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ON THE INVERSE EIGENVALUE PROBLEMS: THE CASE OF
SUPERSTARS∗

ROSÁRIO FERNANDES†

Abstract. Let T be a tree and let x0 be a vertex of T . T is called a superstar with central

vertex x0 if T − x0 is a union of paths. The General Inverse Eigenvalue Problem for certain trees is

partially answered. Using this description, some superstars are presented for which the problem of

ordered multiplicity lists and the Inverse Eigenvalue Problem are not equivalent.
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1. Introduction. Let A = [aij ] be an n× n real symmetric matrix. We denote
by G(A) = (X,U) the simple graph on n vertices, {1, . . . , n}, such that {i, j} ∈ U ,
i �= j, if and only if aij �= 0. Let A(i) denote the principal submatrix of A obtained
by deleting row and column i.

Let G = (X,U) a simple graph, where X = {x1, . . . , xn} is the vertex set of G
and let S(G) be the set of all n× n real symmetric matrices A such that G(A) ∼= G.
One of the most important problems of Spectral Graph Theory is the General Inverse
Eigenvalue Problem for S(G) (GIEP for S(G)):

“What are all the real numbers λ1 ≤ . . . ≤ λn and µ1 ≤ . . . ≤ µn−1 that may
occur as the eigenvalues of A and A(i), respectively, as A runs over S(G)?”

Another important problem is the Inverse Eigenvalue Problem for S(G) (IEP for
S(G));

“What are all the real numbers λ1 ≤ . . . ≤ λn that may occur as the eigenvalues
of A, as A runs over S(G)?”

First, we remind the reader of some results concerning the GIEP.

Perhaps the most well known result on this subject is the Interlacing Theorem
for Eigenvalues of Hermitian matrices:
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†Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa,
Quinta da Torre, 2829-516 Caparica, Portugal (mrff@fct.unl.pt). This research was done within the

activities of “Centro de Estruturas Lineares e Combinatórias”.
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Theorem 1.1. [11] If A is an n × n Hermitian matrix with eigenvalues λ1 ≤
. . . ≤ λn and if A(i) has eigenvalues µ1 ≤ . . . ≤ µn−1 then

λ1 ≤ µ1 ≤ λ2 ≤ . . . ≤ λn−1 ≤ µn−1 ≤ λn.

If λ is a real number and A is an n × n real symmetric matrix, we denote by
mA(λ) the multiplicity of λ as an eigenvalue of A. As a Corollary of Theorem 1.1 we
have the following result:

Proposition 1.2. [11] Let A be an n × n Hermitian matrix and let λ be an
eigenvalue of A. Then

mA(λ) − 1 ≤ mA(i)(λ) ≤ mA(λ) + 1, i = 1, . . . , n.

When the graph G is a path, we have the well-known fact:

Proposition 1.3. Let T be a path. If A is a matrix in S(T ) and j is a pendant
vertex of T (A), all the eigenvalues of A have multiplicity 1 and the eigenvalues of
A(j) strictly interlace those of A.

Several authors proved the converse of Proposition 1.3.

The solution of the GIEP for S(G) when G is a cycle is also well known, see
[3, 4, 5, 6].

Leal Duarte generalized the converse of Proposition 1.3 to any tree, [13].

Proposition 1.4. Let T be a tree on n vertices and let i be a vertex of T . Let
λ1 < . . . < λn and µ1 < . . . < µn−1 be real numbers. If

λ1 < µ1 < λ2 < . . . < µn−1 < λn,

then there exists a matrix A in S(T ), with eigenvalues λ1 < . . . < λn, and such that,
A(i) has eigenvalues µ1 < . . . < µn−1.

In [7], Johnson and Leal Duarte studied this problem for vertices, of a generic
path T , of degree two and solved it for the particular case that occurs when A is a
matrix in S(T ) and A(i) has eigenvalues of multiplicity two.

In 2003, Johnson, Leal Duarte and Saiago, [8], rewrote the GIEP for S(G):

“Let G be a simple connected graph G on n vertices, x0 be a vertex of G of degree
k and G1, . . . , Gk be the connected components of G − x0. Let λ1, . . . , λn be real
numbers, g1(t), . . . , gk(t) be monic polynomials having only real roots and such that
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deg gi(t) is equal to the number of vertices of Gi. Is it possible to construct a matrix
A in S(G) such that A has eigenvalues λ1, . . . , λn and the characteristic polynomial
of A[Gi] is gi(t) (A[Gi] is the principal submatrix of A obtained by deleting rows and
columns that correspond to vertices of G−Gi)?”

With respect to GIEP for S(G) as written above, the following results are proven
in [8].

Theorem 1.5. Let T be a tree on n vertices and x0 be a vertex of T of degree k

whose neighbors are x1, . . . , xk. Let Ti be the branch (connected component) of T at
x0 containing xi and si be the number of vertices in Ti, i = 1, . . . , k.

Let g1(t), . . . , gk(t) be monic polynomials having only distinct real roots, with deg
gi(t) = si, p1, . . . , ps be the distinct roots among polynomials gi(t) and mi be the
multiplicity of root pi in

∏k
i=1 gi(t).

Let g(t) be a monic polynomial of degree s+ 1.

There exists a matrix A in S(T ) with characteristic polynomial

f(t) = g(t)
s∏

i=1

(t− pi)mi−1

and such that

1) A[Ti] has characteristic polynomial gi(t), i = 1, . . . , k,
2) If 1 ≤ i ≤ k and si > 1, the eigenvalues of A[Ti − xi] strictly interlace those

of A[Ti],

if and only if the roots of g(t) strictly interlace those of
∏s

i=1(t− pi).

