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A NOVEL, BLOCKED ALGORITHM FOR THE REDUCTION TO

HESSENBERG-TRIANGULAR FORM∗

THIJS STEEL† AND RAF VANDEBRIL†

Abstract. We present an alternative algorithm and implementation for the Hessenberg-triangular reduction, an essential

step in the QZ algorithm for solving generalized eigenvalue problems. The reduction step has a cubic computational complexity,

and hence, high-performance implementations are compulsory for keeping the computing time under control. Our algorithm is

of simple mathematical nature and relies on the connection between generalized and classical eigenvalue problems. Via system

solving and the classical reduction of a single matrix to Hessenberg form, we are able to get a theoretically equivalent reduction

to Hessenberg-triangular form. As a result, we can perform most of the computational work by relying on existing, highly

efficient implementations, which make extensive use of blocking. The accompanying error analysis shows that preprocessing

and iterative refinement can be necessary to achieve accurate results. Numerical results show competitiveness with existing

implementations.

Key words. generalized eigenvalue problems, Hessenberg-triangular form, blocked algorithms, high-performance comput-

ing, GPU acceleration.

AMS subject classifications. 65F15.

1. Introduction. The generalized eigenvalue problem Ax = λBx, with A,B ∈ Cn×n, appears in a

wide variety of applications. For dense matrices of modest size, the most popular solution method is the

QZ algorithm introduced by Moler and Stewart [18], which generalizes the classical QR algorithm. The

algorithm consists of two main parts and an optional step to compute the eigenvectors/deflating subspaces

if desired.

1. A direct reduction of the pencil to Hessenberg-triangular form via unitary equivalence transforma-

tions.

2. An iterative reduction of the Hessenberg-triangular pencil to generalized Schur form, again via

unitary equivalence transformations.

3. Calculate, if desired, the eigenvectors via triangular solves.

For an overview of QR and QZ algorithms, we can refer to general textbooks such as Golub and Van

Loan [18], Watkins [26], Trefethen and Bau [23], and Demmel [8]. For books entirely dedicated to eigenvalue

solvers, we refer to Kressner [17] and Watkins [26]. Recently, a rational version of the QZ algorithm was also

introduced by Camps, Meerbergen and Vandebril [7] and Güttel and Berljafa [2].

Bramen, Byers, and Matthias [4,5] contributed significantly to the efficient implementation that is avail-

able in LAPACK nowadays for computing eigenvalues of a single matrix via the QR algorithm. Similar

improvements were made to the QZ algorithm by K̊agström and Kressner [14] and expanded upon by Steel,

Camps, Meerbergen, and Vandebril [20]. Consequently, the implementation of the Hessenberg-triangular
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reduction featured in LAPACK now dominates the computational cost when calculating a generalized

Schur form. In this paper, we therefore focus on an alternative manner of implementing the reduction

to Hessenberg-triangular form to achieve better performance.

Highly optimized implementations for the reduction of a single matrix to Hessenberg form exist. We refer

to the work of Dongarra, Sorensen, and Hammerling [9]; and Quintana-Ort́ı and van de Geijn [19]. Their

Hessenberg reduction algorithm reduces several columns at a time which is also called a panel reduction.

While the Householder reflectors that reduce the panel are being calculated, updates are only applied to

the panel. Once the reflectors have been calculated, they are combined into a compact representation that

allows the reflectors to be applied to the rest of the matrix using level 3 BLAS.

When reducing a pencil to Hessenberg-triangular form, a panel reduction is much harder. The Hessenberg

reduction can be formulated in terms of Householder reflectors that reduce an entire column, whereas the

method proposed by Moler and Stewart [18] is formulated in terms of Givens rotations that only reduce

a single element. Accumulating these rotations to perform some work in level 3 BLAS is possible, but

the fraction of work that can be offloaded this way is smaller than in the Hessenberg reduction. This is

the technique proposed by K̊agström, Kressner, Quintana-Ort́ı, and Quintana-Ort́ı [15]. Reformulating the

algorithm in terms of Householder reflectors is also an option and results in the algorithm of Bujanovic,

Karlsson and Kressner [6], which is very efficient, but complicated. To clearly illustrate the difference of our

approach with the ones mentioned above, we revisit them in detail in Section 2.

This paper is organized as follows. Section 2 discusses the existing implementations for reducing pencils

to Hessenberg-triangular form. Section 3 presents the basic algorithm, a manner of efficiently executing

iterative refinement and a preprocessing step that is sometimes compulsory to decrease the conditioning. In

Section 4, we show that our method is backward stable but can possibly deviate significantly from Hessenberg

form. In Section 5, we demonstrate the viability of our approach through numerical experiments.

2. Existing reductions to Hessenberg-triangular form. Let us briefly discuss the various existing

algorithms for reducing a matrix to Hessenberg-triangular form. In all algorithms, we assume without loss

of generality that the matrix B is upper triangular.

The classical method presented in Algorithm 1 alternates between eliminating an element in A and

eliminating the fill-in in B created by the previous operation. This method only uses level 1 BLAS. The

transformations from the left are particularly problematic for their large stride (assuming a matrix stored

in column-major order).

K̊agström et al. [15] improved the data locality of this algorithm significantly. A simplified version of

their method is shown in Algorithm 2. The algorithm works in panels to offload some of the work to level 3

BLAS. Inside the panels, one operates with small elementary transformations, outside the panels one is able

to switch to level 3 BLAS. Unfortunately, the panels are quite large, limiting the amount of work that can

be offloaded. A version of this algorithm is available in LAPACK.

