ON \mathcal{C}-COMMUTING GRAPH OF MATRIX ALGEBRA*

P. RAJA ${ }^{\dagger}$ AND S. M. VAEZPOUR*

Abstract

Let D be a division ring, $n \geqslant 2$ a natural number, and $\mathcal{C} \subseteq M_{n}(D)$. Two matrices A and B are called \mathcal{C}-commuting if there is $C \in \mathcal{C}$ that $A B-B A=C$. In this paper the \mathcal{C}-commuting graph of $M_{n}(D)$ is defined and denoted by $\Gamma_{\mathcal{C}}\left(M_{n}(D)\right)$. Conditions are given that guarantee that the \mathcal{C}-commuting graph is connected.

Key words. Division ring, Matrix Algebra, Commuting.

AMS subject classifications. 15A27, 15A33, 16P10.

1. Introduction. Given a graph G, a path P is a sequence $v_{0} e_{1} v_{1} e_{2} \ldots e_{k} v_{k}$ whose terms are alternately distinct vertices and distinct edges in G, such that for any $i, 1 \leq i \leq k$, the ends of e_{i} are v_{i-1} and v_{i}. We say u is connected to v in G if there exists a path between u and v. The graph G is connected if there exists a path between any two distinct vertices of G. For more details see [2].

Let D be a division ring and $M_{n}(D)$ be the set of all $n \times n$ matrices over D. As is defined in [1], for $S \subseteq M_{n}(D)$ the commuting graph of S, denoted by $\Gamma(S)$, is the graph with vertex set $S \backslash Z(S)$ such that distinct vertices A and B are adjacent if and only if $A B=B A$, where $Z(S)=\{A \mid A \in S, A B=B A$ for every $B \in S\}$.

Let $A \in M_{n}(D)$. If $A^{2}=I, A$ is called an involution, and A is reducible if it has a non-trivial invariant subspace in D^{n}. It is easily seen that if A is reducible, then there are an invertible matrix P and integers k and m so that $\left(P^{-1} A P\right)_{i j}=0$, for all i and j with $k+1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant m$.

Some properties of commuting graph of $M_{n}(D)$ were considered in [1]. In particular, we proved the following theorems that are useful in this paper.

Theorem 1.1. [1, Theorem 1] Let D be a division ring and $n>2$ a natural number. If \mathcal{A} is the set of all non-invertible matrices in $M_{n}(D)$, then $\Gamma(\mathcal{A})$ is a connected graph.

Theorem 1.2. [1, Theorem 2] Let D be a division ring with center F and $n>1$

[^0]a natural number. If $A \in M_{n}(D)$ is a non-cyclic matrix, then A is connected to E_{11} in $\Gamma\left(M_{n}(D)\right)$.

In the following we extend the definition of commuting graph and define the \mathcal{C}-commuting graph of $M_{n}(D)$. We prove the connectivity of \mathcal{C}-commuting graphs for some special cases of \mathcal{C}.

Notation. For a division ring D and $a \in D$, we use $C_{D}(a)$ for the centralizer of a in D. Also the ring of all $m \times n$ matrices over D is denoted by $M_{m \times n}(D)$, and for simplicity we put $D^{n}=M_{1 \times n}(D)$. The zero matrix, the identity matrix, the zero matrix of size r, and the identity matrix of size r, are denoted by $0, I, 0_{r}$ and I_{r}, respectively, and we use X^{t} for the transpose of X, for every $X \in D^{n}$.
2. Main Results. Throughout this section $E_{i j}$ denotes the matrix in $M_{n}(D)$ whose (i, j)-entry is 1 and other entries are zero, and e_{i} denotes the element in D^{n} whose i th entry is 1 and other entries are zero, for i and j with $1 \leq i, j \leq n$. Also we recall that if $A \in M_{n}(D)$ is a cyclic matrix, then the representation of A in a special basis has the following form

$$
\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
0 & 0 & \cdots & 0 & 1 \\
a_{1} & a_{2} & \cdots & a_{n-1} & a_{n}
\end{array}\right)
$$

for some $a_{1}, \ldots, a_{n} \in D$.
Definition 2.1. For a division ring $D, n \in \mathbb{N}$, and $\mathcal{C} \subseteq M_{n}(D)$, a pair of matrices A and B in $M_{n}(D)$ is called $\mathcal{C}-$ Commuting if $A B-B A=C$, for some $C \in \mathcal{C}$.

Thus, if A and B commute, then they are $\{0\}$-commuting.
Definition 2.2. For a division ring D with center $F, n \in \mathbb{N}$, and $\mathcal{C} \subseteq M_{n}(D)$, the \mathcal{C}-Commuting graph of $M_{n}(D)$, denoted by $\Gamma_{\mathcal{C}}\left(M_{n}(D)\right)$, is a graph with vertex set $M_{n}(D) \backslash F I$ such that distinct vertices A and B are adjacent if and only if they are \mathcal{C}-Commuting, where $F I=\{\alpha I \mid \alpha \in F\}$.

