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REMARKS ON “COMPARISON BETWEEN THE LAPLACIAN ENERGY-LIKE

INVARIANT AND THE KIRCHHOFF INDEX”∗

XIAODAN CHEN† AND GUOLIANG HAO‡

Abstract. The Laplacian-energy-like invariant and the Kirchhoff index of an n-vertex simple connected graph G are,

respectively, defined to be LEL(G) =
∑n−1
i=1

√
µi and Kf(G) = n

∑n−1
i=1

1
µi

, where µ1, µ2, . . . , µn−1, µn = 0 are the Laplacian

eigenvalues of G. In this paper, some results in the paper [Comparison between the Laplacian-energy-like invariant and the

Kirchhoff index. Electron. J. Linear Algebra 31:27–41, 2016] are corrected and improved.
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1. Introduction. All graphs considered in this paper are finite, undirected, and simple. Let G be a

graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G), where |E(G)| = m. Denote by ∆(G)

and δ(G) the maximum degree and the minimum degree of G, respectively. A graph G is r-regular if

∆(G) = δ(G) = r. The adjacency matrix of G is A(G) = [aij ]n×n, where elements aij = 1 if the vertices

vi and vj in G are adjacent, and aij = 0 otherwise. The Laplacian matrix of G is defined to be L(G) =

D(G) − A(G), where D(G) is the diagonal matrix of vertex degrees of G. The Laplacian spectrum of G is

SpecL(G) =
{
µ1(G), µ2(G), . . . , µn(G)

}
, where µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) are the eigenvalues of L(G)

(usually known as the Laplacian eigenvalues of G), arranged in nonincreasing order. If the eigenvalue µi(G)

appears ti > 1 times in SpecL(G), we write as µi(G)(ti) in it for convenience. It is well known [8] that

µn(G) = 0 and, µn−1(G) > 0 if and only if G is connected.

The Laplacian-energy-like invariant and the Kirchhoff index of a connected graph G are defined, respec-

tively, as

LEL(G) =

n−1∑
i=1

√
µi(G) and Kf(G) = n

n−1∑
i=1

1

µi(G)
.

These two Laplacian-spectrum-based invariants, as molecular structure descriptors, have been found note-

worthy applications in chemistry [7, 11, 12, 18, 28], and many of their mathematical properties have been

established [2, 5, 6, 9, 17, 19, 21, 22, 26, 27, 29, 30, 31, 33, 35, 36].

In [5], Das, Xu and Gutman compared LEL(G) and Kf(G) and established several sufficient conditions

for LEL(G) < Kf(G). They also showed that, if m ≥ n(n− 1)/2− 4, then LEL(G) > Kf(G), where m is

the number of edges in G; but this condition was far from optimal. Hence, they further posed the following

problem:
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Problem 1 ([5]). Is it possible to find a constant c (which may depend on the number of vertices and

maximum vertex degree), such that for any connected graph G with m ≥ c edges, LEL(G) > Kf(G)?

Motivated by the above problem, the authors of [27] examined sufficient conditions for LEL(G) >

Kf(G).

Theorem 2 ([27]). Let G be a connected graph with algebraic connectivity µn−1 ≥ k and let m be the

number of edges and ∆ the maximum degree of G. If

2m >
k(
√
n+
√
k)

k +
√
n+
√
k

(
(n+ k)(n− 1)

k
−

(n− 1)
√
k(∆ + 1)

√
n+
√
k

)
,

then LEL(G) > Kf(G).

In particular, if µn−1 ≥ 1, then the next corollary follows immediately, which can be seen as a partial

solution to Problem 1.

Corollary 3 ([27]). Let G be a connected graph with algebraic connectivity µn−1 ≥ 1. Let m be the

number of edges and ∆ the maximum degree of G. If

2m >

√
n+ 1√
n+ 2

(
n2 − 1− (n− 1)

√
∆ + 1√

n+ 1

)
,

then LEL(G) > Kf(G).

Furthermore, using Theorem 2, the authors of [27] proved that the inequality LEL > Kf holds for the

complements of trees, unicyclic graphs, bicyclic graphs, tricyclic graphs, and tetracyclic graphs.