The last method we consider uses Householder reflectors and is by Bujanovic et al. [6]. Before this paper

was released, using Householder reflectors for the reduction to Hessenberg-triangular form was not deemed

feasible, because after reducing just one column of A, almost all the upper triangular structure of B is lost.

An algorithm based on Householder reflectors would then either have to go through the costly operation of

restoring this structure or use smaller Householder reflectors, limiting their computational efficiency.
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Algorithm 1 Moler and Stewart’s original reduction [18]

Input: Pencil (A,B) of size n× n, with B upper triangular

1: Q = I, Z = I

2: for j = 1, 2 . . . n− 2 do

3: for i = n, n− 1 . . . j + 2 do

4: Construct a Givens rotation G to make Ai,j zero from the left, modifying rows i and i− 1

5: Apply G to A and B from the left and apply G∗ to Q from the right

6: Construct a Givens rotation G to make Bi,i−1 zero from the right, modifying columns i and i− 1

7: Apply G to A, B and Z from the right

8: end for

9: end for

Output: Hessenberg-triangular pencil (A,B) and unitary matrices Q and Z

Bujanovic et al. avoid these problems by using opposite Householder reflectors. If a Householder reflector

H reduces a vector x (i.e. Hx = βe1) and that vector x is the solution of the linear system Bx = e1, then

applying BH will have its first column reduced. This is remarkable, because applying a reflector from the

right usually reduces a row, not a column. Algorithm 3 illustrates how this technique allows one to perform a

Hessenberg-triangular reduction without requiring B to be in upper triangular form. If implemented näıvely,

Algorithm 3 will still perform poorly. For computational efficiency, the authors use panels and a compact

representation of the reflectors, similar to the work on improving the Hessenberg reduction by Quintana-

Ort́ı et al. [19]. To solve the linear systems, the authors assume B is initially in upper triangular form.

While reducing a panel, B will lose this structure, but the authors store UBV , where U and V are the

compact representations of the Householder reflectors that should have been applied at that point. This

factorization allows for efficient solves. After a panel has been reduced, the reflectors need to be applied

to B and the remaining part of A. Doing so using the full representation of the reflectors would destroy

the upper triangular structure of B, costing O(n3) to restore. To avoid this cost, the authors factorize the

compact representation of the reflectors (the details of which we will skip). Applying this factorization to B

leads to a block upper triangular matrix instead of a full matrix.

To the extent of our knowledge, the last proposed method is currently the fastest one available to

reduce a matrix to Hessenberg-triangular form. The algorithm is, however, also complicated and difficult to

implement. In this way, it differs greatly from the idea that we will present here. Our algorithm is simple in

nature and builds upon existing highly optimized code for solving systems of equations, multiplying matrices,

and reducing a matrix to Hessenberg form. The idea is simple, but leads to an algorithm for which an efficient

implementation is easy to make.

3. Algorithm. In this section, we introduce our method. The basic method is simple and fast, but

is numerically unstable, in the sense that the resulting pair is not exactly of Hessenberg-triangular form, if

B is ill-conditioned. This ill-conditioning can lead to large forward errors, but can also result in over- and

underflows which is a drawback in comparison to a direct unitary equivalence transformation.

Iterative refinement can be carried out to push the pencil closer and closer to Hessenberg-triangular

form. Also, a preprocessing step and a regularization technique can be used in case B is very ill-conditioned

or singular. We also note that if B is ill-conditioned and A is not, one can apply the algorithm to the pencil

(B,A) and swap the matrices again after having calculated the Schur form.
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Algorithm 2 Panel-wise reduction to Hessenberg-triangular form [15]

Input: Pencil (A,B) of size n× n, with B upper triangular

1: Q = I, Z = I

2: for k = 1, nb + 1, . . . , n do

3: Initialize two sequences of 2nb × 2nb matrices {Us, s = 1, 2, . . . , nnb}, {Vs, s = 1, 2, . . . , nnb} as I

4: Initialize the nb + 1× nb + 1 matrices Unnb
and Vnnb

as I

5: for j = k, k + 1, . . . k + nb − 1 do

6: for i = n, n− 1 . . . j + 2 do

7: Construct a Givens rotation Gi to make Ai,j zero from the left, modifying rows i and i− 1

8: end for

9: Apply the sequence {Gi, i = n, n− 1 . . . j + 2} to Bi−1:i,k+1:n from the left

10: Accumulate the sequence {Gi, i = n, n− 1 . . . j + 2} into the sequence {Us, s = nnb + 1, nnb, . . . , 1}
11: for i = n, n− 1 . . . j + 2 do

12: Construct a Givens rotation G
(2)
i to make Bi,i−1 zero from the right, modifying columns i and

i− 1

13: Apply G
(2)
i to Bk+2:i,i−1:i from the right

14: end for

15: Apply the sequence {G(2)
i , i = n, n− 1 . . . j + 2} to Ak+2:n,i−1:i from the right

16: Accumulate the sequence {G(2)
i , i = n, n− 1 . . . j+ 2} into the sequence {Vs, s = nnb + 1, nnb, . . . , 1}

17: If j < k + nb − 1, apply the sequence {Us, s = nnb + 1, nnb, . . . , 1} from the left to Ak+2:n,j+1