The statement of the previous theorem is shorter when T is a generalized tree,
[8].

Theorem 1.6. Let T be a generalized star on n vertices with central vertex x0,
let T1, . . . , Tk be the branches of T at x0, and let l0, . . . , lk be the number of vertices
of T1, . . . , Tk, respectively.

Let g1(t), . . . , gk(t) be monic polynomials having only real roots, with deg gi(t) =
li, let p1, . . . , pl be the distinct roots among polynomials gi(t) and let mi be the mul-
tiplicity of root pi in

∏k
i=1 gi(t), (mi ≥ 1).

Let g(t) be a monic polynomial of degree l + 1.

There exists a matrix A in S(T ) with characteristic polynomial

f(t) = g(t)
l∏

i=1

(t− pi)mi−1
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and such that A[Ti] has characteristic polynomial gi(t), i = 1, . . . , k, if and only if each
gi(t) has only simple roots and the roots of g(t) strictly interlace those of

∏l
i=1(t−pi).

In [8], the GIEP was solved for S(T ) when T is a generalized star. Moreover,
the authors of [8] proved that the IEP for S(G) when G is a generalized star, T , is
equivalent to the determination of all possible ordered multiplicity lists of T ; that is,
if A ∈ S(T ) has eigenvalues λ1 < . . . < λt of multiplicities m1, . . . ,mt, respectively,
then for any set of real numbers λ′1 < . . . < λ′t, there exists a matrix A′ ∈ S(T ) having
eigenvalues λ′1 < . . . < λ′t of multiplicities m1, . . . ,mt, respectively.

The case of double generalized stars has also been studied by Barioli and Fallat
in [1].

In [2], Barioli and Fallat gave the first example of a graph (the graph T ′) for
which the equivalence between the ordered multiplicity lists and the IEP does not
occur. Another example appears in [10], the graph T ′′.

✉ ✉ ✉✉

✉

✉ ✉✉✉

✉

✉

✉ ✉ ✉

✉

�
�

�

❅
❅

❅

❅
❅

❅

x0

T ′

✉ ✉

✉

✉

✉

✉

✉ ✉

✉✉

�
�

�

❅
❅

❅

�
�

�

x0

T ′′

Bearing in mind these two graphs, we give now the following definitions.

Definition 1.7. Let T be a tree and x0 be a vertex of T . A superstar T with
central vertex x0 is a tree such that T − x0 is a union of paths.

Definition 1.8. Let T be a tree and x0 be a vertex of T . Let Ti be a connected
component of T − x0 and xi be the vertex of Ti adjacent to x0 in T . We say that Ti

is a cut branch at xi if Ti − xi has at most two connected components.

The aforementioned trees T ′ and T ′′ are superstars. All the paths, stars and
generalized stars (defined in [8]) are also superstars. Sometimes, when T is a superstar
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with central vertex x0, we say that T is a superstar at x0.

More recently, ([12] Lemma 16) Kim and Shader proved a necessary condition for
the GIEP to have a solution for some superstars. Notice that in [12] the k-whirls are
the superstars of the present paper.

Lemma 1.9. ([12] Lemma 16) Let T be a superstar on n vertices with central
vertex x0 whose neighbors are x1, . . . , xk. Let Ti be the branch of T at x0 containing
xi, i = 1, . . . , k. Suppose that T1, . . . , Tk are cut branches at x1, . . . , xr, respectively,
and let αi

1, α
i
2 be the paths of Ti − xi, i = 1, . . . , k.

Let A in S(T ) and let A′ be the direct sum of A[αi
j ], for all i ∈ {1, . . . , k} and

j ∈ {1, 2}. If nr denotes the number of eigenvalues of A with multiplicity r, then the
following holds:

(a) nk+1 ≤ 1 and nj = 0 for j ≥ k + 2;
(b) if λ is an eigenvalue of A and mA(λ) = k + 1, then λ is a simple eigenvalue

of A[αi
j ], for all i ∈ {1, . . . , k} and j ∈ {1, 2}, and mA′(λ) = 2k;

(c) if µ is an eigenvalue of A and mA(µ) = k, then for all i �= s, j and t, µ is a
simple eigenvalue of at least one of A[αi

j ], A[α
s
t ], and mA′(µ) ≥ 2k − 2; and

(d) (2k − 2)nk + (2k)nk+1 ≤ n− (k + 1).

In section 3, the methods used to prove Theorem 1.5 allows us to generalize it. As
in this generalization we suppose that some branches of the tree T are cut branches
we obtain a much more general result than Lemma 1.9. Using this generalization we
prove in section 4:

1) there is no matrix A′ ∈ S(T ′) (where T ′ is the above mentioned tree) having
eigenvalues

(0, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6, 7),

but there exists a matrix A ∈ S(T ′) having eigenvalues

(1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6, 7).

2) there is no matrix A′ ∈ S(T ′′) (where T ′′ is the above mentioned tree) having
eigenvalues

(−
√
5,−

√
2,−

√
2, 0, 0, 0, 0,

√
2,
√
2, 2),

but there exists a matrix A ∈ S(T ′′) having eigenvalues

(−
√
5,−

√
2,−

√
2, 0, 0, 0, 0,

√
2,
√
2,
√
5).