Corollary 4 ([27]). Let T be a tree and T be its complement. If the order of T is n ≥ 7 and

∆(T ) ≤ n− 2, then LEL(T ) > Kf(T ).

Corollary 5 ([27]). Let U be a unicyclic graph and U be its complement. If the order of U is n ≥ 14

and ∆(U) ≤ n− 2, then LEL(U) > Kf(U).

Corollary 6 ([27]). Let B be a bicyclic graph and B be its complement. If the order of B is n ≥ 15

and ∆(B) ≤ n− 2, then LEL(B) > Kf(B).

Corollary 7 ([27]). Let TC be a tricyclic graph and TC be its complement. If the order of TC is

n ≥ 16 and ∆(TC) ≤ n− 2, then LEL(TC) > Kf(TC).

Corollary 8 ([27]). Let QC be a tetracyclic graph and QC be its complement. If the order of QC is

n ≥ 17 and ∆(QC) ≤ n− 2, then LEL(QC) > Kf(QC).

However, it is unfortunate that Corollary 4 is incorrect. As a counterexample, we consider the tree T ∗

with 7 vertices obtained from the star K5,1 by attaching a pendent edge to one of its vertices of degree

1. Clearly, we have ∆(T ∗) = 5 = n − 2. Now, by the software ‘Mathematica’, we get SpecL(T ∗) ={
6.5341, 6, 6, 6, 4.5173, 0.9486, 0

}
(up to four decimal places), and thus LEL(T ∗) ≈ 13.0040 < 13.5000 ≈

Kf(T ∗).

In fact, in the original proof of Corollary 4, the authors of [27] claimed that for any tree T of order n, if

∆(T ) ≤ n− 2, then µ1(T ) ≤ n− 2 (as T 6= Kn−1,1). This is not true. As shown in Lemma 11 below, there

are still some other trees T with µ1(T ) > n− 2 other than the star Kn−1,1. Similar errors also appear in the

original proofs of Corollaries 5, 6, and 7.
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In this paper, we first make a slight improvement on Theorem 2. Based on this result, we give a corrected

version of Corollary 4 and its proof; we also provide correct proofs for Corollaries 5, 6, and 7. Finally, we

present several new sufficient conditions for LEL(G) > Kf(G), some of which improve the results in [27];

in particular, we provide a complete (but not the best possible) solution to Problem 1.

2. Main results. We first give some known results that will be used later.

Proposition 9.

(i) ([25]) Let G be a graph of order n and G be its complement. Then SpecL(G) =
{
n− µn−1(G), n−

µn−2(G), . . . , n− µ1(G), 0
}

.

(ii) ([1]) For any graph G of order n, µ1(G) ≤ n with equality if and only if G is disconnected.

(iii) ([10]) Let G be a graph with at least one edge. Then µ1(G) ≥ ∆(G)+1. Moreover, if G is connected,

then the equality holds if and only if ∆(G) = n− 1.

(iv) ([8]) For any non-complete graph G of order n, µn−1(G) ≤ δ(G).

(v) ([8]) For any graph G of order n, µn−1(G) ≥ 2δ(G)− n+ 2.

(vi) ([3]) If G is a graph of order n ≥ 3 with m edges, then µn−1(G) ≥ 2m− (n− 2)(∆(G) + 1).

(vii) ([4]) If G is a graph of order n with at least one edge, then µ1(G) = µ2(G) = · · · = µn−1(G) if and

only if G = Kn.

For a square matrix M , denote by Φ(M,x) (or simply, Φ(M)) the characteristic polynomial of M , i.e.,

Φ(M,x) = det(xI −M). For a vertex v ∈ V (G), let Lv(G) be the principal sub-matrix of L(G) obtained by

deleting the row and column corresponding to the vertex v. The following result, due to Guo [14], is usually

used to calculate the Laplacian characteristic polynomial of a graph.

Lemma 10 ([14]). If G = G1u : vG2 is the graph obtained by joining the vertex u of the graph G1 to

the vertex v of the graph G2 by an edge, where G1 and G2 are vertex-disjoint, then

Φ(L(G)) = Φ(L(G1))Φ(L(G2))− Φ(L(G1))Φ(Lv(G2))− Φ(L(G2))Φ(Lu(G1)).