18: end for

19: Apply the sequence {Us, s = nnb + 1, nnb, . . . , 1} from the left to Ak+2:n,k+nb:n

20: Apply the sequence {U∗
s , s = 1, 2, . . . , nnb + 1} from the right to Q1:n,k+2:n

21: Apply the sequence {Vs, s = nnb + 1, nnb, . . . , 1} from the right to A1:k+1,k+1:n

22: Apply the sequence {Vs, s = nnb + 1, nnb, . . . , 1} from the right to B1:k+1,k+1:n

23: Apply the sequence {Vs, s = nnb + 1, nnb, . . . , 1} from the right to Z:,k+1:n

24: end for

Output: Hessenberg-triangular pencil (A,B) and unitary matrices Q and Z

3.1. Basic algorithm. There is a close connection between the generalized and the standard eigenvalue

problem (see Golub and Van Loan [12]); as a result reducing a pencil to Hessenberg-triangular form is directly

related to the reduction of a single matrix to Hessenberg form. We formalize this in the following theorem.

Theorem 3.1. Consider a pencil (A,B), where B is invertible. If Q is a unitary matrix that reduces

AB−1 to Hessenberg form via a similarity and Z is the conjugate transpose of the unitary factor of the RQ

factorization of Q∗B, then (H,T ) = Q∗(A,B)Z is a Hessenberg-triangular pencil.

Proof. Because Z is the conjugate transpose of the unitary factor of the RQ factorization of Q∗B, we

conclude that Q∗BZ is upper triangular. By construction, Q∗AB−1Q is in Hessenberg form. If we multiply

this matrix on the right with Q∗BZ, we get Q∗AB−1QQ∗BZ = Q∗AZ. Since Q∗BZ is upper triangular

and multiplying a Hessenberg matrix from the right with an upper triangular matrix does not change the

structure of the Hessenberg matrix, Q∗AZ must be Hessenberg.

Based on this theorem, the following algorithm results in a Hessenberg-triangular reduction of a pencil

(A,B) in case the matrix B is invertible.
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Algorithm 3 Householder reflector based HT reduction

Input: Pencil (A,B) of size n× n
1: Q = I, Z = I

2: Calculate a Householder reflector H1 so that H1B1:n,1 = β1e1

3: Apply H1 to A and B from the left and to Q from the right

4: for j = 1, 2 . . . n− 2 do

5: Calculate a Householder reflector H2 so that H2Aj+1:n,j = β2e1

6: Apply H2 to Aj+1:n,j:n and Bj+1:n,j:n from the left and to Q1:n,j+1:n from the right

7: Solve the linear system Bj+1:n,j+1:nx = e1

8: Calculate a Householder reflector H3 so that H3x = β3e1, this also implies that Bj+1:n,j+1:nH3e1 =

β4e1

9: Apply H3 to A1:n,j+1:n, B1:n,j+1:n and Z1:n,j+1:n from the right

10: end for

Output: Hessenberg-triangular pencil (A,B) and unitary matrices Q and Z

Algorithm 4 Simple reduction to Hessenberg-triangular form

Input: Pencil (A,B) of size n× n
1: X = AB−1

2: Calculate a unitary Q, so that Q∗XQ is Hessenberg

3: A = Q∗A

4: B = Q∗B

5: Calculate a unitary Z, so that BZ is upper triangular

6: A = AZ

7: B = BZ

Output: Hessenberg-triangular pencil (A,B) and unitary matrices Q and Z

The greatest strength of this method is that instead of relying on elementary manipulations of the

pencil, the method can rely on basic linear algebra routines. Instead of manipulating two matrices with

unitary equivalence transformations built from either rotations or reflectors, we can now rely on solving

a linear system, a reduction to Hessenberg form, a reduction to upper triangular form and matrix-matrix

multiplications. Each of the latter routines has existing, highly efficiently code. Not only does this make

the method fast, it also makes it easy to implement, maintain and optimize on different architectures.

Unfortunately, the caveat is the accuracy, for which two necessary add-ons are proposed in the next sections.

3.2. Iterative refinement. The calculation of X = AB−1 can be sensitive to rounding errors when

computed in finite precision arithmetic. This sensitivity is reflected in the conditioning of B, and moreover,

if B is singular, X cannot be computed at all.1 In the next subsection, a preprocessing technique is presented

that can be used to adjust the conditioning of the part of B that needs to be inverted to ensure that B is

not too ill-conditioned. In this section, we show how, for modestly ill-conditioned B, iterative refinement

can be applied in a clever manner to enhance the accuracy.

More precisely, rounding errors in the computation of AB−1 imply that Q is not exactly the intended

unitary matrix, and as a consequence, Q∗AZ will not exactly be upper Hessenberg, as there will be nonzero

1We note that the conditioning of the matrix B for inversion is not the same as the condition of the eigenvalue problem.

An eigenvalue problem may have well-conditioned eigenvalues while having an ill-conditioned matrix B.
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elements present below the diagonal. However, as long as B is not too ill-conditioned, the non-Hessenberg

part of H will be small and a step of iterative refinement can be executed.

After each iteration, the algorithm checks the sizes of the elements below the diagonal, column by

column. If the elements below the subdiagonal in the first columns are small enough, we can treat them as

zero and continue the algorithm on the smaller subpencil in the lower-right corner.