In section 4, we also prove that the converse of Lemma 1.9 is not true.
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2. Prior Results. The key tool used to prove Proposition 1.4 and Theorem 1.5
was the decomposition of a real rational function into partial fractions. We recall here
the following well known results, which will be useful for the present work.

Lemma 2.1. [13] Let g(t) be a monic polynomial of degree n, n > 1, having
only distinct real roots and h(t) be a monic polynomial with deg h(t) <deg g(t). Then
h(t) has n − 1 distinct real roots strictly interlacing the roots of g(t) if and only if
the coefficients of the partial fraction decomposition (pfd) of h(t)

g(t) are positive real
numbers.

Remark 2.2. If λ1, . . . , λn and µ1, . . . , µn−1 are real numbers such that

λ1 < µ1 < λ2 < . . . < µn−1 < λn

and, g(t) and h(t) are the monic polynomials

g(t) = (t− λ1)(t− λ2) . . . (t− λn),
h(t) = (t− µ1)(t− µ2) . . . (t− µn−1),

it is easy to show that g(t)
h(t) can be represented in a unique way as

g(t)
h(t)

= (t− a)−
n−1∑
i=1

xi

t− µi

in which a =
∑n

i=1 λi −
∑n−1

i=1 µi and xi, i = 1, . . . , n− 1, are positive real numbers
such that

xi = − g(µi)∏n−1
j=1,j �=i(µi − µj)

= −
∏n

j=1(µi − λj)∏n−1
j=1,j �=i(µi − µj)

.

If T is a tree on n vertices, A ∈ S(T ) and Ti is a subgraph of T , we denote by
A[Ti] (respectively, A(Ti)) the principal submatrix of A obtained by deleting rows and
columns that correspond to vertices of T \Ti (respectively, Ti). We will also need the
expansion of the characteristic polynomial at a particular vertex of T with neighbors
x1, . . . , xk.

Lemma 2.3. [9] Let T be a tree on n vertices and let A = [aij ] be a matrix in
S(T ). If x0 is a vertex of T of degree k, whose neighbors in T are x1, . . . , xk, then

pA(t) = (t− ax0x0)pA[T−x0](t)−
k∑

i=1

|ax0xi |2pA[Ti−xi](t)
k∏

j=1,j �=i

pA[Tj ](t),(2.1)

with the convention that pA[Ti−xi](t) = 1 whenever the vertex set of Ti is {xi}.
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Since T is a tree, if A is a matrix in S(T ) and x0 is a vertex of degree k, we have
A(x0) = A[T1]⊕ . . .⊕A[Tk], where Ti is the branch of T −x0 containing the neighbor
xi of x0 in T . The following result was shown in [8].

Lemma 2.4. [8] Let T be a tree and A be a matrix in S(T ). Let x0 be a vertex
of T and λ be an eigenvalue of A(x0). Let xi be a neighbor of x0 in T and Ti be the
branch of T at x0 containing xi. If λ is an eigenvalue of A[Ti] and

mA[Ti−xi](λ) = mA[Ti](λ)− 1,

then mA(x0)(λ) = mA(λ) + 1.

When T is a generalized star with central vertex x0, each branch Ti of T at x0 is
a path. Thus, if B is a matrix in S(Ti) then all the eigenvalues of B have multiplicity
1 and the eigenvalues of B(xi) strictly interlace those of B.

Lemma 2.5. [8] Let T be a generalized star with central vertex x0. If A is a
matrix in S(T ) and λ is an eigenvalue of A(x0) then mA(x0)(λ) = mA(λ) + 1.

Let T be a tree and A be a matrix in S(T ). A result concerning the multiplicity
of the largest and smallest eigenvalues of A was proved in [9].

Lemma 2.6. If T is a tree, the largest and smallest eigenvalues of each matrix A

in S(T ), have multiplicity 1. Moreover, the largest or smallest eigenvalue of a matrix
A in S(T ) cannot occur as an eigenvalue of a submatrix A(x0), for any vertex x0 in
T .

Using this result we can prove the following lemma.

Lemma 2.7. Let T be a tree on n > 1 vertices, x0 be a vertex in T and A be
a matrix in S(T ). Then there exists an eigenvalue λ of A(x0) such that mA(λ) =
mA(x0)(λ)− 1.

Proof. Suppose that for each eigenvalue λ of A(x0) we havemA(λ) �= mA(x0)(λ)−
1. Consequently, if λ is an eigenvalue of A(x0) then mA(λ) ≥ mA(x0)(λ). Since A(x0)
has n− 1 eigenvalues and A has n eigenvalues, there exists at most one eigenvalue of
A which is not an eigenvalue of A(x0). Using Lemma 2.6 we obtain a contradiction,
and the result follows.

Let T be a tree and A be a matrix in S(T ). We have the following result, which
can be obtained collectively from [14, 15]. Note that if A is a matrix in S(T ), then
A(i) will be a direct sum of matrices, and we refer to the direct summands as blocks
of A(i).

Theorem 2.8. Let T be a tree, A be a matrix in S(T ) and λ be an eigenvalue
of A such that mA(λ) ≥ 2. Then there exists a vertex i in G(A) such that
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1) mA(i)(λ) = mA(λ) + 1;
2) λ is an eigenvalue of at least three blocks of A(i).

3. General Inverse Eigenvalue Problem. The following theorem generalizes
Theorem 1.5 and gives a partial answer of the GIEP for S(T ) when some of the
branches of T , at a fixed vertex x0, are cut branches.

