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ON C−COMMUTING GRAPH OF MATRIX ALGEBRA∗

P. RAJA† AND S. M. VAEZPOUR∗

Abstract. Let D be a division ring, n � 2 a natural number, and C ⊆ Mn(D). Two matrices A

and B are called C−commuting if there is C ∈ C that AB−BA = C. In this paper the C−commuting

graph of Mn(D) is defined and denoted by ΓC(Mn(D)). Conditions are given that guarantee that

the C−commuting graph is connected.
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1. Introduction. Given a graph G, a path P is a sequence v0e1v1e2 . . . ekvk
whose terms are alternately distinct vertices and distinct edges in G, such that for
any i, 1 ≤ i ≤ k, the ends of ei are vi−1 and vi. We say u is connected to v in G if
there exists a path between u and v. The graph G is connected if there exists a path
between any two distinct vertices of G. For more details see [2].

Let D be a division ring and Mn(D) be the set of all n× n matrices over D. As
is defined in [1], for S ⊆ Mn(D) the commuting graph of S, denoted by Γ(S), is the
graph with vertex set S\Z(S) such that distinct vertices A and B are adjacent if and
only if AB = BA, where Z(S) = {A |A ∈ S, AB = BA for every B ∈ S }.

Let A ∈Mn(D). If A2 = I, A is called an involution, and A is reducible if it has
a non-trivial invariant subspace in Dn. It is easily seen that if A is reducible, then
there are an invertible matrix P and integers k and m so that (P−1AP )ij = 0, for all
i and j with k + 1 � i � n and 1 � j � m.

Some properties of commuting graph of Mn(D) were considered in [1]. In partic-
ular, we proved the following theorems that are useful in this paper.

Theorem 1.1. [1, Theorem 1] Let D be a division ring and n > 2 a natural
number. If A is the set of all non-invertible matrices in Mn(D), then Γ(A) is a
connected graph.

Theorem 1.2. [1, Theorem 2] Let D be a division ring with center F and n > 1
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a natural number. If A ∈ Mn(D) is a non-cyclic matrix, then A is connected to E11

in Γ(Mn(D)).

In the following we extend the definition of commuting graph and define the
C−commuting graph of Mn(D). We prove the connectivity of C−commuting graphs
for some special cases of C.

Notation. For a division ring D and a ∈ D, we use CD(a) for the centralizer
of a in D. Also the ring of all m × n matrices over D is denoted by Mm×n(D), and
for simplicity we put Dn =M1×n(D). The zero matrix, the identity matrix, the zero
matrix of size r, and the identity matrix of size r, are denoted by 0, I, 0r and Ir,
respectively, and we use Xt for the transpose of X , for every X ∈ Dn.

2. Main Results. Throughout this section Eij denotes the matrix in Mn(D)
whose (i, j)-entry is 1 and other entries are zero, and ei denotes the element in Dn

whose ith entry is 1 and other entries are zero, for i and j with 1 ≤ i, j ≤ n. Also we
recall that if A ∈Mn(D) is a cyclic matrix, then the representation of A in a special
basis has the following form




0 1 0 · · · 0

0 0
. . . . . .

...
...

...
. . . . . . 0

0 0 · · · 0 1
a1 a2 · · · an−1 an




for some a1, . . . , an ∈ D.

Definition 2.1. For a division ringD, n ∈ N, and C ⊆Mn(D), a pair of matrices
A and B in Mn(D) is called C−Commuting if AB −BA = C, for some C ∈ C.

Thus, if A and B commute, then they are {0}−commuting.

Definition 2.2. For a division ring D with center F , n ∈ N, and C ⊆ Mn(D),
the C−Commuting graph of Mn(D), denoted by ΓC(Mn(D)), is a graph with vertex
set Mn(D)\FI such that distinct vertices A and B are adjacent if and only if they
are C−Commuting, where FI = {αI |α ∈ F }.

Note that the {0}−Commuting graph of Mn(D) is the commuting graph of
Mn(D) that was defined in [1].

Now, we are going to establish basic properties of this graph.

Theorem 2.3. Let D be a division ring with center F and n � 3 a natural
number. Then the following hold:
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(i) If D is non-commutative and C1 is the set of all matrices in Mn(D) such that
their ranks are at most 1, then ΓC1(Mn(D)) is a connected graph.

(ii) If D is commutative and C2 is the set of all matrices in Mn(D) such that
their ranks are at most 2, then ΓC2(Mn(D)) is a connected graph.