Let T (n), U(n), B(n), and T C(n) denote the sets of all trees, unicyclic graphs, bicyclic graphs, and

tricyclic graphs of order n, respectively.

Lemma 11 ([34, 13, 32]). For n ≥ 8, if T ∈ T (n) \ {Kn−1,1, T2, T3, T4, T5}, then µ1(T ) ≤ n− 2, where

T2, T3, T4, and T5 are shown in Fig. 1.

Lemma 12 ([15, 24]). For n ≥ 10, if U ∈ U(n)\{U1, U2, U3, U4}, then µ1(U) ≤ n−1, where U1, U2, U3,

and U4 are shown in Fig. 2.

Lemma 13 ([16, 20]). For n ≥ 11, if B ∈ B(n) \ {B1, B2, . . . , B11}, then µ1(B) ≤ n − 1, where

B1, B2, . . . , B11 are shown in Fig. 3.

Figure 1. The trees T2, T3, T4, and T5.
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Figure 2. The unicyclic graphs U1, U2, U3, and U4.

Figure 3. The bicyclic graphs B1, B2, . . . , B11.

Lemma 14 ([23]). For n ≥ 11, if H ∈ T C(n) \
(
S(n, 3) ∪ {H1, H2, . . . ,H27}

)
, then µ1(H) ≤ n − 1,

where S(n, 3) is the class of graphs obtained from the star Kn−1,1 by adding 3 edges among its vertices of

degree 1, and H1, H2, . . . ,H27 are shown in [23], Fig. 2.

Now, we are ready to present the main results of this paper.

Theorem 15. Let G be a graph of order n with m edges and µn−1(G) ≥ k > 0. Then LEL(G) > Kf(G)

provided

2m >
k(
√
n+
√
k)

k +
√
n+
√
k

(
(n+ k)(n− 1)

k
− (n− 1)

√
nk

√
n+
√
k

)
.(2.1)

Proof. Our proof follows that given for Theorem 1.2 in [27].

LEL(G) =

n−1∑
i=1

√
µi(G) =

n−1∑
i=1

(√
µi(G)−

√
µn−1(G)

)
+ (n− 1)µn−1(G)

=

n−1∑
i=1

(
µi(G)− µn−1(G)√
µi(G) +

√
µn−1(G)

)
+ (n− 1)µn−1(G)

≥
n−1∑
i=1

(
µi(G)− µn−1(G)√
µ1(G) +

√
µn−1(G)

)
+ (n− 1)µn−1(G)

=
2m+ (n− 1)

√
µ1(G)µn−1(G)√

µ1(G) +
√
µn−1(G)

.(2.2)

For x > 0, consider the following function

f(x) =
2m+ (n− 1)

√
xµn−1(G)

√
x+

√
µn−1(G)

,



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 65-76, January 2022.

69 Comparison between the Laplacian-energy-like invariant and the Kirchhoff index

for which

f ′(x) =
(n− 1)µn−1(G)− 2m

2
√
x
(√
x+

√
µn−1(G)

)2 .
Since 2m =

∑n−1
i=1 µi(G) ≥ (n− 1)µn−1(G), we have f ′(x) ≤ 0, implying that f(x) is a decreasing function

for x > 0. Thus, noting that µ1(G) ≤ n (by Proposition 9(ii)), from (2.2) we obtain

LEL(G) ≥ f(µ1(G)) ≥ f(n) =
2m+ (n− 1)

√
nµn−1(G)

√
n+

√
µn−1(G)

.(2.3)

For x > 0, again consider the following function

g(x) =
2m+ (n− 1)

√
nx√

n+
√
x

,

for which

g′(x) =
n(n− 1)− 2m

2
√
x
(√
n+
√
x
)2 ≥ 0 (as n(n− 1) ≥ 2m).