Note that the $\{0\}$-Commuting graph of $M_{n}(D)$ is the commuting graph of $M_{n}(D)$ that was defined in [1].

Now, we are going to establish basic properties of this graph.
Theorem 2.3. Let D be a division ring with center F and $n \geqslant 3$ a natural number. Then the following hold:
(i) If D is non-commutative and \mathcal{C}_{1} is the set of all matrices in $M_{n}(D)$ such that their ranks are at most 1 , then $\Gamma_{\mathcal{C}_{1}}\left(M_{n}(D)\right)$ is a connected graph.
(ii) If D is commutative and \mathcal{C}_{2} is the set of all matrices in $M_{n}(D)$ such that their ranks are at most 2, then $\Gamma_{\mathcal{C}_{2}}\left(M_{n}(D)\right)$ is a connected graph.

Proof. Since the zero matrix is in \mathcal{C}_{1} and \mathcal{C}_{2}, then by Theorem 1.1, each pair of non-invertible matrices are joined by a path in $\Gamma_{\mathcal{C}_{1}}\left(M_{n}(D)\right)$ and $\Gamma_{\mathcal{C}_{2}}\left(M_{n}(D)\right)$. So to prove the theorem it suffices to show that for every non-scalar invertible matrix $A \in M_{n}(D), A$ is joined to a non-zero, non-invertible matrix in $\Gamma_{\mathcal{C}_{1}}\left(M_{n}(D)\right)$ and $\Gamma_{\mathcal{C}_{2}}\left(M_{n}(D)\right)$. By Theorem 1.2, we may assume that A is a cyclic matrix. So there is an invertible matrix P such that

$$
B=P^{-1} A P=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
0 & 0 & \cdots & 0 & 1 \\
a_{1} & a_{2} & \cdots & a_{n-1} & a_{n}
\end{array}\right)
$$

where $a_{i} \in D$, for $i, 1 \leq i \leq n$. To prove (i), let D be a non-commutative division ring and $\alpha \in C_{D}\left(a_{n}\right) \backslash F$. Then we have the path $B-\alpha I-E_{11}$ in $\Gamma_{\mathcal{C}_{1}}\left(M_{n}(D)\right)$, and so is $A-P(\alpha I) P^{-1}-P E_{11} P^{-1}$. To prove (ii), assume D is commutative and put

$$
C=\left(\begin{array}{cc}
1 & a_{1}^{-1} a_{2} \\
0 & 0
\end{array}\right) \oplus I_{n-4} \oplus I_{2}
$$

Then C is a non-zero, non-invertible matrix and it is easily seen that

$$
B C-C B=\left(\begin{array}{ccc}
0 & -1 & -a_{1}^{-1} a_{2} \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \oplus 0_{n-3} \in \mathcal{C}_{2}
$$

So rank $(B C-C B)=2$ and also rank $\left(A\left(P C P^{-1}\right)-\left(P C P^{-1}\right) A\right)=2$, and the proof is complete.

Remark 2.4. Note that in the proof of Theorem 2.3, we have

$$
E=B(\alpha I)-(\alpha I) B=\left(\begin{array}{ccccc}
0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
0 & 0 & \cdots & 0 & 0 \\
b_{1} & b_{2} & \cdots & b_{n-1} & 0
\end{array}\right)
$$

where $b_{i} \in D$, for $i, 1 \leq i \leq n-1$, and also

$$
G=B C-C B=\left(\begin{array}{ccc}
0 & -1 & -a_{1}^{-1} a_{2} \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \oplus 0_{n-3}
$$

So E, G and consequently $P E P^{-1}, P G P^{-1}$ are non-invertible, triangularizable, reducible, and also nilpotent matrices. Therefore we have the following corollaries.

Corollary 2.5. Let D be a division ring and $n \geqslant 3$ a natural number. If \mathcal{A}_{n} is the set of all non-invertible matrices in $M_{n}(D)$, then $\Gamma_{\mathcal{A}_{n}}\left(M_{n}(D)\right)$ is a connected graph.

Corollary 2.6. Let D be a division ring and $n \geqslant 3$ a natural number. If \mathcal{T}_{n} is the set of all triangularizable matrices in $M_{n}(D)$, then $\Gamma_{\mathcal{T}_{n}}\left(M_{n}(D)\right)$ is a connected graph.