Theorem 3.1. Let T be a tree on n vertices and x0 be a vertex of T of degree k

whose neighbors are x1, . . . , xk. Let Ti be the branch of T at x0 containing xi and si

be the number of vertices in Ti, i = 1, . . . , k.

Let T1, . . . , Tr, with 0 ≤ r ≤ k, be cut branches at x1, . . . , xr, respectively, and
lj = min{number of vertices in each connected component of Tj − xj}, j = 1, . . . , r.

Let g1(t), . . . , gk(t) be monic polynomials having only distinct real roots, with deg
gi(t) = si, p1, . . . , ps be the distinct roots among polynomials gi(t) and mj be the
multiplicity of root pj in

∏k
i=1 gi(t).

Let g(t) be a monic polynomial of degree s+ 1, p1, . . . , pl be the common roots of
g(t) and

∏s
i=1(t− pi) and

g(t) =
g(t)∏l

i=1(t− pi)
.

For each 1 ≤ j ≤ r, let qj1 < qj2 < . . . < qjvj , with 1 ≤ vj ≤ lj, be roots of gj(t).

Let

gj(t) =

{
gj(t)

(t−qj1)...(t−qjvj
) if 1 ≤ j ≤ r

gj(t) if r < j ≤ k.

and

mij =
{

1 if pi is a root of gj(t)
0 otherwise.

There exists a matrix A in S(T ) with characteristic polynomial

f(t) = g(t)
s∏

i=1

(t− pi)mi−1

and such that

1) A[Ti] has characteristic polynomial gi(t), i = 1, . . . , k,
2) for each 1 ≤ j ≤ r, qj1, qj2, . . . , qjvj are the common eigenvalues of A[Tj] and

A[Tj − xj ], and m[Tj−xj ](qj1) = . . . = m[Tj−xj ](qjvj ) = 2,
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3) if r < i ≤ k and si > 1, the eigenvalues of A[Ti − xi] strictly interlace those
of A[Ti],

if and only if

I) s− l ≥ 1,
II) the roots of g(t) strictly interlace those of

∏s
i=l+1(t− pi),

III) p1, . . . , pl are not roots of gj(t) and there exist positive real numbers yij,
i ∈ {l+ 1, . . . , s}, j ∈ {1, . . . , k} such that
for each i ∈ {l + 1, . . . , s}

− g(pi)∏s
j=l+1,j �=i(pi − pj)

=
k∑

j=1

mijyij ,(3.1)

and for each j ∈ {1, . . . , r}, u ∈ {1, . . . , vj}
s∑

i=l+1,mij=1

mijyij

qju − pi
= 0.(3.2)

Proof. We start by proving the necessity of the stated conditions for the existence
of the matrix A. Firstly notice that the characteristic polynomial of A(x0) = A[T1]⊕
. . .⊕A[Tk] is

∏k
i=1 gi(t) =

∏s
i=1(t−pi)mi . By hypothesis, f(t) = g(t)

∏s
i=1(t−pi)mi−1

is the characteristic polynomial of A. So, using Lemma 2.7 there exists 1 ≤ i ≤ s

such that pi is not a root of g(t). Because p1, . . . , pl are roots of g(t) then s− l ≥ 1
and we have I).

As
∑s

i=1 mi = n− 1 then n − s− 1 + l =
∑s

i=1(mi − 1) + l is the degree of the
polynomial

∏s
i=1(t − pi)mi−1

∏l
j=1(t − pj). Because pA(t) = f(t) = g(t)

∏l
j=1(t −

pj)
∏s

i=1(t − pi)mi−1 is a polynomial of degree n then g(t) is a polynomial of degree
s− l+1. By hypothesis, p1, . . . , pl are the common roots of g(t) and

∏s
i=1(t−pi) then

g(t) must have s− l+ 1 real roots (because A is symmetric), each one different from
each pl+1, . . . , ps. By the interlacing theorem for eigenvalues of Hermitian matrices,
the roots of pA(t) must interlace the roots of pA(x0)(t) =

∏s
i=1(t − pi)mi . Then the

roots of g(t) must strictly interlace those of
∏s

i=l+1(t− pi). So, we have II).

Now we are going to prove III). Let j ∈ {1, . . . , k}. If sj > 1, denote by hj(t) the
characteristic polynomial of A[Tj − xj ]; if sj = 1, define hj(t) = 1. Let

hj(t) =

{
hj(t)

(t−qj1)...(t−qjvj
) if 1 ≤ j ≤ r

hj(t) if r < j ≤ k.

By the interlacing theorem for eigenvalues of Hermitian matrices, and by hypothesis
2), if 1 ≤ j ≤ r or by hypothesis 3), if r < j ≤ k and sj > 1, then the roots of gj(t)
must strictly interlace those of hj(t). By Lemma 2.1, if sj > 1, or by construction, if
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sj = 1, there exist positive real numbers bij , with 1 ≤ i ≤ s, 1 ≤ j ≤ k, such that for
each j ∈ {1, . . . , k},

hj(t)
gj(t)

=
hj(t)
gj(t)

=
s∑

i=1

mijbij
t− pi

.