Having a subpencil that has some columns less will not have a significant impact on the runtime of the

iterations, but it can have a significant impact on the convergence. The Hessenberg-triangular reduction

algorithm tends to move infinite eigenvalues to the top; therefore, Bk:n,k:n can be significantly better condi-

tioned than B, leading to faster convergence (see also the error analysis in Section 4). We obtain Algorithm

5.

Algorithm 5 Reduction to Hessenberg-triangular form with iterative refinement.

Input: Pencil (A,B) of size n× n
1: Q = I, Z = I, k = 1

2: while k < n do

3: X = Ak:n,k:nB
−1
k:n,k:n

4: Calculate a unitary Qc, so that Q∗
cXQc is Hessenberg

5: Ak:n,: = Q∗
cAk:n,:

6: Bk:n,: = Q∗
cBk:n,:

7: Q:,k:n = Q:,k:nQc

8: Calculate a unitary Zc, so that Bk:n,k:nZc is upper triangular

9: A:,k:n = A:,k:nZc

10: B:,k:n = B:,k:nZc

11: Z:,k:n = Z:,k:nZc

12: while ‖Ak+2:n,k‖ ≤ ε‖A‖ do

13: k = k+1

14: end while

15: end while

Output: Hessenberg-triangular pencil (A,B) and unitary matrices Q and Z

Suppose that some of the columns of the resulting Hessenberg matrix fulfill our tolerance levels and

can be considered in Hessenberg form; the remaining part in the lower-right corner requires another step of

iterative refinement. We thus work on matrices that are partially in Hessenberg-triangular form, and it is

important to not destroy the part that is already in the correct form.

The first subdiagonal element above the pencil that needs another step of iterative refinement can

possibly interfere with unitary updates from the left. This can create a spike as illustrated in Fig. 1. To

avoid this, we must ensure that Qe1 = e1 where Q is the unitary matrix that will carry out the transformation

from the left on the remaining subpencil. This means that during an update from the left, Q cannot modify

the first row. This constraint can be satisfied trivially!

3.3. Preprocessing. The iterative refinement has its limits. If the pencil has infinite eigenvalues, B

will be singular and it will not be possible to calculate X. Additional preprocessing is required in these

cases.
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Fig. 1. Illustration of the unitary updates and the interference with the partial Hessenberg structure. The part of the

pencil affected by the updates from the left is illustrated with green horizontal lines, and the part of the pencil affected by the

updates from the right is illustrated in red vertical lines. The spike is marked with dots.

To obtain a reasonably accurateX, we can apply regularization techniques; in our numerical experiments,

we have based ourselves on Bujanovic et al. [6], who solve the system X(B+∆) = A, for a small perturbation

∆. Unfortunately, when there are too many infinite eigenvalues, it is better to perform a preprocessing step,

before computing X.

In practical cases, the matrix B is often sparse, and quite some infinite eigenvalues can be identified

immediately. The reordering techniques presented by Ward [25] can be used to separate these eigenvalues,

resulting in a partial Schur form.

We first compute a factorization of B that moves the infinite eigenvalues to the top. By using a rank

revealing RQ factorization (RRRQ), we can separate the ill-conditioned part and the well-conditioned part

of the matrix B.2 In an RRRQ, the rows are pivoted so that in the factorization

PB = RQ,

with Q unitary, R upper triangular and P a permutation matrix, the entries ri,j of R satisfy

|r11| ≤ |r22| ≤ · · · ≤ |rnn|,
|rkk| ≤ ‖Rj,k:j‖2 for j = k + 1, . . . , n.

If B is rank-deficient, the top left part of R will typically be small in magnitude. For more information of

rank revealing QR/RQ factorizations, we refer to Golub and Van Loan [12].

The infinite eigenvalues have been moved to the top, and an alternative reduction method (see Section 2)

is used to bring these few columns to Hessenberg-triangular form. Just like in the iterative refinement phase,

we end up with a matrix that is partially in Hessenberg-triangular form, and the conditioning of the lower-

right remaining block is hopefully small enough so that the iterative refinement scheme converges fast.

2An SVD could also be used, but is more expensive.
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Deciding how many columns need to be brought to Hessenberg-triangular form such that the conditioning

of the remaining part is acceptable is non-trivial. Reducing more columns implies more computational work

performed by any of the slower methods. On the other hand, reducing more columns reduces the condition

number of B further, resulting in faster convergence of our algorithm. It is ultimately a tradeoff and depends

on how efficient our method is compared to the one chosen to reduce the first columns. In our implementation,

we have chosen to stop when the smallest diagonal element in B is smaller than ε‖B‖, where ε is the machine

precision. The full algorithm including preprocessing and iterative refinement is described in Algorithm 6.

Algorithm 6 Full Hessenberg-triangular reduction algorithm with preprocessing and iterative refinement.