Hence, g(x) is an increasing function for x > 0, which, together with (2.3), yields

LEL(G) ≥ g(µn−1(G)) ≥ g(k) =
2m+ (n− 1)

√
nk

√
n+
√
k

(as µn−1(G) ≥ k > 0).(2.4)

On the other hand, we have

Kf(G) = n

n−1∑
i=1

1

µi(G)
= n

n−1∑
i=1

(
1

µi(G)
− 1

µ1(G)

)
+
n(n− 1)

µ1(G)

= n

n−1∑
i=1

(
µ1(G)− µi(G)

µ1(G)µi(G)

)
+
n(n− 1)

µ1(G)

≤ n
n−1∑
i=1

(
µ1(G)− µi(G)

µ1(G)µn−1(G)

)
+
n(n− 1)

µ1(G)

=
n
[
(n− 1)(µ1(G) + µn−1(G))− 2m

]
µ1(G)µn−1(G)

.(2.5)

For x > 0, consider the following function

h(x) =
(n− 1)(x+ µn−1(G))− 2m

xµn−1(G)
,

for which

h′(x) =
2m− (n− 1)µn−1(G)

x2µn−1(G)
≥ 0.
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Hence, h(x) is an increasing function for x > 0, which, together with (2.5), yields

Kf(G) ≤ nh(µ1(G)) ≤ nh(n) =
n(n− 1)− 2m

µn−1(G)
+ n− 1 (as µ1(G) ≤ n)

≤ n(n− 1)− 2m

k
+ n− 1 (as µn−1(G) ≥ k > 0).(2.6)

Now, from the given condition (2.1), it follows that

2m+ (n− 1)
√
nk

√
n+
√
k

>
n(n− 1)− 2m

k
+ n− 1,

which, together with (2.4) and (2.6), immediately yields LEL(G) > Kf(G).

Remark 16. Noting that ∆(G)+1 ≤ n always holds for a graph G of order n, one can see that Theorem

15 is indeed an improvement on Theorem 2.

The next result is a corrected version of Corollary 4, where the original condition “n ≥ 7” is revised to

“n ≥ 8”, and the new proof is also given based on Theorem 15.

Corollary 17. Let T be a tree of order n and T be its complement. If n ≥ 8 and ∆(T ) ≤ n− 2, then

LEL(T ) > Kf(T ).

Proof. If T ∈ T (n) \ {Kn−1,1, T2, T3, T4, T5}, by Lemma 11, we have µ1(T ) ≤ n − 2 and then, by

Proposition 9(i), we obtain µn−1(T ) = n− µ1(T ) ≥ 2. Note that

2|E(T )| = (n− 1)(n− 2) >
2(
√
n+
√

2)
√
n+ 2 +

√
2

(
(n+ 2)(n− 1)

2
− (n− 1)

√
2n

√
n+
√

2

)
,

provided n+
√

2n > 2
√
n+ 2 + 2

√
2, which is true for n ≥ 8. Hence, by Theorem 15, LEL(T ) > Kf(T ).

Otherwise, since ∆(T ) ≤ n − 2, we have T 6= Kn−1,1. It now suffices to show that LEL(Ti) > Kf(Ti)

for i ∈ {2, 3, 4, 5}. By Lemma 10 and a direct calculation, we get

Φ(L(T2), x) = x(x− 1)n−4
[
x3 − (n+ 2)x2 + (3n− 2)x− n

]
,

Φ(L(T3), x) = x(x− 1)n−4
[
x3 − (n+ 2)x2 + (4n− 7)x− n

]
,

Φ(L(T4), x) = x(x− 1)n−6(x2 − 3x+ 1)
[
x3 − (n+ 1)x2 + (3n− 5)x− n

]
,

Φ(L(T5), x) = x(x− 1)n−5
[
x4 − (n+ 3)x3 + (5n− 4)x2 − (6n− 10)x+ n

]
,

from which we obtain

SpecL(T2) = {α1, α2, 1
(n−4), α3, 0},

SpecL(T3) = {β1, β2, 1(n−4), β3, 0},

SpecL(T4) = {γ1, γ2, γ3, γ4, 1(n−6), γ5, 0},

SpecL(T5) = {θ1, θ2, θ3, 1(n−5), θ4, 0},
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where α1 ≥ α2 ≥ α3, β1 ≥ β2 ≥ β3, γ1 ≥ γ2 ≥ γ3 ≥ γ4 ≥ γ5, and θ1 ≥ θ2 ≥ θ3 ≥ θ4 are, respectively, the

zeros of the functions

f2(x) = x3 − (n+ 2)x2 + (3n− 2)x− n,
f3(x) = x3 − (n+ 2)x2 + (4n− 7)x− n,
f4(x) = (x2 − 3x+ 1)

[
x3 − (n+ 1)x2 + (3n− 5)x− n],

f5(x) = x4 − (n+ 3)x3 + (5n− 4)x2 − (6n− 10)x+ n.