By hypothesis, if 1 ≤ i ≤ l then pi is a root of g(t). So, if 1 ≤ i ≤ l then mi =
mA(x0)(pi) �= mA(pi) + 1. Therefore, using Lemma 2.4, if 1 ≤ i ≤ l and pi is a root
of A[Tj ] then pi is a root of A[Tj − xj ]. By hypothesis, it follows that mA[Tj ](pi) is
equal to 1 or to 0. Consequently, p1, . . . , pl are not roots of gj(t) (if r < j ≤ k and
sj > 1 we use hypothesis 3); if 1 ≤ j ≤ r, we use hypothesis 2) and the fact that gj(t)
has distinct real roots).

Therefore, there exist positive real numbers bij , with l + 1 ≤ i ≤ s, 1 ≤ j ≤ k,
such that for each j ∈ {1, . . . , k},

hj(t)
gj(t)

=
hj(t)
gj(t)

=
s∑

i=l+1

mijbij
t− pi

(3.3)

Since A = [aij ] is a matrix in S(T ), we define for each j ∈ {1, . . . , k}, xj = |ax0xj |2
and a = ax0x0 . According to (2.1), the characteristic polynomial of A may be written
as

pA(t) = (t− ax0x0)
k∏

j=1

pA[Tj ](t)−
k∑

j=1

|ax0xj |2pA[Tj−xj ](t)
k∏

u=1u�=j

pA[Tu](t)

= (t− a)
k∏

j=1

gj(t)−
k∑

j=1

xj

pA[Tj−xj](t)
pA[Tj ](t)

k∏
u=1

gu(t)

= ((t− a)−
k∑

j=1

xj

s∑
i=l+1

mijbij
t− pi

)
s∏

i=1

(t− pi)mi

= ((t− a)−
s∑

i=l+1

∑k
j=1 xjmijbij

t− pi
)

s∏
i=1

(t− pi)
s∏

i=1

(t− pi)mi−1

Consequently,

g(t) = ((t− a)−
s∑

i=l+1

∑k
j=1 xjmijbij

t− pi
)

s∏
i=1

(t− pi)
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and

g(t) =
g(t)∏l

i=1(t− pi)
= (t− a)

s∏
i=l+1

(t− pi)−
s∑

i=l+1

k∑
j=1

(xjmijbij)
s∏

u=l+1,u�=i

(t− pu)

So, for each i ∈ {l + 1, . . . , s}, g(pi) = −∑k
j=1(xjmijbij)

∏s
u=l+1,u�=i(pi − pu). Then

− g(pi)∏s
u=l+1,u�=i(pi − pu)

=
k∑

j=1

(xjmijbij).

For each i ∈ {l + 1, . . . , s} and j ∈ {1, . . . , k}, we denote xjbij by yij . Since bij , xj

are positive real numbers, then yij is a positive real number and we have III)(3.1).

Let j ∈ {1, . . . , r}. Since qj1, . . . , qjvj are the common eigenvalues of A[Tj] and
A[Tj − xj ], and mA[Tj−xj](qj1) = . . . = mA[Tj−xj](qjvj ) = 2, by hypothesis 2), we
have that qj1, . . . , qjvj are roots of hj(t) but not of gj(t). Thus, if pi is a root of gj(t)
then pi �∈ {qj1, . . . , qjvj}. Therefore, by (3.3), for each u ∈ {1, . . . , vj},

0 =
xjhj(qju)
gj(qju)

=
s∑

i=l+1, mij=1

mij(xjbij)
qju − pi

=
s∑

i=l+1, mij=1

mijyij

qju − pi
.

So, we have III)(3.2).

Next, we prove the sufficiency of the stated conditions. Because of the strict
interlacing between the roots of g(t) and those of

∏s
i=l+1(t− pi) (hypothesis II) and

because g(t) is a polynomial of degree s+ 1− l > 1, due to Remark 2.2, we conclude
the existence of a real number a and positive real numbers xl+1, . . . , xs such that

g(t)∏s
i=l+1(t− pi)

= (t− a)−
s∑

i=l+1

xi

(t− pi)

i.e.,

g(t) =

(
(t− a)−

s∑
i=l+1

xi

(t− pi)

)
s∏

i=l+1

(t− pi)

= (t− a)
s∏

i=l+1

(t− pi)−
s∑

i=l+1

xi

s∏
j=l+1,j �=i

(t− pj).

Therefore, if l+ 1 ≤ i ≤ s,

g(pi) = −xi

s∏
j=l+1,j �=i

(pi − pj)
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and

xi = − g(pi)∏s
j=l+1j �=i(pi − pj)

.

Using hypothesis III)(3.1), there exist real positive numbers yij , with l + 1 ≤ i ≤ s,
1 ≤ j ≤ k such that xi =

∑k
j=1 mijyij . So,

g(t) =

(
(t− a)−

s∑
i=l+1

∑k
j=1 mijyij

(t− pi)

)
s∏

i=l+1

(t− pi)

=

(
(t− a)− (

s∑
i=l+1

mi1yi1

(t− pi)
+ . . .+

s∑
i=l+1

mikyik

(t− pi)
)

)
s∏

i=l+1

(t− pi).

By hypothesis III) then gj(t) =
∏s

i=l+1(t − pi)mij . Notice that, when deg gj(t) >

1,
∑s

i=l+1
mijyij

(t−pi)
is a pfd of hj(t)

gj(t) for some polynomial hj(t). By Lemma 2.1, the

coefficients of this pfd are positive which means that deg hj(t) =deg gj(t)−1 and hj(t)
has only real roots strict interlacing those of gj(t). If deg gj(t) = 1,

∑s
i=l+1

mijyij

(t−pi)
=

mujyuj

gj(t) , mujyuj > 0, for some u ∈ {l + 1, . . . , s}. In this case, for convenience we

denote mujyuj by hj(t).

