε2)
2 + λ2b(η, ε3)

2]

q(ε2 + λε3)(tb(ε1, η) + t2q(η))
.

The word ‘profile’ here means the monotonic behavior of the function λ 7→ ft(λ) on [0,∞], as in [5, section

3]. Thus, the profile of ft(λ) does not change if we omit the nonzero constant factor tb(ε1, η) + t2q(η) in

(5.1).

We distinguish several cases:

A. α12 > 0, α13 > 0. If tb(η, ε2) ≤ α12 and tb(η, ε3) ≤ α13, then ft(λ) has the same profile as

α2
12 + λ2α2

13

q(ε2 + λε3)
.

This happens if

(5.2) 0 < t ≤ α12

b(η, ε2)
∧ α13

b(η, ε3)
.

(If b(η, εi) = 0, read α1i

b(η,εi)
= ∞.)

B. α12 = α13 = 0. For every t > 0, ft(λ) has the same profile as

b(η, ε2)
2 + λ2b(η, ε3)

2

q(ε2 + λε3)
.

In particular, if b(η, ε2) = b(η, ε3) = 0, then T0 is the stratum containing ray(η).

C. α12 > 0, α13 = 0, whence

ft(λ) =
α2
12 + t2[b(η, ε2)

2 + λ2b(η, ε3)
2]

q(ε2 + λε3)
.

C1. If b(η, ε3) = 0, then ft(λ) has for every t > 0 the same profile as

1

q(ε2 + λε3)
.

Thus, ray(ε1 + tη) stays in a fixed stratum for all t > 0, which is independent of ε1 and η (as long

as b(η, ε3) = 0, b(ε1, ε2) > 0, b(ε1, ε3) = 0, and q(ε1) = 0).

C2. Assume that b(η, ε3) > 0 and, as before that α12 > 0, α13 = 0. We resort to the list of basic types

in [5, section 4]. Let α2 = q(ε2) and α3 = q(ε3). We study the CS-profile of ζ := ε1 + tη on
−−−−→
[Y1, Y2].

We compute

(5.3) CS(ζ, ε2) =
α2
12

α2q(ζ)
, CS(ζ, ε3) =

t2b(η, ε3)
2

α3q(ζ)
,

Assume first that CS(ε2, ε3) > e. It is evident from [5, Table 4.3] and [5, Scholium 4.5] that the ray

of ε1 + tη has a CS-profile of type A′ for small t. More precisely this happens iff

CS(ζ, ε3) <
CS(ζ, ε2)

CS(ε2, ε3)
,
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which by (5.3) means that

t2 <
α2
12α2

α3b(η, ε3)2
· α2α3

α2
23

,

i.e.,

(5.4) t <
α12α2

α23b(η, ε3)
.

Assume that CS(ε2, ε3) ≤ e. The ray of ε1 + tη has a CS-profile of type C ′ for small t. More

precisely, this happens if

CS(ζ, ε3) < CS(ζ, ε2),

which by (5.3) means that

t2
b(η, ε3)

2

α3q(ζ)
<

α2
12

α2q(ζ)
,

equivalently

(5.5) t <
α12

b(η, ε3)

√
α3

α2
.

We write down two consequences of this analysis of profiles.

Proposition 5.3. Let η ∈ V , q(η) > 0. For each isotropic vector ε ̸= 0 with b(ε, ε2) = b(ε, ε3) = 0, the

ray of ε + tη has the same CS-profile as ray(η) for every small t > 0, and thus lies in the same stratum as

ray(η).

Proof. cf. Case B above.

Proposition 5.4. If b(ε, ε2) > 0, b(ε, ε3) = 0, then for each t > 0 and all η with q(η) > 0, b(η, ε3) = 0,

the ray of ε+ tη is contained in a fixed stratum T .

Proof. cf. Case C above.
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