Moreover, we have n − 1 < α1 < n (by Proposition 9(ii) and (iii)), 0 < α3 ≤ 1 (by Proposition 9(iv)), and

1 < α2 < 3 (as α1 + α2 + α3 + (n− 4) = 2(n− 1)); similarly, it is not difficult to verify that n− 2 < β1 < n,

0 < β3 ≤ 1, and 1 < β2 < 4; n − 2 < γ1 < n, 0 < γ5 ≤ 1, and 3 < γ4 + γ3 + γ2 < 6; n − 2 < θ1 < n,

0 < θ4 ≤ 1, and 2 < θ3 + θ2 < 5.

Now, from Proposition 9(i), it follows that

SpecL(T2) = {n− α3, n− 1(n−4), n− α2, n− α1, 0},
SpecL(T3) = {n− β3, n− 1(n−4), n− β2, n− β1, 0},
SpecL(T4) = {n− γ5, n− 1(n−6), n− γ4, n− γ3, n− γ2, n− γ1, 0},
SpecL(T5) = {n− θ4, n− 1(n−5), n− θ3, n− θ2, n− θ1, 0},

and hence, for n ≥ 8,

LEL(T2) = (n− 4)
√
n− 1 +

√
n− α3 +

√
n− α2 +

√
n− α1

> (n− 3)
√
n− 1 +

√
n− 3 > 2n− 3/5,

Kf(T2) = n

(
n− 4

n− 1
+

1

n− α3
+

1

n− α2
+

1

n− α1

)
= n

(
n− 4

n− 1
+
f ′2(n)

f2(n)

)
=

2n3 − 9n2 + 11n+ 2

n2 − 4n+ 3
< 2n− 3/5,

LEL(T3) = (n− 4)
√
n− 1 +

√
n− β3 +

√
n− β2 +

√
n− β1

> (n− 3)
√
n− 1 +

√
n− 4 > 2n− 1,

Kf(T3) = n

(
n− 4

n− 1
+
f ′3(n)

f3(n)

)
=

3n3 − 17n2 + 25n+ 7

2n2 − 10n+ 8
< 2n− 1,

LEL(T4) = (n− 6)
√
n− 1 +

√
n− γ5 +

√
n− γ4 +

√
n− γ3 +

√
n− γ2 +

√
n− γ1

> (n− 5)
√
n− 1 +

√
n− 2 + 2

√
n− 6 > 2n− 3,

Kf(T4) = n

(
n− 6

n− 1
+
f ′4(n)

f4(n)

)
=

3n5 − 23n4 + 65n3 − 67n2 − 3n+ 5

2n4 − 14n3 + 32n2 − 26n+ 6
< 2n− 3,

LEL(T5) = (n− 5)
√
n− 1 +

√
n− θ4 +

√
n− θ3 +

√
n− θ2 +

√
n− θ1

> (n− 4)
√
n− 1 +

√
n− 3 +

√
n− 5 > 2n− 2,

Kf(T5) = n

(
n− 5

n− 1
+
f ′5(n)

f5(n)

)
=

3n4 − 20n3 + 46n2 − 31n− 10

2n3 − 12n2 + 21n− 11
< 2n− 2,

which yield LEL(Ti) > Kf(Ti) for i ∈ {2, 3, 4, 5}.

We next present correct proofs for Corollaries 5, 6 and 7, which are analogous to the proof of Corollary 17.
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Proof of Corollary 5. If U ∈ U(n) \ {U1, U2, U3, U4}, by Lemma 12, we have µ1(U) ≤ n− 1 and then, by

Proposition 9(i), we get µn−1(U) = n− µ1(U) ≥ 1. Note that

2|E(U)| = n(n− 3) >

√
n+ 1√
n+ 2

(
n2 − 1− (n− 1)

√
n√

n+ 1

)
,

provided n2+1 > 2n(
√
n+3), which is true for n ≥ 14. Hence, by Theorem 15, we obtain LEL(U) > Kf(U).