If 1 ≤ j ≤ r, since qj1, . . . , qjvj are not roots of gj(t), using III)(3.2) we have that
qj1, . . . , qjvj are roots of hj(t) but not of gj(t). Remark that the leading coefficient of
hj(t) is the positive real number

∑s
i=l+1 mijyij . Let hj(t) be the monic polynomial

such that hj(t)(t− qj1) . . . (t− qjuj ) = (
∑s

i=l+1 mijyij)hj(t). So,

g(t) =


(t− a)−

k∑
j=1

(
s∑

i=l+1

mijyij)
hj(t)
gj(t)


 s∏

i=l+1

(t− pi).

By hypothesis, if 1 ≤ j ≤ r then Tj is a cut branch at xi. Since gj(t) =
gj(t)

∏vj

i=1(t− qji), the roots of hj(t) strictly interlace those of gj(t) and qj1, . . . , qjvj

are roots of hj(t), then by Theorem 1.5, there exists a matrix Aj in S(Tj) such that
pAj (t) = gj(t) and pAj [Tj−xj ](t) = hj(t). So, we have 2).

If r + 1 ≤ j ≤ k, by Proposition 1.4, there exists a matrix Aj in S(Tj) such that
pAj (t) = gj(t) and pAj [Tj−xj](t) = hj(t) (recall the convention that pAj[Tj−xj ](t) = 1
whenever the vertex set of Tj is {xj}). Therefore, we have 3) and 1).

Now define a matrix A = [aij ] in S(T ) in the following way:

• ax0x0 = a

• ax0xj = axjx0 =
√∑s

i=l+1 mijyij , for j = 1, . . . , k
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• A[Tj ] = Aj , for j = 1, . . . , k
• the remaining entries of A are 0.

According to (2.1), the characteristic polynomial of A may be written as

(t− ax0x0)pA[T−x0](t)−
k∑

j=1

|axoxj |2pA[Tj−xj](t)
k∏

i=1,i�=j

pA[Ti](t).

Note that A[T −x0] = A[T1]⊕ . . .⊕A[Tk] which implies pA[T−x0](t) =
∏k

j=1 pA[Tj](t).
Moreover the characteristic polynomial of A[Tj] is gj(t) and the characteristic polyno-
mial of A[Tj −xj ] is hj(t). Consequently, by hypothesis,

∏k
j=1 gj(t) =

∏s
i=1(t−pi)mi

and

pA(t) = (t− a)
s∏

i=1

(t− pi)mi −
k∑

j=1

(
s∑

i=l+1

mijyij)
hj(t)
gj(t)

s∏
i=1

(t− pi)mi

= g(t)
l∏

i=1

(t− pi)
s∏

i=1

(t− pi)mi−1 = f(t)

i.e., pA(t) = f(t).

Under the conditions and following the notation of Theorem 3.1, if T is a superstar
and Tj is a cut branch at xj of T , then Tj is a path. So, if qji is a common eigenvalue
of A[Tj] and A[Tj − xj ] then mA[Tj−xj ](qji) = 2. Therefore, if we suppose that T is
a superstar then condition 2) of Theorem 3.1 is shorter and we have the following
result.

Theorem 3.2. Let T be a superstar on n vertices and x0 be a central vertex of T
of degree k whose neighbors are x1, . . . , xk. Let Ti be the branch of T at x0 containing
xi and si be the number of vertices in Ti, i = 1, . . . , k.

Let T1, . . . , Tr, with 0 ≤ r ≤ k, be cut branches at x1, . . . , xr, respectively, and
lj = min{number of vertices in each connected component of Tj − xj}, j = 1, . . . , r.

Let g1(t), . . . , gk(t) be monic polynomials having only distinct real roots, with deg
gi(t) = si, p1, . . . , ps be the distinct roots among polynomials gi(t) and mj be the
multiplicity of root pj in

∏k
i=1 gi(t).

Let g(t) be a monic polynomial of degree s+ 1, p1, . . . , pl be the common roots of
g(t) and

∏s
i=1(t− pi) and

g(t) =
g(t)∏l

i=1(t− pi)
.
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For each 1 ≤ j ≤ r, let qj1 < qj2 < . . . < qjvj , with 1 ≤ vj ≤ lj, be roots of gj(t).

Let

gj(t) =

{
gj(t)

(t−qj1)...(t−qjvj
) if 1 ≤ j ≤ r

gj(t) if r < j ≤ k.

and

mij =
{

1 if pi is a root of gj(t)
0 otherwise.

There exists a matrix A in S(T ) with characteristic polynomial f(t) = g(t)
∏s

i=1(t−
pi)mi−1 and such that

1) A[Ti] has characteristic polynomial gi(t), i = 1, . . . , k,
2) for each 1 ≤ j ≤ r, qj1, qj2, . . . , qjvj are the common eigenvalues of A[Tj] and

A[Tj − xj ],
3) if r < i ≤ k and si > 1, the eigenvalues of A[Ti − xi] strictly interlace those

of A[Ti],

if and only if

I) s− l ≥ 1,
II) the roots of g(t) strictly interlace those of

∏s
i=l+1(t− pi),

III) p1, . . . , pl are not roots of gj(t) and there exist positive real numbers yij,
i ∈ {l+ 1, . . . , s}, j ∈ {1, . . . , k} such that
for each i ∈ {l + 1, . . . , s}

− g(pi)∏s
j=l+1,j �=i(pi − pj)

=
k∑

j=1

mijyij ,

and for each j ∈ {1, . . . , r}, u ∈ {1, . . . , vj}
s∑

i=l+1,mij=1

mijyij

qju − pi
= 0.

