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SPECTRAL SLATER INDEX OF TOURNAMENTS∗
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Abstract. The Slater index i(T ) of a tournament T is the minimum number of arcs that must be reversed to make T

transitive. In this paper, we define a parameter Λ(T ) from the spectrum of the skew-adjacency matrix of T , called the spectral

Slater index. This parameter is a measure of remoteness between the spectrum of T and that of a transitive tournament.

We show that Λ(T ) ≤ 8 i(T ) and we characterize the tournaments with maximal spectral Slater index. As an application, an

improved lower bound on the Slater index of doubly regular tournaments is given.
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1. Introduction. A tournament is a digraph in which every pair of vertices is joined by exactly one

arc. If (x, y) is an arc, then we say that x dominates y and we write x → y. A tournament is transitive if

whenever u dominates v and v dominates w, then u dominates w. An n-tournament is a tournament with

n vertices. Unless mentioned otherwise, all considered n-tournaments have vertex set {1, . . . , n}.

The distance between two n-tournaments T and T ′ is the number d(T, T ′) of pairs {i, j} from {1, . . . , n}
for which the arc between i and j has not the same direction in T and in T ′. The Slater index i(T ) of a

tournament T is the minimum number of arcs that must be reversed to make T transitive [21]. This index

can be interpreted as the minimum distance between T and the set of transitive tournaments. Alon [3] and

Charbit et al. [4] independently proved that the problem of finding the Slater index of a tournament is

NP-hard.

Let i(n) = max i(T ), where the maximum is taken over all n-tournaments. There are several works

about finding bounds on i(n) (see Erdős and Moon [8], Reid [18] and Jung [14]). Using probabilistic

methods, Spencer [22, 23] and de la Vega [6] proved that for sufficiently large n, there exist some constant

numbers c1 and c2 such that

(1.1)
1

2

(
n

2

)
− c1n

3
2 ≤ i(n) ≤ 1

2

(
n

2

)
− c2n

3
2 .

However, there is no explicit construction of an n-tournament T such that i(T ) = 1
2

(
n
2

)
− O(n

3
2 ). Good

candidates are doubly regular tournaments. A tournament is doubly regular if there is a constant k ≥ 1 such

that each unordered pair of vertices is jointly dominated by exactly k vertices. Doubly regular tournaments

exist only for orders n ≡ 3 (mod 4). A result due to Satake [20, Theorem 2.4] is equivalent to the following

theorem.

Theorem 1.1. The Slater index of doubly regular n-tournaments is at least 1
2

(
n
2

)
− n

3
2 log2(2n).
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The distance between tournaments can also be interpreted in terms of their skew-adjacency matrices.

The skew-adjacency matrix of a n-tournament is defined as the n × n skew-symmetric matrix S = [sij ],

where sij = 1 if i → j, sij = −1 if j → i and sii = 0. The skew-spectrum of a tournament is the spectrum

of its skew-adjacency matrix. Let T and T ′ be two n-tournaments with skew-adjacency matrices S and

S′ respectively. It is easy to check that d(T, T ′) = 1
8 ∥S − S′∥2F , where ∥S − S′∥F is the Frobenius norm

of S − S′. As the matrices S and S′ are skew-symmetric, their nonzero eigenvalues are purely imaginary

numbers. Let {iλ1, . . . , iλn} and {iλ′
1, . . . , iλ

′
n} be the spectra of S and S′ arranged such that λ1 ≥ · · · ≥ λn

and λ′
1 ≥ · · · ≥ λ′

n. It follows from Wielandt–Hoffman theorem [10] that

n∑
j=1

(λj − λ′
j)

2 ≤ ∥S − S′∥2F ,

hence

(1.2)

n∑
j=1

(λj − λ′
j)

2 ≤ 8 d(T, T ′).

Motivated by this result, we define the spectral distance λ(T, T ′) between T and T ′ as:

λ(T, T ′) =

n∑
j=1

(λj − λ′
j)

2.

The concept of spectral distance is defined for graphs in different ways with respect to various matrices

[1, 12, 13].

The spectral Slater index of T , denoted by Λ(T ) is the spectral distance between T and a transitive

tournament. By (1.2), we get

(1.3) Λ(T ) ≤ 8 i(T ).

Our main result below gives an upper bound on the spectral Slater index of tournaments.

Theorem 1.2. Let T be an n-tournament.

(i) If n is even, then

Λ(T ) ≤ 2n (n− 1)− 4
√
n− 1

n/2∑
k=1

cot

(
(2k − 1)π

2n

)
.