Corollary 2.7. Let D be a division ring and $n \geqslant 3$ a natural number. If \mathcal{R}_{n} is the set of all reducible matrices in $M_{n}(D)$, then $\Gamma_{\mathcal{R}_{n}}\left(M_{n}(D)\right)$ is a connected graph.

Corollary 2.8. Let D be a division ring and $n \geqslant 3$ a natural number. If \mathcal{N}_{n} is the set of all nilpotent matrices in $M_{n}(D)$, then $\Gamma_{\mathcal{N}_{n}}\left(M_{n}(D)\right)$ is a connected graph.

THEOREM 2.9. Let F be a field with char $F=0$ and $n \geqslant 3$ a natural number. If \mathcal{D}_{n} is the set of all diagonalizable matrices in $M_{n}(F)$, then $\Gamma_{\mathcal{D}_{n}}\left(M_{n}(F)\right)$ is a connected graph.

Proof. Since the zero matrix is diagonalizable, by Theorem 1.1, we have each pair of non-invertible matrices is joined by a path in $\Gamma_{\mathcal{D}_{n}}\left(M_{n}(F)\right)$. So to prove the theorem it suffices to show that for every non-scalar invertible matrix $A \in M_{n}(F), A$ is joined to a non-zero, non-invertible matrix in $\Gamma_{\mathcal{D}_{n}}\left(M_{n}(F)\right)$. By Theorem 1.2 , we may assume that A is a cyclic matrix. Hence there is an invertible matrix P such that

$$
B=P^{-1} A P=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
0 & 0 & \cdots & 0 & 1 \\
a_{1} & a_{2} & \cdots & a_{n-1} & a_{n}
\end{array}\right)
$$

where $a_{i} \in F$, for $i, 1 \leq i \leq n$. First suppose n is not a multiple of 4 . Let $C=$ $\sum_{i=2}^{n}(-1)^{i}(i-1) E_{i(i-1)}$. We show that $B C-C B$ is a lower triangular matrix that has distinct diagonal entries. For $i, j, 1 \leqslant i \leqslant n-1,1 \leqslant j \leqslant n$, and $i<j$, we have $(B C-C B)_{i j}=(B)_{i(i+1)}(C)_{(i+1) j}-(C)_{i(i-1)}(B)_{(i-1) j}$. By the definition of B and C,
$(C)_{(i+1) j}=(B)_{(i-1) j}=0$. So $B C-C B$ is a lower triangular matrix. Now, assume $2 \leqslant i \leqslant n-1$. Then

$$
\begin{aligned}
(B C-C B)_{i i} & =(B)_{i(i+1)}(C)_{(i+1) i}-(C)_{i(i-1)}(B)_{(i-1) i} \\
& =(-1)^{i+1} i-(-1)^{i}(i-1)=(-1)^{i+1}(2 i-1)
\end{aligned}
$$

Also

$$
\begin{gathered}
(B C-C B)_{11}=(B)_{12}(C)_{21}-0=-1 \\
(B C-C B)_{n n}=0-(C)_{n(n-1)}=(-1)^{n+1}(n-1)
\end{gathered}
$$

It is easily seen that for $i, j, 1 \leqslant i, j \leqslant n, i \neq j$, we have

$$
(B C-C B)_{i i} \neq(B C-C B)_{j j}
$$

Hence by [3, Theorem 6, p. 204], $B C-C B$ is a diagonalizable matrix. Next, assume $n=4 k$ for some positive integer k. Let

$$
C=\sum_{i=2}^{n-1}(-1)^{i}(i-1) E_{i(i-1)}-(n-1) E_{n(n-1)}
$$

Similarly to the previous case, it can be shown that $B C-C B$ is a lower triangular matrix. Now, for $2 \leqslant i \leqslant n-2$,

$$
\begin{aligned}
(B C-C B)_{i i} & =(A)_{i(i+1)}(C)_{(i+1) i}-(C)_{i(i-1)}(B)_{(i-1) i} \\
& =(-1)^{i+1} i-(-1)^{i}(i-1)=(-1)^{i+1}(2 i-1)
\end{aligned}
$$

Also $(B C-C B)_{11}=(B)_{12}(C)_{21}-0=1$ and

$$
\begin{aligned}
(B C-C B)_{(n-1)(n-1)} & =(B)_{(n-1) n}(C)_{n\left(n_{1}\right)}-(C)_{n(n-1)}(B)_{(n-1) n} \\
& =-(n-1)+(n-1)=0
\end{aligned}
$$

It is easily checked that by [3, Theorem 6, p. 204], $B C-C B$ is diagonalizable and the proof is complete.