Remark 3.3. Under the conditions and following the notation of Theorem 3.1,

1) if we suppose that there are not common roots of the polynomials g(t) and∏k
i=1 gi(t), conditions 2), I) and III) of Theorem 3.1 may be omitted and we

obtain Theorem 1.5
2) if T is a generalized star and Tj is a branch of T then Tj − xj is a path or

an empty set. Then, conditions 2), 3), I) and III) of Theorem 3.1 may be
omitted and we obtain Theorem 1.6.
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Remark 3.4. Under the mentioned hypothesis and conditions 1), 2), 3) of The-
orem 3.1, we have condition III) of Theorem 3.1 which implies that p1, . . . , pl are not
roots of

∏k
j=1 gj(t). Because p1, . . . , pl are roots of

∏k
j=1 gj(t) we must have

{p1, . . . , pl} ⊆
r⋃

j=1

{qj1, . . . , qjvj }.

Example 3.5.

1) Let T be the superstar

✉ ✉ ✉✉

✉ ✉ ✉

�
�

�

❅
❅

❅

x0

x2 x1

Let g1(t) = t(t−1)(t−3), g2(t) = (t+2)t(t−3). Then p1 = 1, p2 = −2, p3 =
0, p4 = 3 are the distinct roots among polynomials g1(t) and g2(t).
Consider the root p1 = 1 of g1(t) and the root p3 = 0 of g2(t).
Let g(t) = (t+ 3)(t+ 1)(t− 1)(t− 6

13 )(t− 4).
Since p1 = 1 is a common root of g(t) and

∏4
i=1(t− pi), let

g(t) = (t+ 3)(t+ 1)(t− 6
13 )(t− 4),

g1(t) = t(t− 3) and
g2(t) = (t+ 2)(t− 3).
Because
I) s− l = 4− 1 ≥ 1,
II) the roots of

g(t) = (t+ 3)(t+ 1)(t− 6
13

)(t− 4)

strictly interlace those of

4∏
i=2

(t− pi) = (t+ 2)t(t− 3),

III) the positive real numbers y22 = 96
65 , y31 = 12

13 , y41 = 24
13 and y42 = 144

65

verify
− g(−2)

(−2)×(−5) = y22,

− g(0)
(2)×(−3) = y31,
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− g(3)
(5)×(3) = y41 + y42,

y31
1−0 + y41

1−3 = 0,
y22
0+2 + y42

0−3 = 0,
using Theorem 3.1, there exists a matrix A in S(T ) such that the charac-
teristic polynomial of A is f(t) = g(t)t(t − 3) and, A[T1] has characteristic
polynomial g1(t), A[T2] has characteristic polynomial g2(t), p1 = 1 is the
unique common eigenvalue of A[T1] and A[T1 − x1], p3 = 0 is the unique
common eigenvalue of A[T2] and A[T2 − x2]. Moreover, following the proof
of Theorem 3.1,

A =




− 7
13

√
36
13 0 0

√
48
13 0 0√

36
13 2 1 1 0 0 0

0 1 1 0 0 0 0
0 1 0 1 0 0 0√
48
13 0 0 0 1

√
3

√
3

0 0 0 0
√
3 0 0

0 0 0 0
√
3 0 0




2) Let T be the superstar of the Example 3.5, 1).
Let g1(t) = t(t− 1)(t− 3), g2(t) = (t+ 2)t(t− 3).
Consider the root p1 = 1 of g1(t) and let g(t) = (t+3)(t+1)(t−1)(t− 6

13 )(t−4).
Since p1 = 1 is a common root of g(t) and

∏4
i=1(t− pi), let

g(t) = (t+ 3)(t+ 1)(t− 6
13 )(t− 4),

g1(t) = t(t− 3) and
g2(t) = (t+ 2)t(t− 3).
In this case, because
I) s− l = 4− 1 ≥ 1,
II) the roots of

g(t) = (t+ 3)(t+ 1)(t− 6
13

)(t− 4)

strictly interlace those of

4∏
i=2

(t− pi) = (t+ 2)t(t− 3),

III) the positive real numbers y22 = 96
65 , y31 = 6

13 , y32 = 6
13 , y41 = 12

13 and
y42 = 204

65 verify
− g(−2)

(−2)×(−5) = y22,

− g(0)
(2)×(−3) = y31 + y32,

− g(3)
(5)×(3) = y41 + y42,
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y31
1−0 + y41

1−3 = 0,
using Theorem 3.1, there exists a matrix A in S(T ) such that the charac-
teristic polynomial of A is f(t) = g(t)t(t − 3) and, A[T1] has characteristic
polynomial g1(t), A[T2] has characteristic polynomial g2(t), p1 = 1 is the
unique common eigenvalue of A[T1] and A[T1 − x1]. Moreover, following the
proof of Theorem 3.1,

A =




− 7
13

√
18
13 0 0

√
66
13 0 0√

18
13 2 1 1 0 0 0

0 1 1 0 0 0 0
0 1 0 1 0 0 0√
66
13 0 0 0 14

11

√
643
22 +

√
273

1001

√
643
22 −

√
273

1001

0 0 0 0
√

643
22 +

√
273

1001
−3−√

273
22 0

0 0 0 0
√

643
22 −

√
273

1001 0 −3+
√

273
22




Remark 3.6.