Equality holds iff the skew-spectrum of T is
{[

±i
√
n− 1

]n
2

}
.

(ii) If n is odd, then

Λ(T ) ≤ 2n (n− 1)− 4
√
n

(n−1)/2∑
k=1

cot

(
(2k − 1)π

2n

)
.

Equality holds iff the skew-spectrum of T is
{
[0]

1
, [±i

√
n]

n−1
2

}
.

The class of tournaments whose spectral Slater index attains the bounds in Theorem 1.2 will be charac-

terized in Section 4. This class is related to doubly regular tournaments. In Section 5, we improve Satake’s

lower bound [20] on the Slater index of doubly regular tournaments.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 170-178, February 2022.
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2. Preliminaries. Let T be an n-tournament and let S be its skew-adjacency matrix. McCarthy and

Benjamin [16, Proposition 1] proved that the determinant of a tournament is equal to zero if and only if it

has an odd number of vertices. It follows that T has n nonzero eigenvalues if n is even and n − 1 nonzero

eigenvalues if n is odd. Moreover, as S is skew-symmetric, these eigenvalues are purely imaginary and

occur as conjugate pairs ±iλ1, . . . ,±iλ⌊n/2⌋. Throughout this paper, the nonzero eigenvalues will always be

arranged such that λ1 ≥ · · · ≥ λ⌊n/2⌋ > 0. Since the off-diagonal entries of S are from the set {−1, 1}, we
have

(2.4)

⌊n/2⌋∑
k=1

λ2
k =

1

2
trace(−S2) =

n(n− 1)

2
.

Tournaments with the same skew-spectrum can be obtained by switching. The operation of switching

a tournament with respect to a subset X of [n] := {1, . . . , n} consists of reversing all the arcs between X

and [n] \X. This operation defines an equivalence relation between tournaments. It is well known [17] that

two tournaments are switching equivalent if and only if their skew-adjacency matrices are {−1, 1}-diagonally
similar. Therefore, the skew-spectrum of a tournament is invariant under switching.

Let T1 and T2 be two n-tournaments and let {±iα1, . . . ,±iα⌊n/2⌋} and {±iβ1, . . . ,±iβ⌊n/2⌋} be the

sets of their nonzero eigenvalues. Using (2.4), the spectral distance between T1 and T2 can be expressed as

follows:

(2.5) λ(T1, T2) = 2n(n− 1)− 4

⌊n/2⌋∑
k=1

αkβk.

The nonzero eigenvalues of an n-transitive tournament are ±i cot
(

(2k−1)π
2n

)
where k ∈ {1, . . . , ⌊n/2⌋}

(see for example [26]). Then, by definition and using (2.5), the spectral Slater index of an n-tournament T

with nonzero eigenvalues ±iλ1, . . . ,±iλ⌊n/2⌋ is

(2.6) Λ(T ) = 2n(n− 1)− 4

⌊n/2⌋∑
k=1

λk cot

(
(2k − 1)π

2n

)
.

By definition, the spectral distance between two tournaments is equal to zero if and only if they have

the same skew-spectrum. It follows that the spectral Slater index of an n-tournament T is equal to zero

if and only if its nonzero eigenvalues are ±i cot
(

(2k−1)π
2n

)
where k ∈ {1, . . . , ⌊n/2⌋}, or equivalently it is

switching equivalent to a transitive n-tournament [7]. Tournaments with this property can have arbitrarily

large Slater index. For example, let Cn be the n-tournament defined as follows. For any unordered pair

{i, j} with 1 ≤ i < j ≤ n, i dominates j if and only if j − i ≤
⌊
n
2

⌋
. By switching the tournament Cn with

respect to X :=
{
1, . . . ,

⌊
n
2

⌋}
, we obtain a transitive tournament. Hence, the spectral Slater index of Cn is

equal to 0. However, Woirgard [27, Theorem 2] proved that the Slater index of Cn is (n2−1)
8 if n is odd and

(n2−2n)
8 if n is even.

3. Proof of Theorem 1.2. Let d be a positive integer and let c be a positive real number. We denote

by Kd,c the set of points (x1, . . . , xd) of Rd such that x1 ≥ · · · ≥ xd ≥ 0 and
∑

xi = c. Clearly, the set Kd,c

is convex and compact. Moreover, we have the following.
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Lemma 3.1. The extreme points of Kd,c are P1, . . . , Pd, where Pj is the d-tuple whose j first coordinates

are equal to c
j and the others are equal to 0.