Proof. Since the zero matrix is in C1 and C2, then by Theorem 1.1, each pair
of non-invertible matrices are joined by a path in ΓC1(Mn(D)) and ΓC2(Mn(D)). So
to prove the theorem it suffices to show that for every non-scalar invertible matrix
A ∈ Mn(D), A is joined to a non-zero, non-invertible matrix in ΓC1(Mn(D)) and
ΓC2(Mn(D)). By Theorem 1.2, we may assume that A is a cyclic matrix. So there is
an invertible matrix P such that

B = P−1AP =




0 1 0 · · · 0

0 0
. . . . . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1
a1 a2 · · · an−1 an



,

where ai ∈ D, for i, 1 ≤ i ≤ n. To prove (i), let D be a non-commutative division
ring and α ∈ CD(an)\F . Then we have the path B αI E11 in ΓC1(Mn(D)), and
so is A P (αI)P−1 PE11P

−1. To prove (ii), assume D is commutative and put

C =
(
1 a−1

1 a2
0 0

)
⊕ In−4 ⊕ I2.

Then C is a non-zero, non-invertible matrix and it is easily seen that

BC − CB =


0 −1 −a−1

1 a2
0 0 1
0 0 0


 ⊕ 0n−3 ∈ C2.

So rank (BC −CB) = 2 and also rank (A(PCP−1)− (PCP−1)A) = 2, and the proof
is complete.

Remark 2.4. Note that in the proof of Theorem 2.3, we have

E = B(αI)− (αI)B =




0 0 0 · · · 0

0 0
. . . . . .

...
...

...
. . .

. . . 0
0 0 · · · 0 0
b1 b2 · · · bn−1 0



,
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where bi ∈ D, for i, 1 ≤ i ≤ n− 1, and also

G = BC − CB =


0 −1 −a−1

1 a2
0 0 1
0 0 0


 ⊕ 0n−3.

So E, G and consequently PEP−1, PGP−1 are non-invertible, triangularizable, re-
ducible, and also nilpotent matrices. Therefore we have the following corollaries.

Corollary 2.5. Let D be a division ring and n � 3 a natural number. If An

is the set of all non-invertible matrices in Mn(D), then ΓAn(Mn(D)) is a connected
graph.

Corollary 2.6. Let D be a division ring and n � 3 a natural number. If Tn

is the set of all triangularizable matrices in Mn(D), then ΓTn(Mn(D)) is a connected
graph.

Corollary 2.7. Let D be a division ring and n � 3 a natural number. If Rn is
the set of all reducible matrices in Mn(D), then ΓRn(Mn(D)) is a connected graph.

Corollary 2.8. Let D be a division ring and n � 3 a natural number. If Nn is
the set of all nilpotent matrices in Mn(D), then ΓNn(Mn(D)) is a connected graph.

Theorem 2.9. Let F be a field with charF = 0 and n � 3 a natural number.
If Dn is the set of all diagonalizable matrices in Mn(F ), then ΓDn(Mn(F )) is a
connected graph.

Proof. Since the zero matrix is diagonalizable, by Theorem 1.1, we have each
pair of non-invertible matrices is joined by a path in ΓDn(Mn(F )). So to prove the
theorem it suffices to show that for every non-scalar invertible matrix A ∈Mn(F ), A
is joined to a non-zero, non-invertible matrix in ΓDn(Mn(F )). By Theorem 1.2, we
may assume that A is a cyclic matrix. Hence there is an invertible matrix P such
that

B = P−1AP =




0 1 0 · · · 0

0 0
. . . . . .

...
...

...
. . . . . . 0

0 0 · · · 0 1
a1 a2 · · · an−1 an



,

where ai ∈ F , for i, 1 ≤ i ≤ n. First suppose n is not a multiple of 4. Let C =∑n
i=2(−1)i(i− 1)Ei(i−1). We show that BC − CB is a lower triangular matrix that

has distinct diagonal entries. For i, j, 1 � i � n − 1, 1 � j � n, and i < j, we have
(BC−CB)ij = (B)i(i+1)(C)(i+1)j − (C)i(i−1)(B)(i−1)j . By the definition of B and C,
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(C)(i+1)j = (B)(i−1)j = 0. So BC − CB is a lower triangular matrix. Now, assume
2 � i � n− 1. Then

(BC − CB)ii = (B)i(i+1)(C)(i+1)i − (C)i(i−1)(B)(i−1)i

= (−1)i+1i− (−1)i(i− 1) = (−1)i+1(2i− 1).