Input: Pencil (A,B) of size n× n
1: k = 1

2: Calculate the RRRQ of B: PBZc

3: A = PBZc

4: B = PBZc

5: Q = P ∗

6: Z = Zc

7: while Bk,k < ε‖B‖ do

8: Reduce a single column of the pencil using an appropriate HT reduction algorithm

9: k = k + 1

10: end while

11: while k < n do

12: Choose a matrix ∆ so that Bk:n,k:n + ∆ is nonsingular

13: X = Ak:n,k:n(Bk:n,k:n + ∆)−1

14: Calculate Qc, so that Q∗
cXQc is Hessenberg

15: Ak:n,: = Q∗
cAk:n,:

16: Bk:n,: = Q∗
cBk:n,:

17: Q:,k:n = Q:,k:nQc

18: Calculate Zc, so that Bk:n,k:nZc is upper triangular

19: A:,k:n = A:,k:nZc

20: B:,k:n = B:,k:nZc

21: Z:,k:n = Z:,k:nZc

22: while ‖Ak+2:n,k‖ ≤ ε‖A‖ do

23: k = k+1

24: end while

25: end while

Output: Hessenberg-triangular pencil (A,B) and unitary matrices Q and Z

Finally, we note that in many cases, see also the numerical experiments, we do not need to execute

the preprocessing step. So, depending on prior knowledge of the input data, one might decide to skip this

possibly time-consuming step.

4. Error analysis. In this section, we study how rounding errors propagate through the algorithm.

First, we will prove that each iteration of Algorithm 6 is backward stable in Theorem 4.1. However, this

theorem does not guarantee that the pencil is in Hessenberg-triangular form. Second, we will bound the

deviation from Hessenberg-triangular form after one iteration in Theorem 4.2. Third, we will prove that if

the iterative refinement scheme converges, the entirety of Algorithm 6 is backward stable in Theorem 4.3
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Theorem 4.1 (Normwise backward stability of a single iteration of Algorithm 6). Given a pencil

(A,B). Let (H̃, T̃ ) be the result of one iteration of Algorithm 6 in finite precision arithmetic. If we assume

that each step of Algorithm 6 is implemented using backward stable methods, then there exist exactly unitary

matrices Q and Z so that the resulting pencil (H̃, T̃ ) satisfies:

(4.1) Q(H̃, T̃ )Z∗ = (A+ ∆A, B + ∆B),

with T̃ upper triangular, ∆A ≤ c ε ‖A‖ + O(ε2), ∆B ≤ c ε ‖B‖ + O(ε2), ε the machine precision and c a

modest constant, depending on the size of the problem. This holds for any submultiplicative matrix norm.

Theorem 4.1 guarantees that the computed decomposition is backward stable, but it does not guarantee

that (H̃, T̃ ) is in Hessenberg-triangular form. More specifically, H̃ is not guaranteed to be in Hessenberg

form. In Theorem 4.2, we show that H̃ is Hessenberg up to a term that depends on the condition number

of B. This is why the preprocessing step to reduce the ill-conditioning of B and the iterative refinement to

remove the remaining error below the subdiagonal of the matrix H̃ are often compulsory.

Theorem 4.2 (Bound on the perturbation after one iteration). Given a pencil (A,B), with B numeri-

cally nonsingular (i.e. κ(B) < ε−1). If one iteration of Algorithm 6 is executed in finite precision arithmetic,

then (A,B) is transformed into a pencil (H̃, T̃ ), where the matrix T̃ is upper triangular and H̃ can be writ-

ten as the sum of a Hessenberg matrix H plus a perturbation ∆H , where we can bound the norm of ∆H as

follows:

(4.2) ‖∆H‖ ≤ c ε ‖A‖κ(B) +O(ε2),

with ε the machine precision and c a modest constant, depending on the size of the problem, and this holds

for any submultiplicative matrix norm.

For the iterative refinement scheme to converge, ∆H must satisfy ‖∆H‖ ≤ cε‖A‖ after some iterations.

Theorem 4.2 does not guarantee this as the bound for ∆H does not decrease after a refinement step. However,

we can still prove that the iterative refinement scheme will converge. Each step will accurately reduce the

first column of the subpencil. Because B is upper triangular, the first column of X is always a multiple of

the first column of A. The calculation of this column is not sensitive to roundoff even if B is ill-conditioned.

As a result, Q will accurately reduce the first column of A. Even if the calculation of X overflows, we can

always apply a large enough perturbation so that the regularized solution A(B+∆)−1 can be calculated, for

example, ∆ = I −B. Because each iteration accurately reduces at least one column, we can guarantee that

in the worst case, the refinement scheme will converge in n steps. More interesting is that after k columns

have been accurately reduced, we only need to consider the submatrix Bk:n,k:n, which tends to be better

conditioned. In the next section, the numerical experiments will indicate that the algorithm converges fast

for pencils that do not have many infinite eigenvalues. Unfortunately, we were unable to prove a sharper

bound on convergence.

Theorem 4.3 (Normwise backward stability of Algorithm 6). Given a pencil (A,B). Let (H̃, T̃ ) be the

result Algorithm 6 in finite precision arithmetic and assume that the algorithm has converged in the sense

that there is an exactly Hessenberg matrix H so that ‖H − H̃‖ ≤ ctolε‖A‖. If we assume that each step of

Algorithm 6 is implemented using backward stable methods, then there exist exactly unitary matrices Q and

Z so that:
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(4.3) Q(H, T̃ )Z∗ = (A+ ∆A, B + ∆B),

with T̃ upper triangular, ∆A ≤ c ε ‖A‖ + O(ε2), ∆B ≤ c ε ‖B‖ + O(ε2), ε the machine precision and c a

modest constant, depending on the size of the problem. This holds for any submultiplicative matrix norm.

We conclude this section by proving Theorems 4.1, 4.2, and 4.3.

Proof. Throughout the proof, we use c’s to indicate small constants that may depend on the size of the

problem, but are independent of the matrices themselves.