Proof. Let j ∈ {1, . . . , d} and assume that Pj = P+Q
2 for some points P := (p1, . . . , pd) and Q :=

(q1, . . . , qd) of Kd,c. Clearly, we have

pl + ql
2

=

{
c
j if l ∈ {1, . . . , j} ,
0 if l ∈ {j + 1, . . . , d} .

Then, for l ∈ {j + 1, . . . , d}, pl = ql = 0. Moreover, as p1 ≥ · · · ≥ pd ≥ 0 and q1 ≥ · · · ≥ qd ≥ 0, we have

pl = pl+1 and ql = ql+1 for l ∈ {1, . . . , j − 1}. We conclude that P = Q = Pj , because
∑

pi =
∑

qi = c.

Hence, Pj is an extreme point of Kd,c.

Consider now an arbitrary point P := (p1, . . . , pd) of Kd,c. Let γj = j(pj −pj+1)/c for j ∈ {1, . . . , d− 1}
and γd = dpd/c. It is not hard to check that P =

∑
γjPj . Moreover γj ≥ 0 for j ∈ {1, . . . , d} and

∑
γj = 1.

Then every point of Kd,c is a convex combination of P1, . . . , Pd, which proves the result.

In addition to Lemma 3.1, the proof of Theorem 1.2 requires the following result.

Proposition 3.2. Let n ≥ 2 be an integer and let m = ⌊n/2⌋. For every point (x1, . . . , xm) of Km,c,

we have
m∑

k=1

√
xk cot

(
(2k − 1)π

2n

)
≥

√
c

m

m∑
k=1

cot

(
(2k − 1)π

2n

)
.

Equality holds if and only if xi =
c

m
for i ∈ {1, . . . ,m}.

Proof. Consider the function f from the set Km,c to the field of real numbers defined by:

f (x1, . . . , xm) =

m∑
k=1

√
xk cot

(
(2k − 1)π

2n

)
.

AsKm,c is a convex compact set of Rm and f is a continuous concave function, by Bauer’s maximum principle,

f attains its minimum at some extreme point of Km,c, namely, by Lemma 3.1, P1 := (c, 0, . . . , 0) , . . . , Pm :=(
c
m , . . . , c

m

)
.

We prove that f(Pk) < f(Pk−1) for every k ∈ {2, . . . ,m}, which is equivalent after some simplifications

to

cot
(
(2k − 1) π

2n

)∑k−1
j=1 cot

(
(2j − 1) π

2n

) <

√
k√

k − 1
− 1.

Obviously,
k−1∑
j=1

cot
(
(2j − 1)

π

2n

)
≥ cot

( π

2n

)
.

Then,

cot
(
(2k − 1) π

2n

)∑k−1
j=1 cot

(
(2j − 1) π

2n

) ≤
cot

(
(2k − 1) π

2n

)
cot

(
π
2n

) .
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As the function x 7−→ x cot (x) is decreasing on
(
0, π

2

]
, we have

cot
( π

2n

)
> (2k − 1) cot

(
(2k − 1)

π

2n

)
.

Then,

cot
(
(2k − 1) π

2n

)∑k−1
j=1 cot

(
(2j − 1) π

2n

) <
1

2k − 1
<

√
k√

k − 1
− 1.

It follows that f(Pk) < f(Pk−1) and hence Pm is the unique point for which the function f attains its

minimum.

Proof of Theorem 1.2. Let T be an n-tournament and let S be its skew-adjacency matrix. Denote by

±iλ1, . . . ,±iλm the nonzero eigenvalues of S. By (2.6), we have

Λ(T ) = 2n(n− 1)− 4

m∑
k=1

λk cot

(
(2k − 1)π

2n

)
.

Moreover, by (2.4), we have (λ2
1, . . . , λ

2
m) ∈ Km,c where c = n(n−1)

2 . Then by Proposition 3.2,

Λ(T ) ≤ 2n(n− 1)− 4

√
c

m

m∑
k=1

cot

(
(2k − 1)π

2n

)
,

with equality if and only if λ1 = · · · = λm =
√

c
m .

If n is even, then m = n
2 and hence

Λ(T ) ≤ 2n(n− 1)− 4
√
n− 1

n/2∑
k=1

cot

(
(2k − 1)π

2n

)
,

equality holds if and only if λ1 = · · · = λn/2 =
√
n− 1 or equivalently the spectrum of S is

{[
±i

√
n− 1

]n
2

}
.