Otherwise, since ∆(U) ≤ n − 2, we have U 6= U1. It now suffices to show that LEL(Ui) > Kf(Ui) for

i ∈ {2, 3, 4}. By Lemma 10 and a direct calculation, we get

Φ(L(U2), x) = x(x− 1)n−5(x− 2)
[
x3 − (n+ 3)x2 + (4n− 2)x− 2n

]
,

Φ(L(U3), x) = x(x− 1)n−5
[
x4 − (n+ 5)x3 + (6n+ 3)x2 − (9n− 5)x+ 3n

]
,

Φ(L(U4), x) = x(x− 1)n−5(x− 3)
[
x3 − (n+ 2)x2 + (3n− 2)x− n

]
.

Using a fully analogous argument as in the proof of Corollary 17, one can eventually conclude that, for

n ≥ 14,

LEL(U2) > (n− 4)
√
n− 1 > 2n >

2n4 − 15n3 + 39n2 − 34n− 4

n3 − 7n2 + 14n− 8
= Kf(U2),

LEL(U3) > (n− 4)
√
n− 1 > 2n >

2n4 − 15n3 + 38n2 − 32n− 5

n3 − 7n2 + 14n− 8
= Kf(U3),

LEL(U4) > (n− 4)
√
n− 1 > 2n >

2n3 − 9n2 + 13n+ 2

n2 − 4n+ 3
= Kf(U4),

as desired.

Proof of Corollary 6. Similarly, if B ∈ B(n) \ {B1, B2, . . . , B11}, then by Lemma 13 and Proposition

9(i), we have µn−1(B) = n− µ1(B) ≥ 1. Notice that

2|E(B)| = n(n− 3)− 2 >

√
n+ 1√
n+ 2

(
n2 − 1− (n− 1)

√
n√

n+ 1

)
,

provided n2+1 > 2(n+1)
√
n+6n+4, which holds for n ≥ 15. So, by Theorem 15, we get LEL(B) > Kf(B).

Otherwise, since ∆(B) ≤ n− 2, we have B /∈ {B1, B2}. It suffices to show that LEL(Bi) > Kf(Bi) for

i ∈ {3, 4, . . . , 11}. By Lemma 10 and a direct calculation, we obtain

Φ(L(B3), x) = x(x− 1)n−6(x− 2)2
[
x3 − (n+ 4)x2 + (5n− 2)x− 3n

]
,

Φ(L(B4), x) = x(x− 1)n−6
[
x5 − (n+ 8)x4 + (9n+ 18)x3 − (27n+ 6)x2 + (31n− 10)x− 11n

]
,

Φ(L(B5), x) = x(x− 1)n−6(x− 2)(x− 3)
[
x3 − (n+ 3)x2 + (4n− 2)x− 2n

]
,

Φ(L(B6), x) = x(x− 1)n−5(x− 4)
[
x3 − (n+ 3)x2 + (4n− 2)x− 2n

]
,

Φ(L(B7), x) = x(x− 1)n−6(x− 2)
[
x4 − (n+ 6)x3 + (7n+ 4)x2 − (11n− 6)x+ 4n

]
,

Φ(L(B8), x) = x(x− 1)n−6
[
x5 − (n+ 8)x4 + (9n+ 17)x3 − (26n+ 2)x2 + (27n− 13)x− 8n

]
,

Φ(L(B9), x) = x(x− 1)n−6(x− 3)
[
x4 − (n+ 5)x3 + (6n+ 3)x2 − (9n− 5)x+ 3n

]
,

Φ(L(B10), x) = x(x− 1)n−6(x− 2)(x− 4)
[
x3 − (n+ 2)x2 + (3n− 2)x− n

]
,

Φ(L(B11), x) = x(x− 1)n−6(x− 3)2
[
x3 − (n+ 2)x2 + (3n− 2)x− n

]
,
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from which we can eventually find that, for n ≥ 15,