Also

(BC − CB)11 = (B)12(C)21 − 0 = −1,

(BC − CB)nn = 0− (C)n(n−1) = (−1)n+1(n− 1).

It is easily seen that for i, j, 1 � i, j � n, i �= j, we have

(BC − CB)ii �= (BC − CB)jj .

Hence by [3, Theorem 6, p. 204], BC −CB is a diagonalizable matrix. Next, assume
n = 4k for some positive integer k. Let

C =
n−1∑
i=2

(−1)i(i− 1)Ei(i−1) − (n− 1)En(n−1).

Similarly to the previous case, it can be shown that BC − CB is a lower triangular
matrix. Now, for 2 � i � n− 2,

(BC − CB)ii = (A)i(i+1)(C)(i+1)i − (C)i(i−1)(B)(i−1)i

= (−1)i+1i− (−1)i(i− 1) = (−1)i+1(2i− 1).

Also (BC − CB)11 = (B)12(C)21 − 0 = 1 and

(BC − CB)(n−1)(n−1) = (B)(n−1)n(C)n(n1) − (C)n(n−1)(B)(n−1)n

= −(n− 1) + (n− 1) = 0.

It is easily checked that by [3, Theorem 6, p. 204], BC − CB is diagonalizable and
the proof is complete.

Theorem 2.10. Let D be a division ring, n ≥ 3 a natural number, and C is a
set that includes the zero matrix and all involutions in Mn(D). Then we have the
following:
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(i) If n is an odd number and D is commutative, then ΓC(Mn(D)) is a connected
graph if and only if Γ(Mn(D)) is a connected graph.

(ii) If n is an even number, then ΓC(Mn(D)) is a connected graph.

Proof. First, suppose that n is odd and D is commutative. If char F �= 2, then
it is easily check that a matrix G ∈ Mn(D) is an idempotent if and only if 2G − I
is an involution. So if C is an involution, then H = 2−1(C + I) is an idempotent.
Hence there is an invertible matrix P such that P−1HP = It ⊕ 0n−t, for some
0 ≤ t ≤ n. Therefore P−1CP = It ⊕ (−I)n−t. Now, one can easily seen that the
trace of MN − NM is equals to zero, for every M, N ∈ Mn(D). So if C has the
form MN − NM , for some M, N ∈ Mn(D), then t = n − t; i.e. n = 2t. So in
this case the C−commuting elements are 0−commuting matrices. Now suppose that
char F = 2 and C is an involution. So C2 = I and therefore the minimal polynomial
of C is equal to x2 + 1 = x2 − 1 = (x − 1)(x + 1). By [3, Theorem 5, p. 203], C
is a triangularizable matrix that has only 1 as its eigenvalue. Since only the trace
of commutators is equal to 0, then the C−commuting elements are 0−commuting
matrices, and the result follows. Next, suppose that n is an even number. Since the
zero matrix is in C, by Theorem 1.1, we have each pair of non-invertible matrices are
joined by a path in ΓC(Mn(D)). So to prove the theorem it suffices to show that
each non-scalar invertible matrix A ∈Mn(D), is joined to a non-zero, non-invertible
matrix in ΓC(Mn(D)). By Theorem 1.2, we may assume that A is a cyclic matrix.
Hence there is an invertible matrix P such that

B = P−1AP =




0 1 0 · · · 0

0 0
. . . . . .

...
...

...
. . . . . . 0

0 0 · · · 0 1
a1 a2 · · · an−1 an



,

where ai ∈ D, for i, 1 ≤ i ≤ n. Now, let C =
∑n

2
k=1 E(2k)(2k−1). Since C is non-

invertible, then it suffices to show that BC − CB ∈ C. It is easily checked that

BC =

n
2∑

k=1

E(2k−1)(2k−1) +

n
2∑

k=1

a2kEn(2k−1),

and

CB =

n
2∑

k=1

E(2k)(2k).

So

BC − CB =
n∑

k=1

(−1)kEkk +

n
2∑

k=1

a2kEn(2k−1).
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To complete the proof, it suffices to show that the last row of (BC − CB)2 equals
(0, . . . , 0, 1). For k, 1 ≤ k ≤ n

2 − 2, (BC − CB)2n(2k) = 0 and (BC − CB)2n(2k−1) =
a2k − a2k = 0, and (BC − CB)2nn = 1. This completes the proof.
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