Similarly, if n is odd then m = n−1
2 and hence

Λ(T ) ≤ 2n (n− 1)− 4
√
n

(n−1)/2∑
k=1

cot

(
(2k − 1)π

2n

)
,

with equality if and only if the spectrum of S is
{
[0]

1
, [±i

√
n]

n−1
2

}
.

4. Tournaments with large spectral Slater index. In this section, we characterize the class of

tournaments whose spectral Slater index attains the bound in Theorem 1.2.

Let T be an n-tournament and let S be its skew-adjacency matrix. The spectrum of S is
{[

±i
√
n− 1

]n
2

}
if and only if S is a skew-conference matrix, that is ,S2 = (1−n)In. Indeed, if S is a skew-conference matrix,

then the minimal polynomial of S is X2 + (n− 1). Hence, its eigenvalues are ±i
√
n− 1, each of multiplicity

n
2 . Conversely, if the spectrum of S is

{[
±i

√
n− 1

]n
2

}
, then the minimal polynomial of S is X2 + (n − 1)

and hence S2 = (1− n)In.
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Skew-conference n × n matrices have maximum determinant among {0,±1}-skew-symmetric matrices

and exist only if n = 2 or n is divisible by 4. Wallis [25] conjectured that a skew-conference matrix exists

for every such order. The reader is referred to [15] for infinite families of skew-conference matrices.

We characterize now, for odd integers n, the n-tournaments with skew-spectrum
{
[0]

1
, [±i

√
n]

n−1
2

}
.

It is easy to see that a real matrix S is skew-conference if and only if S + I is a skew-Hadamard matrix.

Reid and Brown [19, Theorem 2] proved that for every nonnegative integer k, the existence of a skew-

Hadamard matrix of order 4k + 4 is equivalent to the existence of a doubly regular tournament of order

4k + 3. From their proof, we have the following result, which is essential to our characterization.

Theorem 4.1. Let S be the skew-adjacency matrix of an n-tournament T and let

Ŝ =

(
S 1

−1t 0

)
,

where 1 is the all-ones column vector. The tournament T is doubly regular if and only if Ŝ is a skew-

conference matrix.

In addition to Theorem 4.1, we need the following lemma.

Lemma 4.2. Let T be an n-tournament and let S be its skew-adjacency matrix. The skew-spectrum of

T is
{
[0]

1
, [±i

√
n]

n−1
2

}
if and only if there exists a column vector x ∈ {±1}n such that Ŝ :=

(
S x

−xt 0

)
is

a skew-conference matrix.

The direct implication of Lemma 4.2 was stated in [9, Lemma 4.7] with n ≡ 3 (mod 4), but the proof

does not use this condition. For the converse, we apply Cauchy’s interlacing theorem to iŜ and iS. These

matrices are Hermitian; moreover, as Ŝ is a skew-conference matrix, the spectrum of iŜ is
{
[±

√
n]

n+1
2

}
. By

interlacing and the fact that 0 is an eigenvalue of iS, ±
√
n are eigenvalues of iS each with multiplicity n−1

2 .

Theorem 4.3. An n-tournament has skew-spectrum
{
[0]

1
, [±i

√
n]

n−1
2

}
if and only if it is switching

equivalent to a doubly regular tournament.

Proof. Let T be a an n-tournament and let S be its skew-adjacency matrix. Suppose that the skew-

spectrum of T is
{
[0]

1
, [±i

√
n]

n−1
2

}
. Consider the matrix Ŝ as described in Lemma 4.2. Let D be the

diagonal matrix whose diagonal entries are the coordinates of x, and let D̂ =

(
D 0

0t 1

)
. It is easy to check

that D̂ŜD̂ =

(
DSD 1

−1t 0

)
.

Let T ′ be the tournament whose skew-adjacency matrix is DSD. This tournament is obtained from T

by switching. Moreover, D̂ŜD̂ is a skew-conference matrix; hence, by Theorem 4.1, T ′ is doubly regular.

This proves the direct implication.

Conversely, assume that T is switching equivalent to a doubly regular tournament T ′. There is a diagonal

matrix D with diagonal entries from {−1, 1} such that the skew-adjacency matrix of T ′ is DSD. By Theorem

4.1, the matrix: (
DSD 1

−1t 0

)
,
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is skew-conference. Therefore, by Lemma 4.2, the skew-spectrum of T ′ and, a fortiori, that of T is{
[0]

1
, [±i

√
n]

n−1
2

}
.

5. Slater index of doubly regular tournaments. In this section, we improve Satake’s lower bound

given in Theorem 1.1.