THEOREM 2.10. Let D be a division ring, $n \geq 3$ a natural number, and \mathcal{C} is a set that includes the zero matrix and all involutions in $M_{n}(D)$. Then we have the following:
(i) If n is an odd number and D is commutative, then $\Gamma_{\mathcal{C}}\left(M_{n}(D)\right)$ is a connected graph if and only if $\Gamma\left(M_{n}(D)\right)$ is a connected graph.
(ii) If n is an even number, then $\Gamma_{\mathcal{C}}\left(M_{n}(D)\right)$ is a connected graph.

Proof. First, suppose that n is odd and D is commutative. If char $F \neq 2$, then it is easily check that a matrix $G \in M_{n}(D)$ is an idempotent if and only if $2 G-I$ is an involution. So if C is an involution, then $H=2^{-1}(C+I)$ is an idempotent. Hence there is an invertible matrix P such that $P^{-1} H P=I_{t} \oplus 0_{n-t}$, for some $0 \leq t \leq n$. Therefore $P^{-1} C P=I_{t} \oplus(-I)_{n-t}$. Now, one can easily seen that the trace of $M N-N M$ is equals to zero, for every $M, N \in M_{n}(D)$. So if C has the form $M N-N M$, for some $M, N \in M_{n}(D)$, then $t=n-t$; i.e. $n=2 t$. So in this case the \mathcal{C}-commuting elements are 0 -commuting matrices. Now suppose that char $F=2$ and C is an involution. So $C^{2}=I$ and therefore the minimal polynomial of C is equal to $x^{2}+1=x^{2}-1=(x-1)(x+1)$. By [3, Theorem 5, p. 203], C is a triangularizable matrix that has only 1 as its eigenvalue. Since only the trace of commutators is equal to 0 , then the \mathcal{C}-commuting elements are 0 -commuting matrices, and the result follows. Next, suppose that n is an even number. Since the zero matrix is in \mathcal{C}, by Theorem 1.1, we have each pair of non-invertible matrices are joined by a path in $\Gamma_{\mathcal{C}}\left(M_{n}(D)\right)$. So to prove the theorem it suffices to show that each non-scalar invertible matrix $A \in M_{n}(D)$, is joined to a non-zero, non-invertible matrix in $\Gamma_{\mathcal{C}}\left(M_{n}(D)\right)$. By Theorem 1.2, we may assume that A is a cyclic matrix. Hence there is an invertible matrix P such that

$$
B=P^{-1} A P=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
0 & 0 & \cdots & 0 & 1 \\
a_{1} & a_{2} & \cdots & a_{n-1} & a_{n}
\end{array}\right)
$$

where $a_{i} \in D$, for $i, 1 \leq i \leq n$. Now, let $C=\sum_{k=1}^{\frac{n}{2}} E_{(2 k)(2 k-1)}$. Since C is noninvertible, then it suffices to show that $B C-C B \in \mathcal{C}$. It is easily checked that

$$
B C=\sum_{k=1}^{\frac{n}{2}} E_{(2 k-1)(2 k-1)}+\sum_{k=1}^{\frac{n}{2}} a_{2 k} E_{n(2 k-1)}
$$

and

$$
C B=\sum_{k=1}^{\frac{n}{2}} E_{(2 k)(2 k)}
$$

So

$$
B C-C B=\sum_{k=1}^{n}(-1)^{k} E_{k k}+\sum_{k=1}^{\frac{n}{2}} a_{2 k} E_{n(2 k-1)}
$$

To complete the proof, it suffices to show that the last row of $(B C-C B)^{2}$ equals $(0, \ldots, 0,1)$. For $k, 1 \leq k \leq \frac{n}{2}-2,(B C-C B)_{n(2 k)}^{2}=0$ and $(B C-C B)_{n(2 k-1)}^{2}=$ $a_{2 k}-a_{2 k}=0$, and $(B C-C B)_{n n}^{2}=1$. This completes the proof. \square

Acknowledgment. The authors would like to thank the referee for her/his very careful reading and useful comments.

REFERENCES

[1] S. Akbari and P. Raja. Commuting graphs of some subsets in simple rings. Linear Algebra and its Applications, 417:1038-1047, 2006.
[2] G. Chartrand and L. Lesniak. Graphs and Digraphs. Chapman and Hall, fourth ed., 2004.
[3] K. Hoffman and R. Kunze. Linear Algebra. Prentice-Hall, Inc., second ed., 1971.
[4] V. V. Prasolov. Problems and Theorems in Linear Algebra. Translations of Mathematical Monographs, No. 134, 1994.

[^0]: *Received by the editors August 19, 2007. Accepted for publication July 13, 2009. Handling Editor: Bryan L. Shader.
 ${ }^{\dagger}$ Department of Mathematics and Computer Sciences, Amirkabir University of Technology, Hafez Ave., P. O. Box 15914, Tehran, Iran (p_raja@cic.aut.ac.ir, vaez@aut.ac.ir).