LEL(B3) > (n− 5)
√
n− 1 > 2n >

2n4 − 17n3 + 49n2 − 50n− 4

n3 − 8n2 + 17n− 10
= Kf(B3),

LEL(B4) > (n− 5)
√
n− 1 > 2n >

2n5 − 21n4 + 84n3 − 152n2 + 97n+ 10

n4 − 10n3 + 34n2 − 46n+ 21
= Kf(B4),

LEL(B5) > (n− 5)
√
n− 1 > 2n >

2n5 − 21n4 + 86n3 − 163n2 + 114n+ 12

n4 − 10n3 + 35n2 − 50n+ 24
= Kf(B5),

LEL(B6) > (n− 5)
√
n− 1 > 2n >

2n3 − 11n2 + 19n+ 2

n2 − 5n+ 4
= Kf(B6),

LEL(B7) > (n− 5)
√
n− 1 > 2n >

2n4 − 17n3 + 47n2 − 46n− 6

n3 − 8n2 + 17n− 10
= Kf(B7),

LEL(B8) > (n− 5)
√
n− 1 > 2n >

2n5 − 21n4 + 83n3 − 147n2 + 90n+ 13

n4 − 10n3 + 34n2 − 46n+ 21
= Kf(B8),

LEL(B9) > (n− 5)
√
n− 1 > 2n >

2n5 − 21n4 + 85n3 − 158n2 + 107n+ 15

n4 − 10n3 + 35n2 − 50n+ 24
= Kf(B9),

LEL(B10) > (n− 5)
√
n− 1 > 2n >

2n5 − 21n4 + 85n3 − 158n2 + 106n+ 16

n4 − 10n3 + 35n2 − 50n+ 24
= Kf(B10),

LEL(B11) > (n− 5)
√
n− 1 > 2n >

2n3 − 9n2 + 15n+ 2

n2 − 4n+ 3
= Kf(B11),

as desired.

Proof of Corollary 7. If TC ∈ T C(n)\
(
S(n, 3)∪{H1, H2, . . . ,H27}

)
, then by Lemma 14 and Proposition

9(i), we have µn−1(TC) = n− µ1(TC) ≥ 1. Note that

2|E(TC)| = n(n− 3)− 4 >

√
n+ 1√
n+ 2

(
n2 − 1− (n− 1)

√
n√

n+ 1

)
,

provided n2 + 1 > 2(n+ 2)
√
n+ 6n+ 8, which holds for n ≥ 16. So, by Theorem 15, we obtain LEL(TC) >

Kf(TC).

Otherwise, since ∆(TC) ≤ n − 2, we have TC /∈ S(n, 3). Now, we just need to show that LEL(Hi) >

Kf(Hi) for i ∈ {1, 2, . . . , 27}. Notice that Φ(L(Hi), x), i = 1, 2, . . . , 27, have been given in the proof of

Lemma 2.5 in [23], from which and with the aid of the software ‘Mathematica’, we can check that, for n ≥ 16

and i = 1, 2, . . . , 27, LEL(Hi) > (n− 6)
√
n− 1 > 2n+ 1 > Kf(Hi).

Remark 18. We believe that Corollary 8 is true too. However, because of the limitation of the length

of this paper, we do not give a complete proof for it. In fact, this proof would be fully analogous to the

previous proofs for Corollaries 5, 6, 7 and 17; but the characterization for the tetracyclic graphs QC with

µ1(QC) > n− 1, and a great deal of tedious calculation, would be needed.

We finally provide several new sufficient conditions for LEL(G) > Kf(G).

Theorem 19. If G is a graph of order n ≥ 3 with µn−1(G) ≥ n2/3, then LEL(G) > Kf(G).
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Proof. Since µ1(G) ≥ µ2(G) ≥ · · · ≥ µn−1(G) > 0, we have

LEL(G) =

n−1∑
i=1

√
µi(G) ≥ (n− 1)

√
µn−1(G),(2.7)

Kf(G) = n

n−1∑
i=1

1

µn−1(G)
≤ n(n− 1)

µn−1(G)
,(2.8)

with both equalities in (2.7) and (2.8) holding if and only if µ1(G) = µ2(G) = · · · = µn−1(G), which implies

G = Kn (by Proposition 9(vii)).