Theorem 5.1. Let T be a doubly regular n-tournament, then

i(T ) ≥ 1

2

(
n+ 1

2

)
−

√
n

2π
((n+ 1) log(n+ 1) + (n+ 3)) .

Proof. Let T̂ be the tournament obtained from T by adding a vertex dominated by all its vertices.

By Theorem 4.1, the skew-adjacency matrix of T̂ is a skew-conference matrix, and its skew-spectrum is{
[±i

√
n]

n+1
2

}
. Hence, by (2.6)

Λ(T̂ ) = 2n (n+ 1)− 4
√
n

(n+1)/2∑
k=1

cot

(
(2k − 1)π

2(n+ 1)

)
.

The sum in the right-hand side was considered by Cochrane and Peral in [5, Lemma 3]. They proved that

(n+1)/2∑
k=1

cot

(
(2k − 1)π

2(n+ 1)

)
≤ (n+ 1) log(n+ 1)

π
+

(n+ 1)

π
(γ − log(π/4)) +

1

π
+

1

6π(n+ 1)
,

where γ = 0.577... is Euler’s constant. As γ − log(π/4) ≤ 1, we get

(n+1)/2∑
k=1

cot

(
(2k − 1)π

2(n+ 1)

)
≤ (n+ 1) log(n+ 1) + (n+ 3)

π
.

Then,

Λ(T̂ ) ≥ 2n (n+ 1)− 4
√
n

π
((n+ 1) log(n+ 1) + (n+ 3)) .

Clearly, i(T ) = i(T̂ ), moreover, by (1.3), we have i(T̂ ) ≥ 1
8Λ(T̂ ), therefore

i(T ) ≥ n (n+ 1)

4
−

√
n

2π
((n+ 1) log(n+ 1) + (n+ 3)) .

6. Remarks.

1. The spectral distance for graphs, considered in [12], has a close connection with the well-studied

graph energy. For tournaments, and more generally for oriented graphs, the concept of skew-energy

is investigated in several works [2, 7, 11]. Following [2], the skew-energy of a tournament T , denoted

by Es(T ), is the sum of the absolute value of its eigenvalues. A relationship between skew-energy

and spectral distance of tournaments can be obtained from Chebyshev’s sum inequality. Indeed, by

applying this inequality to (2.5), we get

λ(T1, T2) ≤ 2n(n− 1)− 4

⌊n/2⌋

⌊n/2⌋∑
k=1

αk

⌊n/2⌋∑
k=1

βk

 .
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This inequality can be written as follows:

λ(T1, T2) ≤ 2n(n− 1)− 1

⌊n/2⌋
Es(T1)Es(T2).

2. Let T and R be n-tournaments. If the skew-adjacency matrix of R is a skew-conference matrix, then

using (2.5), we get

λ(T,R) = 2n(n− 1)− 2
√
n− 1 Es(T ).

It is shown in [11] and [7] that an n-tournament has minimal skew-energy if and only if it is switching

equivalent to a transitive tournament. The skew-energy of a transitive m-tournament is

2

⌊m/2⌋∑
k=1

cot

(
(2k − 1)π

2m

)
.

Hence,

λ(T,R) ≤ 2n(n− 1)− 4
√
n− 1

n/2∑
k=1

cot

(
(2k − 1)π

2n

)
,

with equality if and only if T is switching equivalent to a transitive tournament. Similarly, if R is

doubly regular, then

λ(T,R) ≤ 2n(n− 1)− 4
√
n

(n−1)/2∑
k=1

cot

(
(2k − 1)π

2n

)
,

with equality if and only if T is switching equivalent to a transitive tournament.

3. The spectral diameter of the set of n-tournaments, denoted by ∆(n), is the maximum possible

spectral distance between any two n-tournaments. Assuming the existence of a skew-conference

matrix of order n, Theorem 1.2 provides a lower bound on the spectral diameter. In other words,

(i) If n ≡ 0 (mod 4), then ∆(n) ≥ 2n (n− 1)− 4
√
n− 1

n/2∑
k=1

cot
(

(2k−1)π
2n

)
.

(ii) If n ≡ 3 (mod 4), then ∆(n) ≥ 2n (n− 1)− 4
√
n

(n−1)/2∑
k=1

cot
(

(2k−1)π
2n

)
.

We suspect that these inequalities are in fact equalities. More strongly,

Conjecture 6.1. If T1 and T2 are two n-tournaments with maximum spectral distance, then one of

them is switching equivalent to a transitive tournament.

Using SageMath [24], we have verified this conjecture up to n = 10.
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