Let us examine the deviation ∆H from being Hessenberg. We start by calculating X = AB−1, and we

get X̃. This is essentially a series of linear system solves (eTi X)B = (eTi A), involving the rows of A and X

and the full matrix B. By assumption, the backward error for each linear system equals34 (i = 1, . . . , n):

eTi X̃(B + EB,i) = eTi A− EA,i,(4.4)

where we can bound the perturbations as ‖EB,i‖ ≤ cB,i ε ‖B‖+O(ε2) and ‖EA,i‖ ≤ cA ε ‖eTi A‖+O(ε2). We

remark that each system i has its individual perturbation matrix EB,i and vector EA,i. Define EA such that

eTi EA = EA,i. Rewriting (4.4) we get the following row-wise forward error result for X:

eTi X = eTi AB
−1 = eTi X̃ +

(
eTi X̃EB,i + eTi EA

)
B−1, with i = 1, . . . , n.

We introduce a matrix EB so that row i of EB equals row i of X̃EB,i, thus eTi EB = eTi (X̃EB,i), for

i = 1, . . . , n. As a result, the following forward error on X is obtained:

(4.5) X = AB−1 = X̃ + (EB + EA)B−1.

We already have ‖EA‖ ≤ cA ε ‖A‖+ O(ε2). To bound ‖EB‖, we must bound ‖X̃‖. Since ‖X̃ −X‖/‖X‖ ≤
c0εκ(B) + O(ε2) and by assuming κ(B) < ε−1 we get ‖X̃ − X‖ < c1‖X‖ + O(ε2) (w.l.g. ε < 1). As a

consequence, we get ‖X̃‖ ≤ ‖X‖+ ‖X̃ −X‖ < (1 + c1)‖X‖ ≤ (1 + c1)‖A‖‖B−1‖. Making use of this bound

on ‖X̃‖ we get ‖EB‖ ≤ c2 ε ‖B‖‖X̃‖+O(ε2) ≤ cB ε κ(B) ‖A‖+O(ε2). The condition number of B is already

introduced in the computation of X. We will see, however, that the forward error will stay of the same

order.

Next, we will transform our computed X̃ to Hessenberg form. If a backward stable Hessenberg reduction

is used, we end up with a matrix Q̃ that is almost unitary and a Hessenberg matrix H̃X̃ . The resulting Q̃

and H̃X̃ satisfy the relation (see Trefethen and Bau Theorem 26.1 [23] and Higham Section 18.4 [13])

H̃X̃ + EH̃ = Q̃∗X̃Q̃, with ‖EH̃‖ ≤ c3 ε ‖X̃‖+O(ε2) ≤ cH̃ ε ‖A‖‖B−1‖+O(ε2),(4.6)

Q̃ = Q+ ∆Q, with QQ∗ = I , ‖∆Q‖ ≤ cQ̂ ε +O(ε2),

Q̃Q̃∗ = I − EQ̃, with ‖EQ̃‖ ≤ cQ̃ ε +O(ε2).

We remark that we only state that Q̃ is close to being unitary; Q̃ could be far from the exact Q that would

reduce X to Hessenberg form.

Next, we compute Z as the conjugate transpose of the unitary factor in the RQ decomposition of the

matrix Q̃∗B. The multiplication with Q̃ as well as computing the RQ decomposition are backward stable

3We deliberately added a minus sign to EA,i to simplify forthcoming deductions.
4In this proof we focus on nonsingular B, so we ignore the regularization term ∆.
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operations, and we end up with a computed upper triangular matrix T̃ satisfying the following relation (see

Higham Sections 18.3 and 18.4 [13]):

T̃ + ET̃ = Q̃∗BZ̃, with ‖ET̃ ‖ ≤ cT̃ ε ‖B‖+O(ε2),(4.7)

Z̃ = Z + ∆Z , with ZZ∗ = I , ‖∆Z‖ ≤ cZ ε +O(ε2),

Z̃Z̃∗ = I − EZ̃ , with ‖EZ̃‖ ≤ cZ̃ ε +O(ε2).

The computed Q̃ and Z̃ are then used to execute an equivalence transformation on the matrix A. As a

result of these multiplications, we obtain

(4.8) H̃ = Q̃∗AZ̃ + EM , with ‖EM‖ ≤ cM ε ‖A‖+O(ε2).

We can now combine all previous bounds to deduce how far H̃ is from being Hessenberg. Rewriting the

equation for H̃ by inserting B−1B and using Equation (4.5) results in

H̃ = Q̃∗AZ̃ + EM = Q̃∗AB−1BZ̃ + EM

= Q̃∗X̃BZ̃ + Q̃∗(EA + EB)Z̃ + EM .(4.9)

Inserting I = Q̃Q̃∗ + EQ̃ in the first term in equation (4.9) between X̃ and B leads to

H̃ = Q̃∗X̃Q̃ Q̃∗BZ̃ + Q̃∗X̃EQ̃BZ̃ + Q̃∗(EA + EB)Z̃ + EM

= Q̃∗X̃Q̃ Q̃∗BZ̃ + EQ + Q̃∗(EA + EB)Z̃ + EM ,

where EQ = Q̃∗X̃EQ̃BZ̃ satisfies ‖EQ‖ ≤ cQ ε κ(B)‖A‖+O(ε2).