If G = Kn, then we have LEL(G) = (n − 1)
√
n > n − 1 = Kf(G). Otherwise, since µn−1(G) ≥ n2/3,

from (2.7) and (2.8) it follows that

LEL(G) > (n− 1)
√
µn−1(G) ≥ n(n− 1)

µn−1(G)
> Kf(G),

as desired.

Recall that µn−1(G) = n − µ1(G) (by Proposition 9(i)). This, together with Theorem 19, yields the

following result, which can be viewed as a slight improvement of Theorem 2.12 in [27].

Corollary 20. If G is a graph of order n ≥ 3 with µ1(G) ≤ n− n2/3, then LEL(G) > Kf(G).

Combining Theorem 19 with Proposition 9(v), we obtain the next result.

Theorem 21. If G is a graph of order n ≥ 3 with δ(G) ≥ (n+ n2/3 − 2)/2, then LEL(G) > Kf(G).

Remark 22. In particular, from Theorem 21 one can see that, if G is an r-regular graph of order n ≥ 3

with r ≥ (n+n2/3− 2)/2, then LEL(G) > Kf(G). Therefore, Theorem 21 can be regarded as an extension

of Corollary 2.16 in [27].

The next result follows immediately from Theorem 19 and Proposition 9(vi).

Theorem 23. Let G be a graph of order n ≥ 3 with m edges. If 2m ≥ (n− 2)(∆(G) + 1) + n2/3, then

LEL(G) > Kf(G).

Remark 24. To some extent, Theorem 23 provides a complete (but not the best possible) solution to

Problem 1. It would be of interest to find the best possible solution to this problem.

As an application of Theorem 23, we have the following result.

Corollary 25. Let G be an r-regular graph of order n ≥ 3 with r ≥ (n + n2/3 − 2)/2. Let G−k

be an edge-deleted subgraph of G by deleting arbitrary k edges. If 0 ≤ k ≤ r − (n + n2/3 − 2)/2, then

LEL(G−k) > Kf(G−k).

Proof. Since k ≤ r − (n+ n2/3 − 2)/2 and r ≥ ∆(G−k), we have

2|E(G−k)| = 2(|E(G)| − k) = nr − 2k ≥ nr − 2r + (n+ n2/3 − 2) ≥ (n− 2)(∆(G−k) + 1) + n2/3.

Thus, by Theorem 23, we obtain the desired result.

Remark 26. Corollary 25 tells us that not only r-regular graphs with sufficient large r but also some

of their edge-deleted subgraphs, satisfy LEL > Kf . So, Corollary 25 can be seen as another extension of

Corollary 2.16 in [27].
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In particular, taking r = n− 1 in Corollary 25, we have the following result, which can be viewed as an

improvement on Corollary 3.5 in [5].

Corollary 27. Let G be a graph of order n ≥ 14 with m edges. If m ≥ n(n−1)/2− (n−n2/3)/2, then

LEL(G) > Kf(G).
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[28] D. Stevanović, A. Ilić, C. Onişor, and M.V. Diudea. LEL-a newly designed molecular descriptor. Acta Chim. Slov.,

56:410–417, 2009.

[29] W. Wang, D. Yang, and Y. Luo. The Laplacian polynomial and Kirchhoff index of graphs derived from regular graphs.

Discrete Appl. Math., 161:3063–3071, 2013.

[30] K. Xu and K.C. Das. Extremal Laplacian-energy-like invariant of graphs with given matching number. Electron. J. Linear

Algebra, 26:131–140, 2013.

[31] Y. Yang and D.J. Klein. Comparison theorems on resistance distances and Kirchhoff indices of S, T-isomers. Discrete

Appl. Math., 175:87–93, 2014.

[32] A. Yu, M. Lu, and F. Tian. Ordering trees by their Laplacian spectral radii. Linear Algebra Appl., 405:45–59, 2005.

[33] H. Zhang, Y. Yang, and C. Li. Kirchhoff index of composite graphs. Discrete Appl. Math., 157:2918–2927, 2009.

[34] X. Zhang and J. Li. The two largest eigenvalues of Laplacian matrices of trees (in Chinese). J. China Univ. Sci. Technol.,

28:513–518, 1998.
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