1) In Example 3.5, 1), we consider that the set of common roots of g(t) and
g1(t)g2(t) is a subset of the set of fixed roots of g1(t) and g2(t). This is,
{p1, . . . , pl} ⊂ ⋃r

j=1{qj1, . . . , qjvj}.
In 2), we consider that the set of common roots of g(t) and g1(t)g2(t) is the
set of fixed roots of g1(t) and g2(t). Thus, {p1, . . . , pl} =

⋃r
j=1{qj1, . . . , qjvj}.

Following the proof of Theorem 3.1, we obtain different matrices or solution
for the GIEP.

2) In Example 3.5, 1), the positive real numbers y22 = 96
65 , y31 = 12

13 , y41 = 24
13 and

y42 = 144
65 verify conditions III)(3.1) and (3.2) of Theorem 3.1. If we consider

the positive real numbers y22 = 96
65 , y31 = 12

13 , y41 = 132
65 and y42 = 132

65 , then
these integers verify condition III)(3.1) but do not verify condition III)(3.2),
this is,
y31
1−0 + y41

1−3 �= 0, and y22
0+2 + y42

0−3 �= 0.
Consequently, it is possible to find positive real numbers that verify condition
III)(3.1) but do not satisfy condition III)(3.2).

4. Equivalence of ordered multiplicity lists and IEP. As we have said in
section 1 (Introduction), using the mentioned tree T ′, Barioli and Fallat gave the first
example for which the equivalence between the problem of ordered multiplicity lists
and the IEP does not occur, [1]. Using the mentioned tree T ′′, a simpler example
based on the same technique was given in [10].
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Using Theorem 2.8 we can see that if

(1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6, 7)

is the sequence of eigenvalues of a matrix A′ ∈ S(T ′) then

2, 3, 4, 5, 6

are the eigenvalues of A′[T1] and of A′[T2], where T1 and T2 are the branches of T ′−x0

with 5 vertices and

2, 3, 4, 6

are the eigenvalues of A′[T3], where T3 is the branch of T ′ − x0 with 4 vertices.

Thus,

i) g1(t) = (t− 2)(t− 3)(t− 4)(t− 5)(t− 6) = g2(t) and g3(t) = (t− 2)(t− 3)(t−
4)(t− 6),

ii) 3, 5 are roots of g1(t) and of g2(t),
iii) 3 is a root of g3(t),
iv) g(t) = (t− 1)(t− 3)2(t− 5)2(t− 7).

Consequently, g(t) = (t− 1)(t− 3)(t− 5)(t− 7). Using Theorem 3.1, it is possible
to find positive real numbers y11, y12, y13, y21, y22, y23, y31, y32, y33 such that

− g(2)
(2−4)×(2−6) = 15

8 = y11 + y12 + y13,

− g(4)
(4−2)×(4−6) = 9

4 = y21 + y22 + y23,

− g(6)
(6−2)×(6−4) = 15

8 = y31 + y32 + y33,
y11
3−2 + y21

3−4 + y31
3−6 = y11 − y21 − y31

3 = 0,
y12
3−2 + y22

3−4 + y32
3−6 = y12 − y22 − y32

3 = 0,
y13
3−2 + y23

3−4 + y33
3−6 = y13 − y23 − y33

3 = 0,
y11
5−2 + y21

5−4 + y31
5−6 = y11

3 + y21 − y31 = 0,
y12
5−2 + y22

5−4 + y32
5−6 = y12

3 + y22 − y32 = 0.

Using the first six equalities we obtain a contradiction. Notice that there are
positive real numbers that satisfy the first three equalities. Therefore, there is no
matrix A′ ∈ S(T ′) having eigenvalues (1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6, 7).

Remark 4.1. Using the sequence (1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6, 7), consider the
matrices

A1 =
[

4 1
1 4

]

and

A2 =
[
3
]
.
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Considering the mentioned tree T ′, let xi be the vertex of Ti adjacent to x0, i ∈
{1, 2, 3}. Let αi

1, α
i
2 be the paths of Ti − xi, i ∈ {1, 2, 3}, where α3

2 is the shortest
path of T3 − x3.

It is easy to prove that this sequence and the matrices

A[α1
1] = A[α1

2] = A[α2
1] = A[α2

2] = A[α3
1] = A1

and

A[α3
2] = A2

verify conditions (a), (b), (c), (d) of Lemma 1.9.

Thus, the converse of Lemma 1.9 is not true.

Using Theorem 3.1 it is possible to prove that

(0, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6, 7)

is the sequence of eigenvalues of a matrix A ∈ S(T ′).

Consider

i) g1(t) = (t− 2)(t− 3)(t− 4)(t− 5)(t− 6) = g2(t) and g3(t) = (t− 2)(t− 3)(t−
4)(t− 6),

ii) 3, 5 roots of g1(t) and of g2(t),
iii) 3 a root of g3(t),
iv) g(t) = t(t− 3)2(t− 5)2(t− 7).

It is easy to find positive real numbers that satisfy condition III) of Theorem 3.1. By
this theorem, there exists a matrix A ∈ S(T ′) having eigenvalues

(0, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6, 7).

In the same way, we can prove the mentioned result for T ′′ (see Introduction).

Using this technique, it is possible to find many superstars where the problem of
ordered multiplicity lists and the IEP are not equivalent.
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