We use (4.7) to introduce T̃ and (4.6) to introduce H̃X̃ :

H̃ =
(
H̃X̃ + EH̃

) (
T̃ + ET̃

)
+ EQ + Q̃∗(EA + EB)Z̃ + EM

= H̃X̃ T̃ + EH̃ T̃ + H̃X̃ET̃ + EQ + Q̃∗(EA + EB)Z̃ + EM +O(ε2)︸ ︷︷ ︸
=∆H

The matrix H̃X̃ T̃ is upper Hessenberg since the multiplication on the right with an upper triangular

matrix T̃ does not perturb the Hessenberg structure of H̃X̃ . As a result, the deviation ∆H from upper

Hessenberg form can be bounded as:

‖∆H‖ = ‖EH̃ T̃ + H̃X̃ET̃ + EQ + Q̃∗(EA + EB)Z̃ + EM +O(ε2)

≤ c4 ε ‖A‖κ(B) + c5ε ‖A‖+O(ε2)

≤ c ε ‖A‖κ(B) +O(ε2).

This concludes the proof of Theorem 4.2.

Next, we prove the backward stability of the decomposition. Combining equations (4.6), (4.7) and (4.8),

we get that after an iteration

(H̃, T̃ ) = (Q+ ∆Q)∗(A+ Em, B − ET̃ )(Z + ∆Z).
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After some manipulation, this becomes

Q(H̃, T̃ )Z∗ = (A+QEmZ
∗ +Q∆∗

QA+A∆ZZ
∗ +O(ε2)︸ ︷︷ ︸

=∆A

, B + (−QET̃Z
∗) +Q∆∗

QB +B∆ZZ
∗ +O(ε2)︸ ︷︷ ︸

=∆B

).

It is easy to see that ∆A and ∆B satisfy the bounds stated in Theorem 4.1, completing the proof of that

theorem.

Finally, we prove Theorem 4.3, which is a direct consequence of Theorem 4.1. Let us use superscripts to

differentiate matrices from different iterations, so that (H̃(i), T̃ (i)) is the resulting pencil after i iterations.

Since we have already proven that each iteration is backward stable, it is easy to see that there exist unitary

matrices Q(i) and Z(i) so that

Q(i)(H̃(i), T̃ (i))Z(i)∗ = (A+ ∆
(i)
A , B + ∆

(i)
B ),

with ∆A ≤ c ε ‖A‖+O(ε2), ∆B ≤ c ε ‖B‖+O(ε2). Consider the exactly Hessenberg matrix H(i) = H̃(i)−∆
(i)
H ,

which satisfies

Q(i)(H(i), T̃ (i))Z(i)∗ = (A+ ∆
(i)
A +Q(i)∆

(i)
H Z(i)∗, B + ∆

(i)
B ).

By assumption, the Algorithm has converged and so ‖∆H‖ < ctolε‖A‖. This lets us bound the perturbation

on A as ‖∆(i)
A +Q(i)∆

(i)
H Z(i)∗‖ ≤ (c(i) + ctol)ε‖A‖, which concludes the proof of Theorem 4.3.

5. Numerical experiments. In this section, we illustrate the performance of the algorithm. We

compare the following implementations:

• ITERHT: a Fortran implementation of the method presented in this paper.

• ITERHTGPU: a version of ITERHT modified to use the GPU.

• XGGHD3: The blocked Hessenberg-triangular reduction by K̊agström et al. [15] as implemented in

LAPACK 3.9 [1] (Algorithm 2).

• HOUSEHT: Householder reflector based reduction by Bujanovic et al. [6] (Algorithm 3).

We use two machines to test the performance: a compute server with two Intel Xeon E5-2650 v2 CPUs with

8 cores each and 62Gb of RAM, and a laptop with an Intel i7-8750H CPU with 6 cores, 16Gb of RAM and an

NVIDIA 1060 GPU. All the codes (including XGGHD3, but not the rest of LAPACK or BLAS) are compiled

using GCC version 7.5.0 with optimization option -O3 and linked with MKL [24] and MAGMA [22]. Unless

mentioned explicitly, no preprocessing is applied.

5.1. Tests on randomly generated pencils. For the first experiment, we apply the algorithms to

pencils with entries drawn from a uniform distribution between 0 and 1. Such a random matrix is expected

to be nonsingular, so ITERHT should perform well. Results are shown in Figs. 2 and 3. On both machines,

our method is consistently the fastest for all pencil sizes. However, on the laptop, the speedup of ITERHT

compared to the other method is less impressive. This could be caused by many different factors, but we

suspect it is because some of the speedup can be explained by our method being able to more efficiently use

many cores, which the laptop has less of.

5.2. Examples from matrix market. For the next experiment, we tested some matrices that are

related to physical problems on the compute server. These consist of the cavity and obstacle flow pencils
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Fig. 2. Performance of the different algorithms on the compute server for randomly generated pencils of different sizes

n. The left figure shows the runtime of the different algorithms. The right figure shows the relative runtime of LAPACK and

HOUSEHT compared to the runtime of ITERHT. This is the same as the speedup of ITERHT when compared with the other

algorithms.
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Fig. 3. Performance of the different algorithms on the laptop for randomly generated pencils of different sizes n. The left

figure shows the runtime of the different algorithms. The right figure shows the relative runtime of LAPACK and HOUSEHT

compared to the runtime of ITERHT.

generated with IFISS [10, 11], and two pencils from Matrix market [3] originating from the MHD collection

and the rail pencil from the Oberwolfach benchmark collection [16]. Results are shown in Table 1. We note

that some of the matrices can be considered numerically singular, with which one could expect our method

to perform poorly. However, the experiment shows fast convergence.
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Table 1

Performance on the different algorithms on the compute server for pencils from practice. The columns denote the name

of the problem (Problem), the number of rows/columns in the matrices (Size), the condition of the second matrix of the pencil

(κ(B)), the number of refinement step that were executes during the ITERHT algorithm and finally the execution time of

ITERHT (titerht(s)), LAPACK (tlapack(s)) and HOUSEHT (thouseht(s)) respectively. Results between parenthesis are for

the single precision implementation.

Problem Size κ(B) Refine titerht(s) tlapack(s) thouseht(s)

Cavity flow 2467 1.9e18 1 (1) 4.57 (2.86) 21.3 (15.6) 12.6 (7.50)

Obstacle flow 2488 1.8e3 0 (1) 2.38 (2.90) 21.9 (15.9) 12.0 (7.28)

Mhd 3200 3200 1.6e13 1 (1) 10.1 (2.72) 42.1 (32.9) 27.8 (15.8)

Mhd 4800 4800 8.2e13 1 (0) 34.2 (9.45) 137 (102) 81.2 (44.0)

Rail 5177 3.5e2 0 (3) 21.1 (31.6) 165 (127) 79.5 (50.0)

5.3. Scalability. For the third experiment, we vary the number of threads MKL is allowed to use. As

the calls to MKL are the only source of parallelism in our code, this should give a good indication of the

scalability of our algorithm. We perform this test on the same randomly generated pencil as in the first

experiment with n = 8000, Fig. 4 shows the results. While some parts of ITERHT scale very well (especially

the application of the reflectors and the solution of the upper triangular system), the Hessenberg reduction

does not. As a whole, ITERHT scales better than HOUSEHT and both methods scale a lot better than

LAPACK. This makes our method of particular interest for modern architectures which typically have more

cores.

5.4. GPU implementation. As shown in the previous experiments, much of the performance of our

new algorithm can be attributed to its ability to utilize many cores effectively. Unfortunately, at the time

of writing, many consumer-grade CPUs do not have enough cores to fully utilize this scalability. However,

many of these systems have a GPU and the Hessenberg reduction scales very well on GPUs [21]. For the

final experiment, we implemented a version of ITERHT that uses MAGMA instead of LAPACK for most

of the calculations and tested it on the random pencils of experiment 1. Results of the CPU and GPU

implementations on the laptop are shown in Fig. 5. These results seem to indicate that in single precision

this implementation performs very well, achieving a speedup of 4 over the CPU implementation. The specific

GPU we used is (like most GPUs) designed for single precision and cannot achieve the same speed in double

precision.

5.5. Saddle point problem. Inspired by Bujanovic et al. [6], we stress test our algorithm using saddle

point problems. These are problems of the form:

A =

[
X Y

Y T 0

]
and B =

[
I 0

0 0

]
,

where A,B ∈ Rn×n. X ∈ R(n−k)×(n−k) and Y ∈ R(n−k)×k are randomly generated. And I is the (n −
k) × (n − k) identity matrix. This pencil contains (at least) k infinite eigenvalues, so by varying k, we can

make this pencil harder to solve for our algorithm. Figure 6 shows the results of applying our algorithm to

these saddle point problems. If no preprocessing is applied, the performance clearly suffers from the presence

of the infinite eigenvalues even though the number of infinite eigenvalues is relatively small. The number

of required refinement steps seems to scale linearly with the number of infinite eigenvalues. This is likely
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Fig. 4. Performance on the compute server for randomly generated pencils of size 8000. The top two plots show the

breakdown of the runtime of ITERHT into its largest components and their parallel speedup. When using one core, the most

expensive subroutines are DGEHRD (the Hessenberg reduction of X) and DORM(HR/RQ) (the application of the reflectors to

the matrices). When using multiple cores, DGERQF (the RQ decomposition) also becomes an important part of the runtime.

The bottom two plots show the runtime and parallel speedup of different algorithms.

because the algorithm relies on the guaranteed reduction of a single column to remove the infinite eigenvalues

one at a time. When we do run the preprocessing step, however, no refinement steps are necessary.

6. Conclusion. We presented a new algorithm for the reduction to Hessenberg-triangular form. By

utilizing the link between generalized and standard eigenvalue problems, we can use readily available software

to perform most of the computational tasks. This leads to a high degree of computational efficiency and

keeps the code simple. We implemented the new algorithm and experimentally verified that the algorithm
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Fig. 5. Performance of the algorithm relative to ITERHTGPU on the laptop for randomly generated pencils of different

sizes n.
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Fig. 6. The influence of the number of infinite eigenvalues k on the runtime and number of refinement steps when

reducing saddle point problem of size 1000 × 1000. The experiment is performed both with and without preprocessing. With

preprocessing, no refinement steps are needed. Without preprocessing, the number of refinement steps grows linearly with the

amount of infinite eigenvalues.

converges in only a few iterations and is faster than state-of-the-art algorithms when the pencil does not

have infinite eigenvalues. However, the algorithm is not suited for pencils that have a large number of infinite

eigenvalues. For such pencils, we need to use preprocessing to remove the problematic eigenvalues. We were

unable to find a sharp bound on the convergence rate, and we hope that this will be solved in future research.
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